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Abstract: The provisions for out-of-plane stability of steel arch bridges in three major design codes
are presented in this paper. By employing an existing steel arch bridge as a model, the influence
of bridge type, arch rib to lateral bracing stiffness ratio, rise-to-span ratio, arch rib spacing, and
range of lateral bracing arrangements on the out-of-plane critical axial force of the arch rib is studied
using FE analysis. The accuracy of the critical axial force provisions is then evaluated against the FE
analysis. The results show that the influence of the rise-to-span ratio on critical axial force is generally
small. The critical axial force decreases with increasing arch rib spacing when the stiffness ratio is
relatively large. A smaller ratio of arch rib length provided with lateral bracing (γ-value) significantly
reduces the critical axial force and normalized critical axial force decreases with increasing stiffness
ratio. The critical axial force of half-through type arch bridges is lowest when the stiffness ratio
is relatively small. A deck-type bridge has a larger critical axial force than a through-type bridge
when the stiffness ratio is relatively large, while the results are the opposite when the ratio is small.
The different assumptions made in the provisions result in the various parameters having different
impacts on the out-of-plane critical axial force in each code, thus affecting code accuracy. Considering
the influence of the rise-to-span ratio, ratio of lateral bracing, and arch rib spacing with different
stiffness ratios, factors to improve the accuracy of the critical axial force obtained by the three codes
are proposed for a practical design process.

Keywords: design codes; steel arch bridge; out-of-plane critical axial force; rise-to-span ratio; arch rib
spacing; stiffness ratio; bridge type; range of lateral bracing arrangements

1. Introduction

A steel arch rib is a structure curved in the elevation plane. Its main load-carrying
mechanism is compression and bending. Once a certain critical level of force acts on the arch
rib, the joint action of torsion and transverse bending will deform the member and make
it break away from its original plane, as shown in Figure 1. This critical load has a close
connection with the distribution and characteristics of the load, the geometric diversity of
the arch axis, variations in the flexural and torsional stiffness of the cross-section along the
arch axis, the restraint available at the supports and elsewhere, residual stress resulting
from manufacture and fabrication, and yielding of the steel. Due to the diversity and
complexity of parameters, in-depth studies are needed for the determination of buckling
loads, and the development of accurate and simple codes can be a long process.

Through numerous investigations, our understanding of arch ribs has progressed over
time. Studies on practical engineering are no longer a one-sided consideration of a certain
factor, the sample idealized theoretical models were abandoned, and more attention is paid
to the analysis of the actual structures as a whole system. Moreover, our apprehension of
out-of-plane stability has also developed from a single arch to the whole structural system.
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For circular arches, Timoshenko and Gere [1] used an analytical method to resolve the
out-of-plane buckling problem under uniform radial loads and uniform moments. The
ultimate uniformly distributed vertical force sustained by an arch fixed against rotation in
the transverse direction was expressed by Demuts [2]. Lu [3] presented a theoretical study
for the out-of-plane buckling of elastic circular arches under a central radial point load using
an energy method and an experimental study for the out-of-plane buckling load of elastic
circular aluminum arches under a central radial point load. With regard to parabolic arches,
the ultimate out-of-plane uniformly distributed vertical load was proposed by Tokarz and
Sandhu [4], with additional information available in papers by other investigators [5–8]. In
the existing arch bridges, almost every arch rib is arranged with transverse bars according
to certain rules. The elastic lateral buckling of twin arch ribs braced with transverse bars
normal to the plane of the ribs has been studied by several investigators [9,10]. It is found
that the nature of the bracing system is of great significance for restraining lateral buckling:
the location and spacing of the transverse bars, the distance between the arch ribs, and
the flexural stiffness of the bars around the vertical and longitudinal axis. Sakimoto and
Komatsu [11] investigated the requirement of diagonal bracing members to make sure
the whole arch system is provided with the necessary lateral stability. Kuranishi and
Yabuki [12] presented the ultimate strength of braced steel arches under the combined
action of vertical and horizontal uniform loads. The out-of-plane elastic buckling behavior
of hinged planar truss arch with lateral bracings is obtained theoretically by Guo [13].
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Through extensive parametric research, researchers proposed an approximate method
to calculate the strength of steel arches which failed due to the out-of-plane instabil-
ity [14,15]. A procedure to determine the effective buckling length by spatial eigenvalues
was suggested [16]. Finite element (FE) analysis results for the elastic–plastic buckling and
ultimate strength of steel wide-flange arches were presented [17]. Lim and Kang [18] ob-
tained closed-form solutions for the torsional buckling moment of braced arches in uniform
bending and for the torsional buckling load of braced arches in uniform compression. Pi
and Bradford [19] studied the out-of-plane elastic and inelastic flexural–torsional buckling
behavior, as well as the theoretical calculation method of the strength of fixed steel arches.
A method for analyzing the plastic collapse load of circular arches under the influence of
vertical loading was developed by Spoorengerg et al. [20]. The stability of a leaning arch
structural system was investigated experimentally by Liu [21]. Bouras [22] investigated
the flexural–torsional buckling behavior of arches under mechanical and thermal load-
ing. Zhong [23] investigated the out-of-plane dynamic stability of an arch under vertical
periodical base excitation by using both analytical and experimental methods.

