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Abstract: To avoid serious clogging and loss of drainage capacity, which puts the underground
structure at risk of anti-floating failure, the buried drainage filter must be equipped with a nonwoven
geotextile layer. In this scenario, nonwoven geotextiles are subjected to normal compressive stress,
which can cause changes in geotextile porosity and structure, affecting the filtration behavior of the
geotextile filter. In this paper, in order to evaluate the filtration compatibility of the soil–geotextile
system, gradient ratio (GR) tests were performed under a hydraulic gradient of 1.0 using a specially
designed gradient ratio filtration device capable of applying normal stress. In total four nonwoven
geotextiles and two types of soil were used. The results of the gradient ratio filtration tests were
discussed in terms of GR values, the permeability of the soil–geotextile system, and the amount of
fines retained in geotextiles. It was shown that under a larger normal compressive stress, the GR
value would also increase, while the permeability coefficient of the soil–geotextile system decreased.
The filtration responses to various soil–geotextile combinations differed under normal compressive
stress. A thick nonwoven geotextile with a small filtration opening size exhibited poor filtration
performance while benefiting soil retention. Fines retention was influenced by geotextile thickness,
soil type, and normal compressive stress magnitude. In addition, for nonwoven geotextiles filter
fine-grained soil under normal compressive stress, the test results indicated that anticlogging design
criteria should be improved.

Keywords: nonwoven geotextiles; fine-grained soil; filtration; normal compressive stress; gradient
ratio test

1. Introduction

Geotextiles have been widely used as a substitute for the granular filter to provide
filtration and drainage functions in underground structure drainage systems due to their
ease of availability and convenient construction [1–6]. A geotextile filter should meet not
only the soil retention and permeability criteria but also the anti-clogging criterion, because
a filtration system may become clogged by fine particles trapped inside geotextile pores
during its service life.

Geotextiles placed horizontally between the base soil and the gravel layer can perform
the filtration function in filtration engineering. That is, it effectively prevents soil particles
from undue migration or loss, as well as excessive seepage deformation or even soil
destruction. Simultaneously, the water in the soil is allowed to discharge smoothly to avoid
soil instability caused by the increase in pore pressure. Geotextiles can also perform the
filtration function when wrapping the surface of a blind ditch filled with gravel to form an
edge drainage system. In general, the gravel blind ditch covered by geotextile is difficult
to be repaired or replaced during the service period of active anti-floating engineering of

Appl. Sci. 2022, 12, 12638. https://doi.org/10.3390/app122412638 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412638
https://doi.org/10.3390/app122412638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2320-704X
https://doi.org/10.3390/app122412638
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412638?type=check_update&version=1


Appl. Sci. 2022, 12, 12638 2 of 29

underground structures. As a result, the primary concern for a geotextile used as a filter
layer is its long-term performance in terms of permeability and clogging prevention.

Early geotextile filter research primarily focused on the geotextile filtering granular
soil [7–11]. The formation mechanism of the “self-filter layer” of geotextile filtering gran-
ular soil, also known as a natural filter layer, has been proposed based on experimental
research and numerical simulation analysis [12,13]. The mechanism is as follows: while the
geotextile performs its filtration function, fine particles close to the filter layer are allowed
to pass through the geotextile, forming a thin layer of arch composed of coarse-grained
soil forms on the surface of the geotextile, i.e., the natural filter layer. However, such a
“self-filter layer” in fine-grained soil with particle size less than 0.075 mm barely exists
due to the cohesive connection between soil aggregates during the filtration process. Stoltz
et al. [14] investigated the filtration behavior of clayey sludge with nonwoven geotextiles
and discovered that the working principle of geotextiles for filtering clayey sludge or fine
particle suspensions was more complex than that for filtering granular soil suspension. In
this case, the filtration mechanism of geotextile filtering granular soil may not be applicable
to fine-grained soil.

At the present, the gradient ratio (GR) filtration test is mainly adopted for the evalua-
tion of the filtration characteristics of geotextiles [6,9,15–18]. The gradient ratio filtration
test calculates the hydraulic gradient of the corresponding area by measuring the water
head difference between different positions of the sample under no stress action to deter-
mine the GR of the soil–geotextile system. GR value is the ratio of water head loss per unit
seepage path of the soil–geotextile combination (25 mm thick soil layer plus geotextile
thickness) to the water head loss per unit seepage path of the soil layer (50 mm thick).
Calhoun also stated that GR values can be used to assess the filtration compatibility of the
soil–geotextile interface. When GR = 1, the hydraulic head loss through the soil sample
and filter is uniform. GR < 1 indicates that soil particles are passing through the geotextile
forming piping, whereas GR > 1 indicates that there is potential clogging in the geotextile’s
upstream or adjacent surface [19]. Therefore, the US Army Corps of Engineers [20] pro-
posed that the GR of the soil–geotextile system should be less than 3 as the critical value for
no clogging, as well as GR≤ 3 was included in the filter criteria for geotextiles as a clogging
resistance criterion. Since the existing geotextile filter criterion is proposed in absence of
stress, it may be ineffective in evaluating the clogging potential of a soil–geotextile system
under stress action. Furthermore, when using the existing gradient ratio permeameter,
the effect of normal compressive stress cannot be considered. However, a geotextile used
as a filter in underground structure drainage system applications is generally subjected
to normal compressive stress, such as the geotextile filter beneath the basement of the
underground structure. In addition, some studies in the literature show that an increase
in normal stress has a significant impact on the filtration opening size and soil retention
of geotextiles [21,22]. Given this, in this study, a gradient ratio permeameter equipped
with a vertical loading device is developed to investigate the filtration performance of
nonwoven-geotextile filtering fine-grained soil subjected to various normal stresses.

The objective of the current study is to evaluate the filtration compatibility of non-
woven geotextiles with fine-grained soils in underground structure active anti-floating
systems by conducting a series of gradient ratio filtration tests under typical normal com-
pressive stress conditions. The results of testing on various soil–geotextile combinations
are presented and assessed. The key findings from the tests are presented and discussed in
the following sections.

