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Abstract: This paper proposes a method with an off-axis interferometer and an ensemble deep
learning (I-EDL) hologram-classifier to interpret noisy digital holograms captured from the tissues
of flawed biological specimens. The holograms are captured by an interferometer, which serves as
a digital holographic scanner to scan the tissue with 3D information. The method achieves a high
success rate of 99.60% in identifying the specimens through the tissue holograms. It is found that
the ensemble deep learning hologram-classifier can effectively adapt to optical aberration coming
from dust on mirrors and optical lens aberrations such as the Airy-plaque-like rings out-turn from
the lenses in the interferometer. The deep learning network effectively adapts to these irregularities
during the training stage and performs well in the later recognition stage without prior optical
background compensations. The method does not require an intact sample with a full outline shape
of the specimens or the organs to understand the objects’ identities. It demonstrates a new paradigm
in object identification by ensemble deep learning through a direct wavefront recognition technique.

Keywords: digital hologram; holographic scanner; deep learning; biological specimen recognition;
wavefront recognition; complex object wavefront; interferometer

1. Introduction

The advancements in optics and computing technologies have enabled digital holo-
grams of physical three-dimensional (3D) objects to be captured and analyzed at high speed
and achieve close to real-time response performance. Holograms can be displayed with a
spatial light modulator to reconstruct a visible image and is an ideal solution for recording,
storing, and displaying 3D objects in the digital world. However, a hologram comprises
high-frequency fringe patterns and is almost impossible to recognize with traditional com-
puter vision methods. Furthermore, in many practical situations, intact extraction of a
biological specimen or organ is not feasible, and therefore the object’s identity cannot be
inferred directly from its outline shape. However, a digital holographic interferometer is
an effective hologram-capturing device to examine the microstructure inside a specimen.
Furthermore, the off-axis configuration simplifies the difficulties of separating a hologram’s
zero-order image from the two conjugate virtual and real images in Fourier space.

During the early stage of optical hologram classification methods, almost all methods
were based on correlation, where a targeted hologram is matched against a library of
reference hologram templates. The matching is generally realized with optical correlation
and only results in a high matching score if a pair of objects have similar poses and depth.
Most of these approaches are sensitive to positional shifts and deformations. The methods
and the problems are described in detail by VanderLugt works in [1] and the articles in [2–5].
The hologram classifier employed in this paper is EDL-IOHC [6], in which a modern
deep learning approach is employed. The feature extraction process of the deep learning
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approach is fully automated. The method solves most of the shift-invariant problems
within a single framework with the capability to handle occlusion problems effectively.

Nowadays, some researchers are using the common term Hologram interchangeably
with the terms ‘Raw Hologram’ and ‘Digital Hologram’. In order to avoid potential
confusion, the following definitions explicitly state the difference in their meanings. ‘Raw
Hologram’ is the intensity map recorded on a camera or a film, and usually, this intensity
map will be used for the object wavefront reconstruction, as Dennis Gabor showed in his
works in 1948 [7]. ‘Digital Hologram’ is a representation of the complex optical wavefront
diffracted from an object. The complex wavefront is either generated directly by a computer
or reconstructed digitally from a ‘Raw Hologram’. A computer-generated hologram is often
referred to as wavefront-based CGH [8], Computer Generated Hologram, starting from the
works by J.W. Goodman and R.W. Lawrence [9] during the period of the mid-1960s.

A basic tool in two-dimensional digital signal processing used in digital holography
is DFT (discrete Fourier transform) and the corresponding IDFT (inverse discrete Fourier
transform), making fast computation possible. For raw holograms captured by a modern
digital camera, their corresponding frequency spectrums are also discrete. The DFT trans-
forms the raw hologram from the spatial domain to the frequency domain in a discrete
manner. The raw hologram spectrum and the corresponding object wavefront extraction
methods have been reported in detail in numerous works in the literature, such as [10–13].
In the frequency domain of a raw hologram, the spectrums of the zero-order image, virtual
image, and real image are shifted and separated by the off-axis configuration. As a result,
the object wavefront (digital hologram) can be extracted relatively easily.

In this paper, we have proposed a novel technique for identifying biological samples
based on their tissues’ digital holograms. The paper is organized as follows. In Section 2, a
detailed optical setup of a single-shot off-axis digital holographic interferometer, an outline
of the digital hologram-classifier EDL-IOHC in [14], and the workflow of converting a
raw hologram to a digital hologram are described. Experimental results are presented in
Section 3. A conclusion summarizing the essential findings is given in Section 4.