In a word, the study of the critical load of steel arch bridges has, over time, ex-
panded from linear to nonlinear, from in-plane to spatial, and from arch ribs to whole
arch bridges [24]. Over the past few decades, extensive work relating to theory, numerical
methods for second-order analysis, and advanced analysis has been conducted. However,
the update of standards lags behind the progress in the understanding of arch rib stability.
Standards and guidelines on the use of plentiful parameters tend to lack explicit recom-
mendations for different bridge types, and the theoretical education of engineers is also
lagging behind. For further development of reliable and effective codes, the next work is
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imperative to perfect design methods for actual structures that take into account multiple
factors of nonlinearities to ensure the safety and economy of actual projects.

In this paper, relevant provisions about the out-of-plane stability of steel arch bridges in
major codes are summarized, including the Chinese code, Fundamental Code for Design on
Railway Bridge and Culvert [25], the Japanese code, Specification for Highway Bridge [26],
and Eurocode 3: Design of Steel Structures [27]. LRFD Bridge Design Specifications [28]
are not included. This code takes steel arch ribs as steel members subjected to combined
axial compression and flexure, which means that there is no relative provision to calculate
the out-of-plane critical axial force for arch ribs. An arch under a central in-plane load
may lose its stability in an out-of-plane buckling mode when the load attends a certain
value [29]. The maximum axial force of the arch rib in case of out-of-plane instability
of an arch bridge is defined as out-of-plane critical axial forces, Ncr. When calculating
the out-of-plane instability bearing capacity of a steel arch bridge, the Chinese code, the
Japanese code, and the European code all regard the arch rib as the compressed lattice
column, and the axial force when the lattice column is unstable is taken as the critical axial
forces of arch rib, however, each specification considers different influencing factors.

In order to analyze the major influencing factors of out-of-plane critical axial forces,
finite element analysis is used in this paper. The main structural parameters discussed
in this paper include the types of bridges, the range of lateral bracing arrangements, the
arch rib spacing, the ratio of stiffness between the arch ribs and the lateral bracing, and
the rise-to-span ratio. Then, by using the finite element analysis, the critical axial force for
arch ribs given by the codes is normalized and evaluated so as to discuss the accuracy of
provisions presented in major design codes. At the end of this paper, improvements to the
code calculations are put forward. The results may provide a reference for scholars and
engineers to revise the design criteria for steel arch bridges.

2. Outline of Out-of-Plane Stability Provisions in Each Code
2.1. Chinese Code

The Chinese code regards the arch rib as a Vierendeel truss of length equal to the arch
axis for approximate checking of out-of-plane stability, as shown in Figure 2, and the truss
is under the influence of longitudinal force N on the quarter point of the arch rib. N can be
performed using the following equation:

N = H/ cos φm (1)

In this equation, H represents the horizontal component of the axial force of the arch rib
and ϕm represents the angle between the quarter point on the arch axis and the horizontal
plane. The critical axial force Ncr is calculated by:

Ncr = α0
π2EI

S2 (2)

S is the length of the arch axis, the symbol E in Equation (2) represents the Young’s
modulus of the arch rib, I is the moment of inertia of two chords around the common axis
(central longitudinal axis of the bridge) α0 is calculated as follows:

α0 =
1

1 + π2EI
S2

(
ab

12EIb
+ a

26EIy
· 1

1−µ

) (3)

a represents the panel length, b represents the spacing between the arch ribs, Ib repre-
sents the moment of inertia of the transverse bracing, and Iy is the out-of-plane moment of
inertia of the arch rib. The µ-value can be obtained using Equation (4), and µ-value must
be less than 1.