2. Test Materials
2.1. Geotextiles

Four different needle-punched nonwoven geotextiles from the same manufacturer
with thicknesses ranging from 1.0 to 3.2 mm were selected in this study, named after GT1,
GT2, GT3 and GT4. The need-punched nonwoven geotextiles were further classified by
their thickness (tGT) as thin GT (tGT ≤ 1mm), medium thickness GT (1< tGT ≤ 2.5 mm) and
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thick GT (tGT > 2.5 mm). The nonwoven geotextiles selected here are commonly used as
filters in applications such as blind drains, pavement edge drains and under revetments or
dam riprap. Their physical and hydraulic properties are given in Table 1. The geotextile
pore size was obtained using the dry sieving method. As shown in Figure 1, the filtration
opening size (O95) for the geotextiles was determined from the pore size distribution curves
in the 0.066~0.17 mm range.

Table 1. Properties of selected nonwoven geotextiles.

Property
Nonwoven Geotextiles

GT1 GT2 GT3 GT4

Thickness tGT
(1) (mm) 1.0 1.9 2.8 3.2

Mass per unit area MA (g/m2) 125 200 300 400
Filtration opening size O95

(2) (mm) 0.17 0.12 0.077 0.066
Permeability kn

(3) (m/s) 4.33 × 10−3 4.27 × 10−3 3.73 × 10−3 3.28 × 10−3

Density of the fibres ρf (kg/m3) 1320 1320 1320 1320
Porosity n (4) 0.90 0.92 0.92 0.91

Fiber diameter df (mm) 0.018 0.018 0.016 0.015
Specific surface area per unit area Sa

(5) (m2/m2) 22.2 33.7 56 76.8

Notes: (1) tGT = geotextile thickness under 2 kPa normal stress. (2) O95 = opening size equal to filtration opening
size (AFNOR NF G 38017) or apparent opening size (ASTM D 4751). (3) kn = geotextile permeability normal to its
plane (ASTM D 5493). (4) n = geotextile porosity under 2 kPa normal stress, calculated as n = 1 −MA/(ρf tGT).
(5) Sa = specific surface area, calculated as Sa = 4(1 − n) tGT/df.
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Figure 1. Pore size distribution of the test geotextiles.

2.2. Soils

To simulate the actual work scenarios of the underground structure in the application
of active anti-floating engineering, two kinds of natural soils were used for the gradient
ratio filtration tests. The natural soils were classified as silty clay (C) and silt (M) according
to BS EN ISO14688-2 [23]. The gradation curves and characteristic properties of natural
soils are shown in Figure 2 and Table 2. In general, the tested silty clay was internally stable,
while the tested silt was internally unstable according to the grain-size distribution method
proposed by Kenney and Lau [24] (Figure 2 and Table 3).
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Table 2. Descriptions of the natural soils.

Parameter Silty Clay (Stable) Silt (Unstable)

d10 (mm) 0.0002 0.001
d15 (mm) 0.0004 0.0085
d30 (mm) 0.0015 0.0279
d50 (mm) 0.0039 0.0363
d60 (mm) 0.0059 0.0408
d85 (mm) 0.0177 0.0768

Cu 29.5 40.8
Cc 1.91 19.08

Permeability coefficient (m/s) 2.70 × 10−9 4.10 × 10−7

Notes: Cu = coefficient of uniformity, Cu = d60/d10; Cc = coefficient of curvature, Cc = d2
30/d60d10.
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Table 3. Fn and Hn point coordinates.

Particle Diameter, d (mm) Point Coordinate (Fn; Hn) Notes

0.0003 (F0; H0) = (5; 5)
Fn = mass fraction smaller

than the particle size d;
Hn = mass fraction between

particle sizes d and 4d.

0.0012 (F1; H1) = (10; 4)
0.0048 (F2; H2) = (14; 6)
0.0192 (F3; H3) = (20; 64)
0.0768 (F4; H4) = (84; 16)
0.3072 (F5; H5) = (100; 0)

3. Test Preparation
3.1. Specimen Preparation

Five circular nonwoven geotextile specimens with a diameter of 10 cm were cut from
the original 0.6 m wide rolls of geotextile samples provided by the manufacturer. Before
placing the geotextile specimens in the test device, they were weighed with an electronic
balance with a precision of 0.001 g. The geotextile specimen was saturated with de-aired
water for 24 h. Light taps on the geotextile specimen while immersed in de-aired water
aided in the release of trapped air bubbles within the geotextile. De-aired water was used in
all tests to prevent bubbles from adhering to the pores of the nonwoven geotextiles during
the test, which could disrupt the passage of soil particles and cause “false clogging”.

The soil used in the experiment was natural soil after drying, crushing and screening
to remove the particles with a size greater than 5 mm. For each test, 1190 g of soil sample
was used, divided into 7 layers through a funnel into the permeameter after levelling.

3.2. Apparatus

The current study developed a new gradient ratio filtration test apparatus to evaluate
the clogging potential of a fine-grained soil–geotextile system that could apply normal
compressive stress to the soil layer through an overlying porous plate. A schematic diagram
and an image of the experimental apparatus are presented in Figures 3 and 4. It mainly
consists of a pneumatic pressure device, a permeameter chamber and a water supply
overflow system. The permeameter chamber is made up of two 100 mm internal diameter
and 120 mm outer diameter acrylic cylinder sections, as well as a clamp specimen, mounted
between two cylinder sections. A clamp made of two stainless steel flanges with an internal
diameter of 100 mm is employed to secure the geotextile specimen. On the permeameter
chamber’s sidewall, there are seven manometer ports. Each port is fitted with a screen to
prevent fine particles from clogging it. In addition, manometer ports connected by glass
tubes are used to monitor the water head distribution at different locations. Ports 3 and 5,
as well as ports 4 and 6, are symmetrically distributed to ensure sample homogeneity and
improve measurement accuracy. Ports 1 and 7 are each 25 mm beneath the geotextile and
25 mm above the top soil layer. Port 2 is 3 mm from the top surface of the geotextile, and
the clogging potential of the geotextile could be determined by observing the water head
change of the glass tubes 1 and 2.