2. Method
2.1. Single-Shot Off-Axis Digital Holographic Interferometer

Our proposed interferometer and ensemble deep learning (I-EDL) method consisted
of a single-shot off-axis digital holographic interferometer and an ensemble deep learn-
ing system for raw hologram capturing and complex object wavefront recognition. The
interferometer provides off-axis holograms with a shifted spectrum of the object’s real
image that can be easily extracted and processed by the fast Fourier transform method,
which is explained in detail by [10,11]. The optical setup is based on the principle of spatial
coherence and is installed on a curtain-enclosed optical table [15]. The coherent light source
is a red He-Ne laser with a wavelength of 632.8 nm [14], and the laser beam is approxi-
mately 2 mm in diameter. The object light formed by a laser beam passes through the tissue
specimen and records the object information related to it. Change the specimen positions
in x-y directions and record hundreds of experimental data images. The holograms are
captured by a CMOS camera equipped with a Nikon Plan microscope objective [16]. The
following Figure 1 shows a schematic diagram of the optical setup in detail, where MO is a
microscopic objective, and NDF is a neutral density filter. The reference light is separated
by several beam splitters (BS2, BS3) into three light beams and polarized by three linear
polarizers (LP0◦, LP45◦, and LP90◦) under 0◦, 45◦, and 90◦, respectively. Then, they are
combined by BS4 and BS5 and interfere with the object light to form the fringe image. The
system employs two neutral density filters in the object light beam (Lo) and references
light beam (Lr) to adjust the light intensity from overexposure. The raw hologram of the
object is recorded by the camera. Compared with a standard off-axis system, the setup can
get raw holograms with different polarization states in a single shot, reduces image degra-
dation due to light scatterings, and has higher imaging efficiency. The extra polarization
information is capable of image denoising and more details can be found in [17].



Appl. Sci. 2022, 12, 12674 3 of 10

Figure 1. Schematic diagram of the single-shot off-axis digital holographic interferometer.

2.2. Ensemble Deep-Learning Network

The hologram-classifier employed in this paper is EDL-IOHC. The approach in the
articles [18,19] opens a new paradigm for digital hologram recognition directly by wave-
front analysis. The choice of EDL-IOHC is due to its robustness and high accuracy under
noisy conditions with occlusion compared to its predecessors in [18,19]. For clarity of
explanation, the hologram-classifier EDL-IOHC, a complex wavefront recognition system,
is outlined below.

In reference to Figure 2a, which shows the structure of EDL-IOHC in [6] for recognizing
digital holograms with the powerful capability to handle occluded objects contaminated
with speckle noise. The input of the network is the reconstructed hologram with both
magnitude and phase information, as shown in Figure 2a. The first and second CNN,
known as the Magnitude CNN and the Phase CNN, accept the magnitude and phase
components of the digital hologram, which is structurally the same but trained with
different components’ information. The architecture of both CNNs, as shown in Figure 2b,
can be divided into three sections. Sections 1 and 2 have identical structures but different
hyper-parameters, containing a convolution layer for local feature extraction, max-pooling,
and dropout layers. Section 3 is a shared section for both the CNNs, and it is a “Concatenate
Unit” to ensemble output information from the two CNNs. The concatenate unit ensembles
all the extracted phase features and magnitude features into a combined flatten features
vector before fitting into the “Output Dense Layer” for the decision unit to output the
identity of the input digital hologram.

This study employs the hologram-classifier EDL-IHC to identify the tissue object
wavefronts (digital holograms) reconstructed from the raw intensity fringe patterns.

Fringe pattern intensity is referred to as a raw hologram; Γ is a real number quan-
tity and can be obtained as the result of measuring the intensity that results from the
linear superposition of a diffracted object wavefront ‘O’ and a reference wavefront ‘R’.
Mathematically, the recorded intensity image can be expressed as follows:

Γ(m, n) = ‖R(m, n) + O(m, n)‖2 (1)

where Γ(m, n) is the intensity of the captured hologram with a size of M columns ×N rows.
R(m, n) is the reference wavefront, and O(m, n) is the object wavefront.

Expanding Equation (1) is as follows:

Γ(m, n) =‖R(m, n)‖2 + ‖O(m, n)‖2

+ O(m, n)R∗(m, n) + O∗(m, n)R(m, n)
(2)

where ∗ is the complex conjugate operation for complex numbers, ‖R(m, n)‖2 is the square
magnitude of the reference wavefront, and ‖O(m, n)‖2 is the square magnitude of the object
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wavefront. Γ is a set of dark and bright fringes that embeds the amplitude and the phase
information of the corresponding complex object wavefront.