µ =
Ncra2

2π2EIy
(4)
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During calculation, the µ-value is assumed first, and the Ncr value is calculated
according to Equations (2) and (3). Then the Ncr value is substituted into Equation (4) to
calculate the µ-value, and the Ncr value is obtained through continuous iterative calculation.
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2.2. Japanese Code

A steel arch bridge can be approximately regarded as a narrow and long-span structure
system with a tendency to buckle laterally away from the arch plane, so the Japanese code
establishes rules and regulations for verification of out-of-plane buckling. If the arch axis
forms a symmetrical parabola in the vertical plane, and if lateral bracing and sway bracing
are installed on the basis of provisions presented in Japanese code, the verification of
out-of-plane buckling can be performed using the following equation:

H/Ag ≤ 0.85σca (5)

The meaning of symbol H can be seen in Figure 3; it represents the horizontal com-
ponent of the axial force of the arch rib under load. Ag is the mean value of the gross
cross-sectional area of the members of a single arch, σca is the allowable axial compressive
stress at the position of 1/4 span of a single arch rib. σca is only relevant to slenderness ratio
l/r, and can be calculated according to some equations in tables of specifications when the
local bucking of the arch rib is not taken into consideration. In this regard, the calculation
method of the radius of rotation and the effective buckling length is shown in Equation (6).

r =

√√√√(Iy + Ag

(
b
2

)2
)

/Ag, l = φβzL (6)

In this equation, b is the spacing between the arch ribs, L represents the bridge span,
the mean value of the moment of inertia around the vertical axis of the members of a
single arch rib is represented by the symbol Iy, and βz takes the values as shown in Table 1.
When the value of f /L falls between values given in Table 1, βz may be interpolated in a
linear manner. Here, f is the rise of the arch. Values of ϕ are specified as follows: for a
midheight-deck stiffened arch ϕ = 1, for an upper-deck stiffened arch ϕ = 1 + 0.45 k, and for
a through stiffened arch ϕ = 1 − 0.35 k. Here, k is the ratio of the load shared by the hangers
or shoring to the total load in the loading state shown in Figure 3. While considering the
upper-deck stiffened arch, the value of k should be set at 1 if the arch and stiffening girder
are not rigidly lined at the arch crow. P1, P2, and w in Figure 3 are the vehicle load, lane
load, and dead load acting on the main structure, respectively.

Table 1. Value of βz.

Section
Rise Ratio f /L

0.05 0.10 0.20 0.30 0.40

Iy = constant 0.50 0.54 0.65 0.82 1.07
Iy = Iy,c/cosϕm 0.50 0.52 0.59 0.71 0.86
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2.3. Eurocode 3

According to Eurocode 3, by inspecting the stability of the end portals, the out-of-
plane stability of arches with wind braces and portals can be verified. Equation (7) shows
the calculation method of the out-of-plane critical axial force in arches with wind braces
and portals.

Ncr =
π2EI

(βh)2 (7)

where EI is the out-of-plane flexural stiffness of the arch rib, h is the length of the springing
to the first brace as shown in Figure 4, the buckling length factor β can be taken from
Figure 5 using the geometry in Figure 4, β-value considering the three different boundary
conditions of springing, including arch springing hinged, arch springing fixed, and arch
springing with wind brace. The value hr in Figures 4 and 5 can be taken as the mean of all
lengths hH/sinαk of the hangers. hH is the length of each hanger, αk is the angle between the
arch axis and the horizontal line at the springing. η in Figure 5 is the stiffness ratio between
the arch rib and end brace, which can be calculated according to Equation (8), in which b is
the arch rib spacing, I0 is the bending moment of inertial of the first transverse brace along
the horizontal axis.

η =
EIb

E0 I0h
(8)
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3. Bridges Analyzed and Method of FE Analysis
3.1. Bridges Analyzed and Study Parameters

The bridge selected for analysis in this study is the Manzeki Bridge, located in Nagasaki
prefecture, Japan. The main span and rise of this half-through type arch bridge are 113 m
and 24 m, respectively. Box sections are adopted for arch rib and lateral bracing, and
I-sections are adopted for longitudinal and cross girders and hangers. It employs quadratic
parabola arch axes (see Figure 6). In order to reveal the differences between provisions in
the codes for different bridge types, the girder framework of this bridge is translocated
in the models to simulate the other two bridge types (through-type and deck-type) while
keeping the other parameters constant.
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In the major design codes, the out-of-plane critical axial force of the arch ribs is
specified instead of the critical flexure load. Therefore, the out-of-plane stability of a
steel arch bridge is studied in this paper by focusing on the critical axial force. Since
the influences of stiffness ratio, bridge type, rise-to-span ratio, range of lateral bracing
arrangements, and arch rib spacing are concurrently provided in most major design codes,
the effect of these parameters on critical axial force according to the various codes is
evaluated by FE analysis. The stiffness ratio is the value of out-of-plane flexural stiffness
of the arch ribs divided by the flexural stiffness around the horizontal axis of the lateral
bracing; this is abbreviated as SR in the figures in the following sections.