The pneumatic pressure device includes a cylinder, loading rod, air compressor,
pressure-regulating valve and pressure gauge. The pressure-regulating valve is adjusted to
simulate the normal compressive stress applied to the soil–geotextile system. The pressure
sensor and the cylinder output end then display the stress in real-time. The linear variable
differential transformer (LVDT) is mounted on the top cover of the permeameter chamber
and is linked to the loading rod. The vertical displacement change of the soil–geotextile
system is recorded when the applied normal compressive stress is stable. Upper and lower
acrylic cylinders in the permeameter chamber allow the champed geotextile specimen
to be inserted between a 100 mm soil layer and a layer of stainless steel beads. The steel
beads, 16 mm in diameter, are placed above the perforated plate and beneath the geotextile
specimen to simulate a drainage layer and to support the soil–geotextile system. The lower
acrylic cylinder section, measuring 100 mm in height, is fixed on the base through the
flange. The stainless steel beads and the perforated plate are housed in this section to



Appl. Sci. 2022, 12, 12638 6 of 29

support the test geotextile and drain seepage water. The upper acrylic cylinder section,
200 mm in height, contains the test soil as well as a perforated plate placed on top of the
soil to distribute the applied normal compressive stresses. A top platen is attached to the
top of the acrylic cylinder section, leaving holes for water inlets, a vent valve, and a loading
piston that enters the permeameter chamber. The entire assembly is held together by six
steel rods: the base, two acrylic cylinder sections, clamped geotextile, and the top platen.
To seal off the water flow, O-rings are placed in the flange groove connecting the upper
and lower acrylic cylinders, as well as between the upper acrylic cylinder and the top
platen. To ensure that the opening area for water flow is the same for each test, the stainless
steel beads are arranged in a specific pattern. Therefore, in this test series, the contact area
between the geotextile and drainage layer will not be a variable for seepage flow [10].
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4. Test Program

In the gradient ratio filtration test, vertical loads of 5 kPa, 10 kPa, 15 kPa and 25 kPa
were used to simulate the normal compressive stress of the geotextile filter under the
basement of the underground structure. A unidirectional flow condition through the
soil and geotextile was maintained throughout the tests by using a constant differential
head H (Figure 3b) with a hydraulic gradient of 1.0, which was a typical field condition if
partial flow is permitted through the floor boundary [25]. The internally imposed hydraulic
gradient across the samples was estimated to be 0.83~1.37, with lower hydraulic gradient
values associated with system energy losses (e.g., pipe fittings) due to increased flow rate
(soils with higher permeability). Such minor variations in the imposed hydraulic gradient
are considered acceptable when evaluating the filtration performance of soil–geotextile
combinations [26]. The test scheme is shown in Table 4. The loads applied in each group
were 5 kPa, 10 kPa, 15 kPa and 25 kPa, with 0 kPa as the control group.

Table 4. Gradient ratio filtration test scheme.

Test Group Normal Stress (kPa) Protected Soil Geotextiles Hydraulic Gradient

T1~T8 0

C/M

GT1
GT2
GT3
GT4

i = 1.0
T9~T16 5
T17~T24 10
T25~T32 15
T32~T40 25

Notes: C = silty clay; M = silt.

4.1. Test Procedures

The test setup assembly began with the lower acrylic cylinder being secured to the
base. The lower acrylic cylinder was then fitted with an adjustable perforated plate. The
stainless steel beads were placed on the perforated plate and adjusted to match the level of
the test geotextile. The geotextile specimen was clamped and placed between two acrylic
cylinder sections. The soil sample with 100 mm in thickness was placed layer by layer
in the upper acrylic cylinder above the geotextile specimen. A scale was attached to the
upper acrylic cylinder wall to measure the height of the soil sample. The density of the
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test soil was measured for each 15 mm thick increment of the soil layer using the volume
mass control method. A perforated plate with a loading rod was placed on top of the soil
layer, and the entire assembly was secured with six steel rods. After that, the loading rod
was connected to the dynamometer in the pneumatic loading device, which was placed
above the entire permeameter chamber setup. An LVDT was attached to the top of the
permeameter chamber setup to measure the vertical displacement of the soil–geotextile
system during a stress-flow stage. Before applying normal stresses, the ASTM D5101-12 [18]
procedures for saturating the soil–geotextile system were followed.

By adjusting the pressure-regulating valve, normal compressive stresses of 5 kPa,
10 kPa, 15 kPa, and 25 kPa could be applied to the soil–geotextile system via a loading
piston. After normal compressive stress became stable, de-aired water was allowed to flow
through the soil–geotextile system with a hydraulic gradient of 1.0. The GR filtration test
stabilized when the flow rate and gradient ratio for three consecutive tests were within
10% of their apparent value [27]. To avoid the artificial reading error, flow rates at various
elapsed times (h) were measured using a digital balance. Following the completion of a
filtration test, soil particles entrapped in the geotextile specimens were carefully collected,
dried and weighed to evaluate the clogging degree of geotextile filters.

4.2. Test Parameters

The clogging behavior of a given soil–geotextile system can be assessed by its gradient
ratio values [18]. To calculate the hydraulic gradients, relative measurements of differential
water heads and seepage path lengths at different pressure ports are taken at the same
time intervals. The behavior of the soil–geotextile composite (the combination of soil length
25 mm and geotextile specimen thickness), which was also assumed to be that of a geotextile
filter, is characterized by the ratio:

GR =
isg

is
= (∆hsg/lsg)/(∆hs/ls) = ls∆hsg/lsg∆hs =

2l34h31

(25 + tGT)(h34 + h56)
(1)

where isg is the hydraulic gradient across the filter (the combination of 25 mm soil and
geotextile thickness), and is is the reference hydraulic gradient in the soil measured in a
region away from the geotextile filter (i.e., 50 mm soil layer). ∆hsg is the hydraulic head
loss due to the geotextile filter, which is defined as the difference between the average
hydraulic head values of No.3 and No.5 piezometers and the hydraulic head value of
No.1 piezometers. ∆hs is the hydraulic head loss through the soil away from the filter layer,
which is calculated by the average hydraulic values of the head difference between the
No.3 and No.4 piezometers and those of No.5 and No.6 piezometers. lsg and ls are the
seepage path corresponding to the hydraulic head loss, respectively.

As suggested by Sabiri et al. [3], Aydilek and Edil [28], and Abbaspour et al. [29],
the permeability coefficient ratio kR was also preferred to define the clogging conditions,
shown as:

kR = ks/ksg (2)

Using the continuity of flow, the permeability of the soil ks between ports 3 and 4 is
related to the permeability of the soil–geotextile composite ksg:

ksis = ksgisg (3)

Thus, the gradient ratio can also be expressed:

GR = isg/is = ks/ksg (4)



Appl. Sci. 2022, 12, 12638 9 of 29

The flow behavior of any given soil–geotextile system can be assessed using its flow
curve, which depicts the hydraulic conductivity versus time. Darcy’s law is used to calculate
the hydraulic conductivity k of the entire soil–geotextile system, as shown in Equation (5):

k =
Ql

At∆h
(5)

where Q is the seepage flow quantity passing through the filter during time t (m3), A is
the section area of the drainage surface (A = 7.85 × 10−5 m2) and ∆h is the total hydraulic
head loss through the whole specimen (m). l is the height of the soil sample causing the
hydraulic head loss, which is 100 mm. t is the seepage time (t = 3600 s).