Figure 2. The structure of (a) EDL-IOHC and (b) the expansion structure of CNN components and
their connection with the concatenate unit.

Discrete Fourier Transform (DFT) is performed on the off-axis raw hologram and
generates the four terms in the frequency domain. The DFT transforms the raw hologram
from the spatial domain to the frequency domain in a discrete manner. After performing
DFT on Equation (2) and getting Equation (3), as below.

H(u, v) =A2MNδ(u, v) + DFT
{
‖O(m, n)‖2

}
+ DFT{O(m, n)R∗(m, n) + O∗(m, n)R(m, n)}

(3)

where u, v are the frequency axis, δ(∗) is the delta function, and A is the reference wave’s
amplitude.

In the frequency domain, the spectral locations of the frequency components sepa-
rated by the recorded off-axis hologram provide easy means to separate specific wavefront
information in the Fourier space. The spectrum in the third term is extracted by a mask-
ing method, and the zero-order low-frequency spectrum and the twin image spectrum
are removed. The third term extracted spectrum DFT{O(m, n)R∗(m, n)}, as shown in
Equation (3), is centered (the masking method and centering algorithm is introduced
in [10] with great detail), and then inverse Fourier transform is performed and get the
scaled complex object wavefront AO(m, n), which is the object wavefront multiplied by
the reference wave with amplitude A. Then, a ‘min-max’ normalization algorithm [20]
is applied to A. This method of normalization algorithm used in the machine learning
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community scales the values in a data array from [minimum value, maximum value] to
[−1, 1] through a linear mapping. It normalizes the effect of the scalar multiplication by
the reference wave for recognition. The normalization provides a robust pre-processing
method for recognition purposes. In the following Figure 3 illustrates the procedures to
get the object wavefront (the digital hologram) for training the EDL-IOHC deep learning
network.

Figure 3. The workflow diagram for the processing steps from the biological samples to get the object
wavefront.

Raw holograms of the tissue are captured from the biological samples. Fast DFT
transforms the raw holograms from the spatial domain to the frequency domain. The
spectrums of the object wavefronts are extracted, and fast IDFT restores the spectrums
into the object wavefronts. The object wavefront extraction methods from raw holograms
have been reported in [10–13] with details. The object wavefront extracted from the above
process is a complex quantity that contains both the magnitude and phase components
of the object wave O(m, n), a digital hologram. The full dataset is split into an in-training
train set and an out-training test set. The EDL-IOHC is trained with the train set and tested
by the test set. It is found that aberrations have come from dust on optical lenses and
mirrors, Airy-plaque-like rings [21] out-turn from the system’s lenses. However, the deep
learning network can adapt to these background irregularities during the first training
stage and continue to perform well in the later recognition stage without any necessary
background compensation.

Ten different types of tissues are captured from ten different types of flawed biological
specimens, which are Cucurbita Stem, Pine Stem, Corn (Zea Mays) Seed, House Fly Wing,
Honeybee Wing, Bird Feather, Corpus Ventriculi, Liver Section, Lymph Node and Human
Chromosome with their class labels shown in Table 1.

Table 1. The class labels for different specimens.

Specimen Class Class Label

Cucurbita Stem 0
Pine Stem 1

Corn (Zea mays) Seed 2
House Fly Wing 3
Honeybee Wing 4

Bird Feather 5
Corpus Ventriculi 6

Liver Section 7
Lymph Node 8

Human Chromosome 9
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Five hundred raw holograms are captured from tissues of each class of the ten biologi-
cal specimens and result in a total dataset size of 5000 digital holograms (object wavefront).
They are used to train the hologram-classifier EDL-IOHC. Then, the trained hologram-
classifier is used to identify the type of biological specimens by recognizing the tissues’
digital holograms.

3. Experiments

The system consisted of a computer equipped with an i-7 Intel processor, Nvidia
RTX 2080 Super GPU with 384 Tensor cores, the interferometer, a microscope objective,
and a CMOS camera. The hologram-classifier uses the same set of hyperparameters of
the EDL-IOHC reported in [6]. The new optical parameters for the digital holographic
interferometric system are shown in Table 2.

Table 2. Optical parameters of the digital holographic interferometer system.

Optical Parameters Values

Wavelength of light 632.8 nm
Pixel size 3.45 µm

Size of hologram 2056 rows × 2546 columns
Off-axis angle 1.5 degrees

As illustrations, Figures 4–8 show examples from the human chromosome and the
house fly wing datasets. Figures 4 and 6 are the corresponding images. Figures 5 and 7
are 3D plots of the spectrums and complex wavefront as a better means of visualization
as they are not typical interpretable visual images but are a 2D array of complex phasors.
The chromosome is close to transparent, and it is one of the most challenging samples to be
separated if not using a hologram-classifier. The house fly wing is semitransparent, and
the phase information can complement the magnitude information to build better decision
boundaries for the deep learning network.