To reveal the influence of stiffness ratio on critical axial force, three different arch rib
and bracing cross sections are used, as shown in Table 2, and the nine cases shown in
Table 3 are studied to discuss the influence of rise-to-span ratio, range of lateral bracing
arrangements, and arch rib spacing on critical axial force for each type of arch bridge. These
cases will be identified in the form AmBn in the figures in the following sections, where
A and B are the abbreviations of the arch rib and bracing, respectively, and m and n are
the cross-section types of the arch rib and lateral bracing, respectively. Taking structural
aesthetics and reasonable engineering into account, the rise-to-span ratios of the three
bridge types modeled here were set between 0.15 and 0.5 by changing the arch rise. The
range of lateral bracing arrangements is represented by the γ-value shown in Figure 7,
which is the ratio of arch rib length provided with lateral bracing to the longness of arch.
This value is set between 0.23 and 0.86. The arch rib spacing was varied between 6 m and
14 m. The rise-to-span ratio, γ-value, and arch rib spacing of the basic model are 0.25,
0.86, and 10 m, respectively. In this study, the values of the other two parameters are kept
constant when discussing the influence of one parameter.

Table 2. Cross Section of Arch Rib and Lateral Brace (Unit: mm).

Section Height Width Thickness of Flange Thickness of Web Plate

Arch rib 1 1752 1100 26 26
Arch rib 2 1200 1000 22 20
Arch rib 3 1000 900 20 16

Lateral brace 1 1000 900 18 15
Lateral brace 2 700 600 14 12
Lateral brace 3 600 500 12 10

Table 3. Study Cases for Each Parameter on Each Object Bridge.

Case 01 02 03 04 05 06 07 08 09

Section of arch rib 1 2 3
Section of lateral brace 1 2 3 1 2 3 1 2 3

Stiffness ratio 3.11 12.10 23.06 1.47 5.72 10.89 0.84 3.26 6.22
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3.2. FE Analysis
3.2.1. FE Modeling

The finite element models were developed using MSC. Marc. The mesh size will affect
the accuracy and calculation time of the FE analysis. Since the number of elements and
nodes in a single FE model in this paper is not large, after ensuring that nodes are set at
special positions such as springing, vault, and intersection point of arch rib and suspender,
arch rib and transverse brace are divided by elements with small length and approximately
equal length, each element is about 1.2 m long. As the longitudinal beam, cross beam, and
suspender are not the focus of this paper, their elements are not subdivided. The nodes
and elements of the FE model are divided, as shown in Figure 8a. The beam elements of
type 14 and 79 were adopted to develop the members of box sections and I-shaped sections,
respectively. The deck of the bridge was ignored. To simplify calculation according to the
codes in the following sections, the arch ribs were simplified to have a constant section.
An initial out-of-plane deflection of

√
20L/300 in the shape of the first-order out-of-plane

buckling mode was assumed. Three degrees of translation freedom at the springing of two
arch ribs were fixed. The dead load of the bridge was automatically determined by the
software according to the inputted material density and element volume. According to the
influence line of springing axial force, the live load was applied as a full-span uniform load,
as shown in Figure 8b. The established FE models of through-type, half-through type, and
deck-type steel arch bridges are shown in Figure 8c–e.
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(c) Through-Type Bridge; (d) Half-through Type Bridge; (e) Deck-Type Bridge.

There are two kinds of arch instability: branch point instability and extreme point
instability. Extreme point instability often occurs in practical steel arch bridges. To obtain
a relatively accurate evaluation of out-of-plane critical axial force, it is advisable to adopt
the analytical method considering the material and geometric nonlinearity [13,24]. The
nonlinear equilibrium equation was solved by the Newton–Raphson iterative method.
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Large deformation effects were considered by using the updated Lagrangian formulation
to conduct geometrical nonlinear analysis. The nonlinearity of the material is considered
in the establishment of the FE model. For the box sections and I-shaped sections, 28
and 24 integration points were specified, respectively. The constitutive relation of steel
proposed by Usami et al. [30] was employed, and the stress–strain curve is shown in
Figure 9. Here, σy represents the yield stress and the εy is the yield strain, εst and Est
represent the strain at the onset of strain hardening and initial strain-hardening modulus,
respectively. Equation (9) shows the calculation of strain hardening modulus E′:

E′ = Est exp(−ξ
ε− εst

εy
) (εst ≤ ε) (9)

where ξ is a material coefficient. Japanese Industrial Standards (JIS) SM490Y steel is
assumed in this study, with E = 2.06 × 105 MPa, σy = 355 MPa, Poisson’s Ratio ν = 0.3,
εst = 7εy, Est = E/30 and ξ = 0.06.
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Figure 9. Material Model.

3.2.2. Accuracy Verification of FE Analysis

A specimen test conducted by the authors is used to verify the accuracy of the finite
element modeling in this paper. The net span of the test specimen is 8.50 m, the rise-to-span
ratio is 1/4.5, and the arch axis is a quadratic parabola. The arch rib is a dumbbell shape,
and the arch rib is made of Φ108 mm× 4 mm steel tube. The two arch ribs are inward tilted
7.5◦ to form the basket arch. The spacing of arch ribs at the springing and vault is 0.8 m
and 0.29 m, respectively. The steel tubes of Φ152 mm × 4.5 mm are used to connect the two
arch ribs at the six equal diversion points of span. The specimen uses steel longitudinal
beams to simulate the rigid ties of the original bridge, and the springing is welded to the
skewback through triangular steel plates. In this experiment, a horizontal load is applied
to the vault of the arch through a jack. The test specimen and its loading photo are shown
in Figure 10.