The mass of fine particles retained inside geotextile fibers after the filtration tests
for any given system was measured as the weight of fine particles per unit (retained)
area (g/m2), which was calculated in a formula (6). For each system tested, the amount of
fine particles retained inside the geotextile fibers is given in Table 5.

η =
m1 −m0

A
(6)

where η is the mass of entrapped soil particles inside geotextiles (g/m2), m0, m1 are the
mass of geotextiles before and after the test (g).

Table 5. Mass of fine particles retained inside the geotextile fibers after the entire filtration test at 48 h.

Normal Stress (kPa)

Fine Particles Retained in Geotextile Fibers (g/m2) (i = 1.0)

GT1 GT2 GT3 GT4

C M C M C M C M

0 127 459 271 465 437 503 605 610
5 318 506 415 510 555 578 690 701

10 306 543 425 544 532 666 704 768
15 471 627 441 662 558 726 724 916
25 586 708 531 715 698 839 846 939

Notes: C = silty clay; M = silt.

4.3. Repeatability of the Tests

Due to the variability in properties of the materials (mainly geotextiles) and the nature
of the GR test, a 10% uncertainty range in GR values is expected in carefully conducted
tests [30]. To check the repeatability of the experiment, duplicate GR tests were conducted
using GT1 (thin GT) and GT4 (thick GT). Table 6 shows typical test results, demonstrating
that the test results are generally repeatable and in good agreement. Moreover, the variation
within the GR values is within 10%.

Table 6. Gradient ratio filtration test results of silty clay (i = 1.0).

Soil Geotextile

Coefficient of Permeability
(10−9 m/s) GR

O95/d85

Mass of Particles Retained
Inside Geotextile (g/m2)ks ksg ks ksg 0 kPa 5 kPa

0 kPa 0 kPa 5 kPa 5 kPa 0 kPa 5 kPa

C

GT1 3.44 3.17 2.69 2.45 1.08 1.10 9.6 127 318
GT1 * 3.46 3.19 2.68 2.44 1.10 1.07 9.6 140 332
GT4 2.0 2.44 1.99 1.81 0.82 1.10 3.73 605 690

GT4 * 2.2 2.45 2.0 1.83 0.89 1.09 3.73 623 700

Notes: * = Repeated test.
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5. Test Results
5.1. Filtration Behavior of Silty Clay

Twenty filtration tests were performed using silty clay (internally stable soil) in combi-
nation with four different geotextiles (GT1–GT4) to assess their filtration behavior under
normal stresses.

Figure 5 depicts the GR and the permeability coefficient values for the silty clay–
geotextile combinations. As a reference, the filtration test results for the same soil–geotextile
combination free of normal stress were used. As shown in Figure 5, the GR values decreased
slowly with the elapsed time but increased with the increase of normal stress, and the
coefficient of permeability decreased with the elapsed time and the increase of normal stress.
These findings suggested that the filtration performance of soil–geotextile combinations was
significantly affected by normal stress. Additionally, a little variation of GR was observed
after an elapsed time of 48 h at each system, indicating a steady state flow condition.

The permeability coefficient ksg of geotextile samples with silty clay exhibited some
fluctuation during the initial 25 h. Following that, the ksg values tended to decrease as
normal stress increased. There were no significant differences in ksg between the geotextiles
in GT1 and GT2. When the applied normal stress exceeded 10 kPa, the differences in
permeability coefficient ksg for thick geotextiles (GT3 or GT4) were more pronounced
than for thin geotextiles, i.e., the ksg of thick geotextiles decreased from ksg × 10−9 m/s to
ksg × 10−10 m/s, while thin geotextiles changed in the order of ksg × 10−9 m/s. The ks values
were marginally higher than ksg values for the most of silty clay–geotextile combinations
(Table 7), indicating the migration of fines from the soil towards the geotextiles where
clogging or blinding may occur. Therefore, a decrease in ksg values of the soil–geotextile
composite under larger normal stress could result in an increase in GR values.
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Figure 5. Filtration test results for silty clay with four geotextiles: (a) C-GT1 combination; (b) C-GT2
combination; (c) C-GT3 combination; (d) C-GT4 combination.

Table 7 summarizes the results of the filtration test for combinations composed of each
geotextile and the silty clay under five different magnitudes of normal stress. As shown in
Table 7, an increase in GR values was noticed as the normal stress increased from 0 kPa to
25 kPa. For the test cases using thin and medium thick geotextiles (GT1, GT2), the increment
in GR values increased around 28% and 22%. For the thicker geotextiles (GT3 or GT4),
however, the GR values increased significantly with normal stress, increasing by about
198% and 269%, respectively, particularly when the normal stress was greater than 10 kPa.
It is generally acknowledged that the specific surface area (Sa) of the nonwoven geotextile
responds significantly to fine particles retained on the surface of the geotextile filter. The
greater the Sa is, the more prone the geotextile filter is to be deposited or adsorbed by fine
particles. Furthermore, the curved and continuous pores in the nonwoven geotextile form
its filtration channel, and thickness is an important structural parameter influencing the size
of the geotextile filtration channel. The greater the thickness is, the smaller the geotextile
filtration channel is, resulting in more fine particles retained and larger GR values [31,32].

Table 7. Summary of the gradient ratio test results at 48 h performed on the silty clay–geotextile combination.

Soil Geotextile Normal Stress (kPa) ksg (m/s) ks (m/s) kR GR

Silty clay
(C)

GT1

0 3.17 × 10−9 3.44 × 10−9 1.08 1.08
5 2.45 × 10−9 2.69 × 10−9 1.10 1.10

10 1.47 × 10−9 1.71 × 10−9 1.16 1.16
15 1.36 × 10−9 1.63 × 10−9 1.20 1.20
25 1.09 × 10−9 1.51 × 10−9 1.38 1.38
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Table 7. Cont.