From the full dataset of size 5000 capture raw holograms, 5000 digital holograms
(complex object wavefront) are extracted. Then 4000 out of the 5000 are taken as the in-
training dataset, while the remaining out-training dataset is used as a test set. The ensemble
CNN is trained with 3200 in-training set data, and the remaining 800 are used as a validation
set to stop the training process by an early stopping mechanism. Finally, both the in-training
dataset and the out-training dataset are used to evaluate the hologram-classifier. Training is
stopped by the validation set when the change of the validating accuracy is less than 0.01%.

(a) The specimen photo. (b) Raw hologram. (c) Reconstructed tissue image.

Figure 4. Sample image and experimental results for human chromosome sample.
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(a) Full frequency spectrum plot (in dB). (b) Clipped frequency spectrum plot (in dB).

(c) Magnitude plot of the complex wavefront. (d) Phase plot of the complex wavefront.

Figure 5. Frequency spectrum and reconstructed wavefront images of human chromosome sample.

(a) The specimen photo. (b) Raw hologram. (c) Reconstructed tissue image.

Figure 6. Sample image and experimental results for house fly wing sample.
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(a) Full frequency spectrum plot (in dB). (b) Clipped frequency spectrum plot (in dB).

(c) Magnitude plot of the complex wavefront. (d) Phase plot of the complex wavefront.

Figure 7. Frequency spectrum and reconstructed wavefront images of house fly wing sample.

Figure 8. The classification confusion matrix labels 0–9 correspond to the ten specimen classes as
shown in Table 1 ‘Class Label’ column.

The ensemble CNN is trained by the dataset with cosine smoothing on the phase
components, the validating set stops the training epoch, and the actual epoch run is 16.
In each epoch, the holograms in the in-training set of the dataset are used to train the
deep learning structure. The trained structure is then applied to classify the datasets. The
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following confusion matrix in Figure 8 shows that eight out of the ten classes are correct
with very high overall classification accuracy, as shown in Table 3.

Table 3. Success rates for classifying the out-training test set and the complete dataset by the EDL-
IOHC hologram-classifier.

Dataset Success Rate

Test set 99.60%
Complete set (both out- and in-training sets) 99.82%

The results in Table 3 reflect that in classifying the object, EDL-IOHC can maintain a
high success rate of 99.60% for the out-training test set and 99.82% for the entire dataset.
The performance is better than the benchmarking experiment conducted in [6] on partially
occluded digit objects with speckle noise contamination.

4. Conclusions

This paper proposes a hologram-classifier on the digital hologram obtained by an off-
axis interferometer from biological specimen tissues. The method does not require an intact
sample with a complete outline shape of the specimens or the organs to understand the
objects’ identities and achieves a high success rate of 99.60% on the out-training test set, and
is able to adapt for optical aberrations from lenses and mirrors without prior background
compensations. The result demonstrates that the hologram-classifier EDL-IOHC is robust
under noisy and imperfect holography optical processes, and the off-axis interferometer is
effective for scanning the microstructure of the tissues from the specimens. The simplicity
of direct application in recognition of biological specimen tissue by EDL-IOHC, without
any changes in architectural or hyperparameters, verified the generality of EDL-IOHC.
In passing, more potential applications such as pollutant plastics, defective glasses, or
identification of infected red blood cells from normal cells will be feasible by using EDL-
IHC with a similar interferometer. Intuitively the biological specimen tissue hologram
looks noisy and challenging. However, it is numerically not more challenging than the
occluded simple digit patterns with speckle noise tested in the EDL-IOHC. Furthermore,
for potential applications that require more compact size and lower cost but could accept
lower performance, a smaller on-axis inline interferometer could also be considered. The
method demonstrates a new paradigm in object identification by ensemble deep learning
through the EDL-IOHC wavefront recognition technique.
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Abbreviations
The following abbreviations are used in this manuscript:

I-EDL Interferometer and an ensemble deep learning
3D Three-dimensional
EDL-IOHC Ensemble deep learning invariant hologram classification
CGH Computer generated hologram
DFT Discrete Fourier transform
IDFT Inverse discrete Fourier transform
CMOS Complementary metal–oxide–semiconductor
MO Microscope objective
NDF Neural density filter
BS Beam splitter
CNN Convolutional neural network
GPU Graphics processing unit
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