The FE model of the test specimen was established using the modeling method in
Section 3.2.1. The comparison between the results of the test and the FE analysis is shown
in Figure 11. It can be seen from Figure 11 that the load–lateral displacement curve and
load–vertical displacement curve obtained by the test and FE analysis have the same regular
and similar values, which verifies the accuracy of the finite element modeling method
presented in this paper.
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4. Discussion of FE Analysis Results

The springing in the arch rib has the largest axial force. Taking the analysis results of a
FE model as an example, Figure 12a shows the springing axial force versus vault horizontal
displacement curves under four conditions: not considering geometric and material non-
linearity, only considering material nonlinearity, only considering geometric nonlinearity,
and simultaneously considering geometric and material nonlinearity. Figure 12a shows
that geometric nonlinearity has little influence on the springing axial force of steel arch
bridges, while material nonlinearity has a great influence, and both material and geometric
nonlinearity should be considered when calculating the out-of-plane stable bearing capacity
of steel arch bridges. An arch under a central in-plane load may lose its stability in an
out-of-plane buckling mode when the load attends a certain value. When the axial force of
springing reaches the maximum value (red dot in Figure 12a), out-of-plane instability of
the arch rib occurs, and the mode of out-of-plane instability is symmetrical, as shown in
Figure 12b. In FE analysis, the maximum axial force of the arch rib in case of out-of-plane
instability of the arch bridge is defined as out-of-plane critical axial forces, Ncr.
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Since there are three different arch rib cross sections in nine FE analysis cases, and the
critical axial force Ncr by FE analysis with different sections is not comparable, the Ncr of the
arch rib is normalized for the purpose of discussion by the yield force Ny at the full-section
yield of arch rib, which is the product of yield stress and cross-sectional area of an arch
rib. When Ncr/Ny = 1, that is, when out-of-plane instability occurs, the full section of the
arch springing reaches the yield strength of the material. The influences of rise-to-span
ratio, arch rib spacing, and γ-value with different stiffness ratios on normalized critical
axial forces for the through-type bridge (as representative of the three types) are shown
in Figure 13a–c. The influence of bridge type is studied by translating the location of the
girder framework, as already explained, and the critical axial force with different stiffness
ratios is shown in Figure 13d. These figures show each arch rib type in a different color
with the same fill. Cases with the same lateral bracing are notated by marks with the same
shape. Figure 13 shows that Ncr/Ny ranges from 0.33 to 0.97 under different construction
parameters; in other words, when the steel arch bridge occurs out-of-plane instability, the
structural parameters have a great influence on whether the arch springing section yield or
yield area, especially the parameter of lateral bracing arrangement range.

Figure 13a demonstrates that the change in the rise-to-span ratio exerts little influence
on normalized critical axial force except in a few cases. This is because a decrease in the
rise-to-span ratio leads to reduced critical flexure load but also makes the arch ribs more
flat, which leads to an increase in the axial force in the arch rib. These two influences
together cause a slight influence on the rise-to-span ratio on the normalized critical axial
force. The influence of the rise-to-span ratio is taken into account in all three codes.

Figure 13b shows that the normalized critical axial force is slightly affected by arch rib
spacing when the stiffness ratio is small. However, it decreases with increasing arch rib
spacing when the stiffness ratio is relatively large. Since lateral bracing with the same cross-
section becomes weaker as arch rib spacing increases, the deformation of arch ribs becomes
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less restrained. Consequently, the normalized critical axial force decreases, especially
when lateral bracing is weak. The influence of arch rib spacing is taken into account in all
three codes.