Soil Geotextile Normal Stress (kPa) ksg (m/s) ks (m/s) kR GR

Silty clay
(C)

GT2

0 2.28 × 10−9 2.98 × 10−9 1.31 1.31
5 2.01 × 10−9 2.72 × 10−9 1.35 1.35

10 1.55 × 10−9 2.27 × 10−9 1.46 1.46
15 1.25 × 10−9 1.89 × 10−9 1.52 1.52
25 1.11 × 10−9 1.77 × 10−9 1.60 1.60

GT3

0 2.95 × 10−9 2.36 × 10−9 0.80 0.80
5 2.45 × 10−9 2.49 × 10−9 1.02 1.02

10 1.62 × 10−9 2.10 × 10−9 1.30 1.30
15 1.01 × 10−9 1.94 × 10−9 1.92 1.92
25 6.09 × 10−10 1.45 × 10−9 2.39 2.39

GT4

0 2.44 × 10−9 2.0 × 10−9 0.82 0.82
5 1.81 × 10−9 1.99 × 10−9 1.10 1.10

10 1.26 × 10−9 1.66 × 10−9 1.32 1.31
15 7.28 × 10−10 1.59 × 10−9 2.18 2.18
25 4.64 × 10−10 1.33 × 10−9 2.88 3.03

Notes: Bold indicates unacceptable clogging based on the clogging criteria set (GR, kR > 3); bold italic indicates
that geotextile filters may be clogged; kR = ks/ksg, where the ksg and ks are the stabilized values at the end of
the tests.

5.2. Filtration Behavior of Silt

Twenty filtration tests were performed using silt (internally unstable soil) in combi-
nation with four different geotextiles (GT1-GT4) to assess their filtration behavior under
normal stresses, and the variation of fine particles retained inside the geotextile fibers was
measured after the tests as shown in Table 5. Table 8 summarizes the results of filtration
tests performed on combinations of each geotextile and silt under five different magnitudes
of normal stress.

Figure 6 shows the trends in the GR and ksg values of the silt with geotextile samples
GT1, GT2, GT3 and GT4 over time under various normal stresses. As can be seen that
the variation trend of GR and ksg values with normal stress was similar to that of the
silty clay–geotextile system. The GR value ranged from 1.0 to 2.5 for all filtration tests in
silt–geotextile combinations. A larger GR value was noticed in test cases using geotextile
with larger thicknesses. This was due to the fact that thickness affected tortuosity, which
reflected the path or distance travelled by a fine particle in the pore channel across the
fabric. Thus, over filtration time, fine particles were more likely to become entrapped in
the thick geotextiles. Additionally, the GR value of the M-GT4 combination was greater
than that M-GT1 combination. This probably explained why GT4 retained more fines at
the end of the filtration test than GT1 (Table 5). The permeability coefficient values for the
silt with all geotextile samples decreased by one order of magnitude at a normal stress
of 25 kPa. This could be attributed to the internal instability of silt, which induced the
obvious migration of fine particles under the action of the flow drag force. The filtration
channel in the geotextile filter could thus capture those moving fine particles, resulting in
the erosion of fines near the geotextile interface and clogging of the geotextile, accompanied
by a significant decrease in the permeability of the silt–geotextile combinations. Moreover,
it was discovered that the ks values were greater than ksg for all silt–geotextile combinations
(Table 8), resulting in a GR greater than 1.0, even though the GR values are still less than the
clogging limit of 3 set by the U.S. Army Corps of Engineers [20], indicating that excessive
clogging did not occur.
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Table 8. Summary of the gradient ratio test results at 48 h performed on the silt–geotextile combination.

Soil Geotextile Normal Stress (kPa) ksg (m/s) ks (m/s) kR GR

Silt
(M)

GT1

0 4.09 × 10−7 4.18 × 10−7 1.02 1.02
5 3.04 × 10−7 3.49 × 10−7 1.15 1.15

10 1.55 × 10−7 2.14 × 10−7 1.38 1.38
15 1.11 × 10−7 1.61 × 10−7 1.45 1.45
25 5.36 × 10−8 8.88 × 10−8 1.66 1.66

GT2

0 3.54 × 10−7 3.86 × 10−7 1.09 1.09
5 2.49 × 10−7 3.26 × 10−7 1.31 1.31

10 1.78 × 10−7 2.52 × 10−7 1.42 1.41
15 1.10 × 10−7 1.63 × 10−7 1.48 1.48
25 6.22 × 10−8 1.10 × 10−7 1.77 1.77

GT3

0 3.84 × 10−7 4.27 × 10−7 1.11 1.11
5 2.50 × 10−7 2.73 × 10−7 1.09 1.39

10 1.57 × 10−7 2.30 × 10−7 1.46 1.46
15 1.08 × 10−7 1.72 × 10−7 1.58 1.58
25 5.70 × 10−8 1.03 × 10−7 1.80 1.80

GT4

0 3.35 × 10−7 4.10 × 10−7 1.22 1.22
5 2.19 × 10−7 3.16 × 10−7 1.44 1.44

10 1.47 × 10−7 2.23 × 10−7 1.52 1.52
15 1.03 × 10−7 1.74 × 10−7 1.69 1.69
25 5.09 × 10−8 9.85 × 10−8 1.93 1.93

Notes: Bold italic indicates that geotextile filters may be clogged, kR = ks/ksg, where the ksg and ks are the stabilized
values at the end of the tests.
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Figure 6. Filtration test results for silt with four geotextiles: (a) M-GT1 combination; (b) M-GT2
combination; (c) M-GT3 combination; (d) M-GT4 combination.

In the following discussions, typical results of test cases using medium and thick
geotextiles (GT2, GT4) will be selected to further investigate the influence of fabric structure
and protected soil characteristics on the filtration performance of geotextile filters under
different normal stresses.

5.3. Displacement and Soil Retention

Normal compressive stress can cause a thickness reduction in the soil layer and down-
ward displacement in the clamped geotextile specimen, resulting in a denser state of the
tested specimen. To evaluate the compression of the soil layer under normal stress, the
soil–geotextile combination settlement and geotextile downward displacement should be
measured simultaneously. Before the pre-test, the geotextile downward displacement cor-
responding to different normal stresses was calibrated separately by ASTM D5199-12 [33].
The new gradient ratio filtration test apparatus can measure the soil–geotextile combination
settlement by protruding the probe of an LVDT through the porous plate.

Figure 7 illustrates the downward displacement of geotextiles and the soil layer settle-
ment of soil–geotextile combinations (C/M-GT) under various normal stress conditions. It
was found that the soil layer settlement increased continuously with the increase of normal
stress, while geotextile downward displacement increased initially and then decreased
when the applied normal stress exceeded 10 kPa. This was possibly due to the partial
clogging of the geotextile, which reduced its compressibility. In addition, the normal stress
applied on the top of a 100 mm thick layer was unable to be fully transmitted to the geotex-
tile [34]. Thus, soil layer settlement showed a sensible significant response to normal stress
when compared to geotextile displacement. Furthermore, soil layer settlement or geotextile
displacement was slightly greater in the soil-GT4 combinations (C/M-GT4) than in the
soil-GT2 combinations (C/M-GT2). This was attributed to the thickness of tested geotextiles
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as well as soil type. Hence, a certain normal stress could cause in-plane compression on
the clamped geotextile specimen, and the compression was affected by the initial thickness
and fine particle retention of the geotextile.
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The fine particles retained (η) of the four soil–geotextile combinations at different
normal stresses are shown in Figure 8. The η values were closely related to the soil type and
geotextile thickness. The fine particles retained (η) of the four soil–geotextile combinations
increased with an increase in normal stress. When the normal stress was 0 kPa, the η values
of C-GT2, M-GT2, C-GT4, and M-GT4 were 271 g/m2, 465 g/m2, 605 g/m2, and 610 g/m2,
respectively. When the normal stress was increased to 25 kPa, the η values of C-GT2,
M-GT2, C-GT4, and M-GT4 increased by 96%, 53.8%, 39.8%, and 53.9%, compared with



Appl. Sci. 2022, 12, 12638 18 of 29

those free of normal stress. This was mainly because, when the normal stress increased,
soil layer settlement increased, and the structure of fibers became denser, resulting in
an increase in the η values. Comparing the results from GT2 and GT4 combinations, it
was observed that for geotextile with larger thickness, more fine particles tended to be
gathered. The mass of fine particles retained from filtered silt (internal instability) was
clearly greater than that of silty clay in terms of geotextile combinations. These observations
were consistent with the above results, i.e., the thicker geotextile had a larger GR and the
ksg of silt–geotextile combinations decreased significantly, especially at a normal stress of
25 kPa.
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6. Discussion
6.1. Influence of the Natural Soils Internal Stability on Retention Capability

The prediction of nonwoven geotextile filtration opening size proposed by Giroud [35]
was used to evaluate the variation of filtration opening size of geotextile under different
normal stresses:

O f

d f
=

1√
1− n

− 1 +
ξn

(1− n)t′GT/d f
(7)

where Of is the geotextile filtration opening size O95, df is the fiber diameter, n is the
geotextile porosity, t′GT is the geotextiles thickness under different normal stresses according
to EN ISO 9863-1 [36], and ξ is the empirical parameter, ξ = 10.

The retention ratio, Rr = O95/Dn, is commonly used to assess the retention capa-
bility of a given soil–geotextile system. Dn is the particle size of the tested soil, and
D85 or D50 are the most commonly used representative particle sizes. The existing fine-
grained soil retention criteria provide the upper limit of soil retention for nonwoven
geotextile, i.e., O95/D85 ≤ 2~3, or O95/D50 ≤ 18/Cu [37–40].

Figure 9 shows a plot of fine particles retained η against O95/Dn for tests on two natural
soils and geotextiles based on the above theoretical calculation of nonwoven geotextile
filtration opening size. The relationship between η and O95/Dn illustrates that Rr controls
the onset of piping or erosion. The amount of fine particles retained was very sensitive
to increases in the retention ratio. The results, although not as comprehensive as desired,
showed no significant consistency with the existing soil retention criterion for an O95/D85
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less than about 3.6, or an O95/D50 less than about 16.3. They did support a relationship
between filtration opening size and fine-grained soil particle size for soil retention. As the
Rr with a small variation range, the characteristic particle size D85 was a more sensitive
indicator of retention for silty clay than D50, while D85 or D50 was a more sensitive indicator
of retention for silt than D15. Furthermore, the retention ratios of silt were found to be
significantly smaller than those of silty clay. Although the silt soil–geotextile combination
showed a larger amount of fine particles retained inside geotextiles (Figure 9b). This
indicated that internally unstable silt allowed fines to move freely through the coarse
particles, resulting in a greater amount of fine particles retained.
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A GR value greater than one was obtained for both tested soils with nonwoven geo-
textiles (GT2, GT4) during different normal stress stages, indicating that the soil–geotextile
interface was less permeable than the base soil, i.e., ksg < ks (Tables 7 and 8). Although the
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retention ratios of GT4 were lower than those of GT2, GT4 retained more fine particles
than GT2. This was due to the fact that GT4 had a smaller filtration opening size O95 and a
larger thickness tGT than GT2. Moreover, this difference in response could be attributed to
the thicker GT4, which trapped fines inside the smallest constrictions in the geotextile and
subsequently hampered the movement of migrating particles within the fabric.

6.2. Influence of the Normal Compressive Stresses on Filtration Performance
6.2.1. Normalized Parameters

The following normalized parameters are introduced to effectively compare the data
from experiments conducted on two natural soils and geotextiles characterized by different
normal stresses: relative pore volume (RPV) and relative permeability coefficient (Krel). The
relative pore volume (RPV) is defined as the flow volume divided by the initial soil pore
volume, i.e.,

RPV =
∫

qdt/neV (8)

where q is the system flow rate (cm3/h), ne is the initial soil porosity and V is the initial
soil volume (cm3).

The relative permeability coefficient Krel is defined as follows:

Krel = K/Kini (9)

where K is the absolute system (i.e., soil–geotextile system) permeability coefficient at any
given time during the test and Kini is the initial system permeability coefficient.

Note that when the permeability coefficient of the system decreases by one order
of magnitude, Krel = 0.1. Blinding occurs when fine particles migrating from a distance
are retained and accumulated near the geotextile interface. The hydraulic conductivity
increases locally in the zone from which the fine particles originated but decreases in the
interface zone with the geotextile as the porosity in the interface area decreases and the flow
channel fills. As a result, the system permeability decreases without reaching a satisfying
equilibrium, and the Krel ≤ 0.1. On the contrary, internal blockage occurs with Krel > 0.1,
when the migrated fine particles penetrate the filter fabric and encounter fiber constrictions
too narrow to move further, and the fine particles then accumulate within the geotextile
and obstruct the drainage channels. Therefore, the following analysis uses Krel = 0.1 as the
critical value for distinguishing between blinding and clogging.

6.2.2. Gradient Ratio and Relative Permeability Coefficient

Figure 10 presents the relationship between Krel or GR and relative pore volume
(RPV) for two natural soils filtered by GT2 and GT4. As shown in Figure 10, the relative
permeability coefficient (Krel) decreased with the decrease of the relative pore volume (RPV)
and presented a linear change, indicating that the Krel constantly decreased over time.
The relative pore volume (RPV) decreased while the GR increased as the normal stress
increased, and the effect of relative pore volume on the GR was insignificant.