Figure 13 shows that the decreasing stiffness of lateral bracing for bridges with the
same arch ribs will lead to a decrease in the normalized critical axial force. On the contrary,
the normalized critical axial force tends to augment with falling arch rib stiffness when
the lateral bracing is the same. The normalized critical axial force basically decreases
with increasing stiffness ratio when the stiffness of the arch ribs and lateral bracing are
simultaneously taken into account. In addition, as shown in Figure 13c, a smaller γ-value
relating to the lateral bracing significantly reduces the normalized critical axial force. The
Chinese and European codes consider the stiffness of both arch ribs and lateral bracing.
The Japanese code considers the stiffness of the arch ribs, but parameters such as the
arrangement of lateral bracing and the γ-value are not taken into consideration. Therefore,
it can be anticipated that the out-of-plane critical axial force calculated with the Japanese
code will not be conservative when the stiffness ratio is large or the γ-value is small [31,32].
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Figure 13d demonstrates that compared with the other two types of steel arch bridges,
the normalized critical axial force of a half-through type arch bridge is mostly smaller when
the stiffness ratio is relatively small, while otherwise, it is similar to that of a through-type
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bridge. Since the girder framework of a half-through arch bridge is rigidly connected
to the place near the arch springing, any deformation of the girder intensifies the lateral
displacement of the arch ribs, which reduces their critical axial force. Moreover, the
normalized critical axial force of a deck-type bridge is larger than that of a through-type
bridge when the stiffness ratio is relatively large; otherwise, the normalized critical axial
force of a through-type bridge is larger than that of a deck-type bridge. This is because
the girder framework of a deck-type bridge has a certain positive effect on enhancing the
out-of-plane stability, and the effect is more obvious when the stiffness ratio is relatively
large. The type of bridge is considered in the Japanese and European codes but not in the
Chinese code.

5. Evaluation of Major Design Codes Based on Results of FE Analysis

In this section, the critical axial force values of the arch rib according to the three
codes are normalized and evaluated with respect to the FE analysis results considering the
influence of certain parameters, as shown in Figures 9–11. The effects of these parameters
on normalized critical axial forces for three types of arch bridges are represented in these
figures by three cases with small, medium, and larger stiffness ratios. The Y axes in the first
row of graphs in each figure are split to show the results more clearly. The solid black line
in the figures shows where the critical axial force according to the code equals that given
by FE analysis. The olive-colored dashed line shows the yield force of the cross-section
normalized by the results of the FE analysis. This can be thought of as the maximum value
of strength in design practice.

5.1. Influence of Rise-to-Span Ratio

The influence of the rise-to-span ratio on the normalized critical axial force can be seen
in Figure 14. In most cases, according to the Chinese and European codes, the normalized
critical axial force slightly decreases with increasing rise-to-span ratio, while it increases
with increasing rise-to-span ratio in the Japanese code. This rising tendency of the Japanese
code is more apparent when the stiffness ratio is large. These findings indicate that the
Chinese code and Eurocode overestimate the negative influence of the rise-to-span ratio on
critical axial force, while the Japanese code underestimates it. They can be explained as
follows. Since the rise-to-span ratio has only a slight influence on the critical axial force in
the FE analysis results, the influence of the rise-to-span ratio on the normalized critical axial
force is almost the same as on the critical axial force in the codes. Moreover, the influence
of the rise-to-span ratio on the critical axial force in the codes can be explained as follows.
The Chinese code treats the arch rib as a Vierendeel truss with the length of the arch axis,
and the length of the arch axis s and panel length a increase with increasing rise-to-span
ratio, thereby causing the decrease in critical axial force calculated by Equations (2)–(4).
According to the Eurocode, the hr-value increases with increasing rise-to-span ratio, which
leads to a higher β-value, so as to decrease the out-of-plane critical axial force obtained by
Equation (9). The Japanese code provides that the βz-value in Equation (6) increases with
increasing rise-to-span ratio, which results in a higher slenderness ratio of the arch rib, l/r,
so the allowable axial compressive stress σca decreases slightly. These changes keep the
horizontal component of arch axial force almost constant. However, the increases in the
rise-to-span ratio led to the increasing angle between the arch axis and the horizontal; thus,
the critical axial force increases.
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5.2. Influence of Range of Lateral Bracing Arrangements

Figure 15 shows the effect of the γ-value on the normalized critical axial force for three
types of bridges. It demonstrates that the normalized critical axial force tends to increase
with increasing γ-value in the Chinese code and decrease in the Japanese code, respectively.
This means that the Chinese and Japanese code overestimates and underestimates the
positive effect of γ-value on the critical axial force, respectively. The critical axial force
increases with increasing γ-value in the FE analysis results, and the same tendency is
obtained by the Chinese code since the value of panel length a decreases with increasing
γ-value. Therefore, the increase in γ-value leads to the increase in the normalized critical
axial force in Chinese code. In the Japanese code, there is no parameter relating to the
influence of lateral bracing, and thus the critical axial force, according to the Japanese code,
is independent of the γ-value. Therefore, a larger γ-value reduces the normalized critical
axial force in the Japanese code. Concerning the Eurocode, a tendency for normalized
critical axial force to increase with increasing γ-value is observed for a deck-type bridge. In
other words, the code overestimates the positive influence of the γ-value in the case of a
deck-type bridge. However, this tendency is not the same for through and half-through
types. In the Eurocode, the buckling length is determined by the product of β-value and
height of the end portals h. A decrease in γ-value results in increased height h, which
then leads to a decrease in β-value, as shown in Figure 7. Therefore, the change in critical
axial force depends upon the amount of the reduction in β-value and the increment in
h-value with decreasing γ-value. When the γ-value is in the range of 0.23 to 0.55 and 0.73
to 0.86 for a through-type bridge and in the range of 0.23 to 0.41 and 0.73 to 0.86 for a
half-through type bridge, the reduction in β-value is larger than the increment in h-value, so
the critical axial force increases with increasing γ-value. Otherwise, the critical axial force
decreases with increasing γ-value. When the critical axial force is normalized by FE results,
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these increasing and decreasing tendencies are slightly reduced since the critical axial force
by FE analysis increases with increasing γ-value, especially when the stiffness ratio is
small. Therefore, the relationship between normalized critical axial force for through and
half-through arch bridges and γ-value is not monotonous. However, for deck-type bridges,
βh decreases with increasing γ-value as the reduction in β-value is much larger than the
increment in the h-value, so the critical axial force for deck-type arch bridges increases with
escalating γ-value. Further, owing to the relation between critical axial force in FE analysis
and the γ-value, the normalized critical axial force for deck-type bridges increases with
increasing γ-value in the Eurocode.
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5.3. Influence of Arch Rib Spacing