When the protected soil was silty clay as shown in Figure 10a,b, the relative permeabil-
ity coefficient was Krel > 0.1 and the change of relative pore volume was small within 0.0016.
This indicated that the clogging occurred when migrating fine particles penetrated the filter
fabric and encountered fiber constrictions that were too narrow for them to travel further.
Fines could then accumulate within the geotextile and obstruct its drainage channels. This
was also the reason why ksg < ks, i.e., the head loss through the geotextile filter was greater
than the base soil of the adjacent layer (Table 7). When the normal stress was 25 kPa, the
GR changed dramatically, with the medium thickness GT2 reaching 1.60 and the thick
GT4 exceeding the critical value of 3.0. This indicated that the high-stress level had a
pronounced influence on GR for the natural soil–geotextile system.
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GT4 combination.
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When the protected soil was silt as shown in Figure 10c,d, the relative permeability
coefficient Krel < 0.1 appeared as the normal stress was 25 kPa under the combination of
M-GT2/GT4, indicating the occurrence of blinding. The change in relative pore volume
was within 0.16, which was two orders of magnitude greater than the above silty clay–
geotextile combination. This was because the protected silt was more permeable than
silty clay (Table 2). The GR varied similarly to silty clay, i.e., the high-stress level had a
significant influence on the GR, but the GR was less than the critical value of 3.0. This was
most likely due to the protected silt’s higher permeability and internal instability, which
caused blinding and local clogging in the geotextile filter. This phenomenon would be
explained further in subsequent discussions (Table 9).

Table 9. Summary of the operational data and gradient ratio filtration test results at 48 h.

Natural Soils Silty-Clay (C) Silt (M)

GT Type Thin GT2 Thick GT4 Thin GT2 Thick GT4

Normal stress (kPa) 0 25 0 25 0 25 0 25
Total flow volume (cm3) 10.05 6.52 8.87 5.1 894.2 374.1 865.7 360.7

Average flow rate (cm3/h) 0.21 0.14 0.18 0.11 18.63 7.79 18.04 7.51
Final soil void ratio 1.02 0.99 1.02 0.98 0.89 0.85 0.89 0.86

Kinit. (10−8 m/s) 0.41 1.03 1.06 0.59 173 134 170 132
Kfinal (10−8 m/s) 0.31 0.18 0.24 0.09 39.50 8.90 40.20 8.51

Final Krel 0.77 0.17 0.22 0.15 0.23 0.07 0.24 0.06
Final (RPV) 0.0002 0.0001 0.00017 0.00007 0.034 0.0074 0.032 0.0068

Fine particles retained (g/m2) 271 531 605 846 465 715 610 939
Filtration result clog clog clog clog clog Blind + clog clog Blind + clog

Notes: Kinit and Kfinal are the initial and final permeability coefficients of the soil–geotextile system, respectively;
clog = clogging, blind = blinding. Bold italic indicates that the geotextile filter occurs blinding due to the Krel < 0.1.

Table 9 summarizes the key findings from two typical tests performed under normal
stress conditions of 0 kPa and 25 kPa. The average flow rate values are useful indicators
of the filter system’s hydraulic performance. The higher these values, the better the filter
system. As shown in Table 9, the measured values of the average flow rate varied greatly
from 0 kPa to 25 kPa. In particular, with the M-GT2/GT4 combinations, the average flow
rate decreased by approximately 58%. Clogging was the most common filtration result
observed in the tests conducted, except for the combination of silt and geotextile under
high normal stress conditions. This was due to the fact that when higher normal stress
was applied to the soil–geotextile combination, the geotextile produced plane compression
and the structure became dense, resulting in a decrease in the average flow rate. The
internal instability of the protected silt caused more fine particles migrating from a distance
to be retained and accumulated in the interface zone near the geotextile, resulting in
blinding, i.e., M-GT2/GT4 combinations. The seepage channel was filled with fine particles
as a result of the decrease in porosity in the interface zone near the geotextile, resulting in a
local increase in permeability in the zone from where the fine particles originated, but the
permeability in the interface zone near the geotextile decreased. As a result, the average
flow rate of the M-GT2/GT4 combinations dropped significantly.

6.2.3. Gradient Ratio and Geotextile Head Loss

Figure 11 depicts the gradient ratio (GR) and geotextile head loss (GHL) versus relative
pore volume data obtained from the tests described in the previous section. GHL represents
the change in water level difference between manometer tubes 2 and 3 over time. As
shown in Figure 11, the GR and GHL showed the same trend with the relative pore volume.
This was because the GR represented an indicator of the erodibility of the fines in the soil
matrix, and GHL was a measure of the clogging state of the geotextile openings. Under
free normal stress, the higher the GHL, the finer particles were transported from the soil
into the geotextile, and the higher the GR of the geotextile filter. A significant increase
in GR and GHL was observed for both of these two natural soil types with normal stress,
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particularly when normal stress of 25 kPa was applied in combination with the thick
geotextile, indicating more fine particles migration occurred over the duration of the test.
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Figure 11. The GR and GHL versus relative pore volume (RPV) for two natural soils filtered
by GT2 and GT4: (a) M-GT2 combination; (b) M-GT4 combination; (c) C-GT2 combination;
(d) C-GT4 combination.

Figure 11a,b shows that the GR and GHL are significantly higher when the M-GT2/GT4
combination is subjected to “blinding + clogging” (Table 9) under normal stress of 25 kPa
than when subjected to 0 kPa action. For the combination of M-GT2, GR and GHL increased
by 63% and 26%, respectively. The M-GT4 combination, GR and GHL increased by 58% and
39%, respectively. This was because, under normal stress, the planar compression of GT4
was greater than that of GT2 (Figure 7), and the filtration opening size of GT4 was smaller
than that of GT2 (Figure 9), reducing the movement of fine particles and causing them to
retain or accumulate on the soil–geotextile interface, resulting in blinding (Table 9). As a
result, the head loss of GT4 was approximately 13% greater than that of GT2. As shown
in Figure 11c,d, the GR of the normal stress of 25 kPa acting on the C-GT4 is significantly
higher than that of the M-GT4 combination. This was because when the protected soil is
silty clay (C), the single grain was small but had a certain adhesiveness and hydrophilicity
and often appeared as an aggregate particle. Even if the particle size of the soil is smaller
than the filtration opening size, it will also bond the geotextile fibers during the seepage
filtration process, resulting in a decrease in the effective pore (channel) of the geotextile
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and clogging of the filter layer. Therefore, the normal compressive stress, protected soil
types, and geotextile characteristics are the factors affecting the occurrence of clogging or
blinding in the filtration system, with the stress level having a significant impact.