The effects of arch rib spacing on the normalized critical axial forces of the three types
of bridges are shown in Figure 16. The figure demonstrates that, according to the Chinese
code, the normalized critical axial force reaches relatively small peaks when the stiffness
ratio is at a certain arch rib spacing, while it decreases with increasing arch rib spacing
when the stiffness ratio is relatively large. The arch rib spacing has a slight influence on
normalized critical axial force according to the Japanese code. The normalized critical
axial force specified by the Eurocode increases with decreasing arch rib spacing. Thus,
the Chinese code overestimates the positive effect of arch rib spacing at smaller spacings
and underestimates it at larger spacings when the stiffness ratio is small, while otherwise,
the same as the Eurocode, underestimates the positive influences of arch rib spacing. The
influence of arch rib spacing is estimated properly in the Japanese code, especially if the
stiffness ratio is relatively small.
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Two aspects of these results can be considered of crucial importance. On the one
hand, arch rib spacing has a slight effect on the critical axial force, according to FE analysis.
Therefore, the sensitivity of normalized critical axial stress to the variation of arch rib
spacing is basically similar to the codes. On the other hand, the Chinese code takes arch rib
spacing into account by adopting the geometrical moment of inertia of the two arch ribs I
and their spacing b as parameters, while the influence of spacing b is factored by 1/Ib which
relates to the stiffness of the lateral bracing. Therefore, when the stiffness ratio is relatively
small, the dual effect of I and b results in a peak in critical axial force at certain spacing.
Otherwise, spacing b is the main effect, which results in the critical axial force decreasing
with increasing arch rib spacing. In the Eurocode, an increase in arch rib spacing causes the
increase in η-value shown in Figure 5, which leads to a higher β-value and hence a reduced
critical axial force of the arch rib. On the contrary, in the Japanese code, the integral lateral
stiffness is taken into account while calculating the transverse radius of gyration, r, which
means greater arch rib spacing results in greater integral lateral rigidity of the arch rib.
Therefore, the critical flexure load according to the Japanese code increases with increasing
arch rib spacing. However, the change is small.

5.4. Influence of Stiffness Ratio

We find from Figures 14–16 that the stiffness ratio significantly affects the normalized
critical axial force. The critical axial forces according to the Chinese and European codes
are generally overestimated when the stiffness ratio is small, regardless of the rise-to-span
ratio, arch rib spacing, and γ-value, even exceeding the normalized yield force, while it
is relatively close to the results given by FE analysis when the stiffness ratio is large. The
flexural stiffness of the arch rib and lateral bracing is considered simultaneously in the
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formulae given in the Chinese code and Eurocode for calculating the critical axial force
as the Euler critical force. However, the positive effect of lateral bracing is overestimated.
On the other hand, the influence of lateral bracing is not considered in the Japanese code
provisions, and the critical axial force according to FE analysis decreases with increasing
stiffness ratio. Therefore, the critical axial force obtained using the Japanese code is conser-
vative when the stiffness ratio is small and overestimated when it is large, respectively. The
normalized critical axial forces calculated by the Japanese code coincide with FE analysis
results. Therefore, in general, the results given by the Japanese code are relatively accurate.