6.3. Implications for Design Practice

Regardless of the geotextile filter chosen for drainage applications, it must meet
two competing requirements (i.e., retention and permeability) to ensure optimum perfor-
mance. Soil retention necessitates a pore structure fine enough to retain erodible soils while
avoiding clogging in the geotextile filter. The permeability requires the geotextile filter to
maintain adequate permeability so that seepage from the protected soil is prevented.

According to the results of gradient ratio filtration tests, nonwoven geotextiles are more
prone to clogging when filtering fine-grained soil, although they do not meet the require-
ments of soil retention ratio (O95/d85, O95/d50) in the existing filtration criteria [15,19,38,41].
This was because most fine particles would inevitably be trapped on the upstream surface
and within the geotextile during the process of migration with water flow, resulting in a de-
crease in geotextile permeability and an increase in soil retention. The degree of geotextile
clogging increased with continuous filtration until it reached a stable state. Therefore, for
this protected soil, whether the clogged geotextile filter can meet the requirements, i.e., the
value determination standard of GR and ksg, is a challenge for filter design.

The hydraulic gradient through the soil and soil–geotextile composite is determined
by the type of soil and any interactions it has with the geotextile. Using the above typical
experiment data with the silty clay and thicker geotextile combinations, Figure 12 schemati-
cally illustrates the relationship between water head distribution and gradient ratio without
taking blinding into account. Based on the interrelationship between gradient ratio and
relative permeability as shown in Equation (4), three zones are defined in Figure 12. The
first boundary selects the water head distribution of the GT4 combination at different
positions above the geotextile at 0 kPa. The first zone is defined as GR less than one and the
permeability of the soil–geotextile composite exceeds that of the soil. The second boundary
selects the water head distribution of the GT3 combination at different positions above the
geotextile at 5 kPa. The second zone is a distribution in which the GR is greater than one
but less than 3.0, and the permeability of the soil–geotextile composite is (0.35~0.98) times
that of the soil, with a small value when the normal stress is high. The third boundary
selects the water head distribution of the GT4 combination at different positions above the
geotextile at 25 kPa. The third zone is defined as GR > 3.0, and the criterion of GR ≤ 3.0 is
proposed for the clogging resistance.

It is generally recommended that the permeability of the soil–geotextile composite
increases along the flow direction (i.e., ksg > ks) to avoid unacceptable energy losses in filter
design. Figure 12 shows that the water head distribution of zone 1 satisfied this condition,
while zones 2 and 3 did not. The water head distribution in zones 1 and 2, however, was
acceptable according to the relative hydraulic gradient defined by GR < 3.0. Note that the
permeability ksg of a thick 25 mm soil and geotextile composite layer is k31. A significant
inconsistency occurred in zone 2, i.e., the k31 could be less than 35% of the soil. The design
criterion for a graded granular medium ensures the filter is approximately 20 times more
permeable than the protected soils when the flow is perpendicular to the filter and into
a permeable layer that meets the discharge requirements [42]. Since the geotextile filter
criterion evolved from the graded sand filter criterion, similarly, the criterion for geotextile
filters can be expressed as:

ksg > λks (10)

where λ is a factor governed by the water head loss that occurs across the soil–geotextile
composite during seepage flow and the normal stress imposed on the soil–geotextile system.
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It should be noted that clogging resistance is a prerequisite for its permeability. Since
ksg describes the permeability of the soil–geotextile composite in service, its value is highly
related to the site and soil specific. The anticlogging criterion uses a gradient ratio GR ≤ 3.0
to determine unclogging, so λ > 0.3. The gradient ratio filtration test with C-GT4 com-
bination under the normal stress of 25 kPa described above revealed that was λ ≥ 0.4
(Table 7), no clogging occurred, and the gradient ratio was GR ≤ 2.5. Thus, the current
anticlogging criterion was relatively conservative. In design using nonwoven geotextiles,
it appears reasonable to accept a value of Kg less than ks, as shown in zone 2 of Figure 12,
if no unacceptable impediment to seepage flow is produced. Therefore, it is required to
formulate the anticlogging criterion of fine-grained soil in combination with the engineer-
ing application environment for the permeability of geotextile filters can meet the actual
drainage requirements.

7. Conclusions

In this paper, a gradient ratio filtration test device capable of applying normal stress
was designed and applied to perform a series of filtration tests on various nonwoven
geotextiles and fine-grained soil combinations. The head loss through soil geotextile
samples, as well as the variation with applied normal stress and time, were investigated
to assess the compatibility of fine-grained soils and nonwoven geotextiles in filtration
applications. Based on the gradient ratio filtration test results, the following conclusions
can be drawn:

1. Nonwoven geotextile filters with different filtration opening sizes, porosities, and
thicknesses showed different compatibilities with fine-grained soil samples. Thick
needle-punched nonwoven geotextile had a relatively smaller filtration opening
size, and the permeability of the soil–geotextile system decreased by 1~2 orders of
magnitude after 48 h of filtration, resulting in poor filtration performance.
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2. The filtration performance of geotextile filters responded significantly to applied
normal compressive stresses. As normal compressive stress increased, GR values also
increased but the permeability decreased in soil–geotextile combinations.

3. Filtering fine-grained soils by needle-punched nonwoven geotextiles was primarily
manifested as clogging, in which most of the fine particles were entrapped inside
geotextile pores and retained on the fibers. The mass of fine particles per unit area was
found to be significantly related to normal stress magnitude, soil characteristics, and
nonwoven geotextile thickness, i.e., fine particle retention was greater when a thicker
geotextile filters the internally unstable soil under higher normal compressive stress.

4. Although the nonwoven geotextile clogged in fine-grained soil filtration, the soil–
geotextile composite layer was relatively thin, and the head loss occurring across
the composite layer would have little effect on the overall system’s seepage flow.
Therefore, the lower permeability of soil–geotextile composites than protected soil
was acceptable. Furthermore, the anticlogging of geotextile filters should be built
into the permeability requirements. The current clogging criterion for nonwoven
geotextiles filtering fine-grained soils is relatively conservative.
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