5.5. Influence of Bridge Type

The Chinese code provides the same formulae for calculating the critical axial force for
the three different types of arch bridges. The Japanese code assumes a different ϕ-value in
Equation (6) to obtain the different effective lengths of arch rib for the three types of bridges,
which then affects the allowable axial compression stress σca. Although the ϕ-value has a
large effect on σca when the arch rib is slender, the influence of the ϕ-value in this study
is negligible since the slenderness ratio of the arch rib is comparatively small. For these
reasons, the effect of bridge type on normalized critical axial force according to the Chinese
and Japanese codes should be contrary to that discussed in relation to the FE results in
Section 4. This can be seen in Figures 14–16. In the Eurocode, the positive effect of the
horizontal component of tension in the hangers and the negative effect of the horizontal
component of compression in the columns on the out-of-plane buckling of the arch ribs,
as shown in Figure 17, are considered. Since the hanger and column lengths are treated
as positive and negative values, respectively, when calculating the hr-value for different
types of arch bridges, the hr-values for through and half-through type arch bridges are
little different, while the hr-value for a deck-type bridge is smaller. For this purpose, the
critical axial force for a through-type arch bridge is only slightly different from that for a
half-through type arch bridge. Moreover, this conclusion is quite similar to the FE analysis
results when the stiffness ratio is relatively large. Although the critical axial force for a
through-type bridge is larger than that for a half-through type bridge in the FE analysis
results when the stiffness ratio is relatively small, the critical axial force according to the
Eurocode is much larger than that by FE analysis. For these reasons, the normalized critical
axial force given by the Eurocode for through and half-through type bridges is almost the
same, while the critical axial force for a deck-type bridge is much smaller.
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5.6. Factors for Improving Code Accuracy

Equations (10)–(12) are proposed for improving the accuracy of critical axial force as
given by the three codes. The yield force of the arch rib cross-section can be thought of
as the maximum value of strength in design practice. Therefore, only critical axial forces
given by the codes that are smaller than the yield force are formulated. In these equations,
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ϕr, ϕb, and ϕs are the critical axial force normalized by FE analysis, r is the stiffness ratio, R
is the rise-to-span ratio, γ is the ratio of rib length provided with lateral bracing, as defined
in Figure 7, and b is the arch rib spacing. The values of A, B, C, and D in Equations (10)–(12)
are given in Tables 4–6, respectively. Since values of ϕb for through and half-through
type bridges according to the Eurocode are difficult to fit using simple equations, they are
excluded from Table 5.

φr = A + B ∗ r + (C + D ∗ r)R (10)

φb = A + B ∗ r + (C + D ∗ r)γ (11)

φs = A + B ∗ r + (C + D ∗ r)b (12)

Table 4. Value of Factor ϕr.

Code Bridge Type A B C D

Chinese code
Through 1.602 −0.008 −0.919 −0.009

Half-through 1.751 −0.025 −0.778 0.015
Deck 1.704 −0.036 −1.179 0.044

Japanese code
Through 0.267 0.022 1.506 0.063

Half-through 0.360 0.010 2.140 0.046
Deck 0.413 0.003 1.553 −0.007

Eurocode
Through 0.751 0.051 0.712 −0.091

Half-through 0.768 0.034 1.593 −0.178
Deck 0.929 0.001 −1.436 0.016

Table 5. Value of Factor ϕb.

Code Bridge Type A B C D

Chinese code
Through 0.333 −0.012 1.193 −0.020

Half-through 0.530 −0.015 1.212 −0.030
Deck 0.275 −0.008 1.215 −0.034

Japanese code
Through 1.356 0.039 −0.811 0.001

Half-through 1.629 0.076 −1.018 −0.053
Deck 0.899 0.050 −0.228 −0.035

Eurocode Deck −0.048 −0.001 0.187 0.008

Table 6. Value of Factor ϕs.

Code Bridge Type A B C D

Chinese code
Through 1.848 −0.001 −0.058 −0.001

Half-through 2.922 −0.044 −0.116 0.002
Deck 2.658 −0.050 −0.110 0.002

Japanese code
Through 0.663 0.015 0.004 0.002

Half-through 0.778 0.007 0.006 0.002
Deck 0.603 −0.002 0.012 0.002

Eurocode
Through 1.978 −0.011 −0.088 0.003

Half-through 2.563 −0.042 −0.125 0.005
Deck 0.974 −0.014 −0.033 0.001

To conform with earlier assumptions, these proposed equations are applicable to
bridges with rise-to-span ratio, arch rib spacing, and γ-value in the range of 0.15 to 0.5, 6 m
to 14 m, and 0.23 to 0.86, respectively, and only when the critical axial forces calculated
by these codes are smaller than yield force. The accuracy of estimation is evaluated in
Figure 18 by plotting estimation results against analysis results. Most of the analysis results
are within an error of 15%, indicating that the proposed formulae can be considered valid.
It should be pointed out that the proposed equations require further validation for original
models that are different since all the other parameters are kept the same as those of the
original model when discussing the influence of one parameter.
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6. Conclusions

The accuracy of provisions for the out-of-plane stability of steel arch bridges in major
design codes was evaluated using the results of FE analysis. Summaries of this work are
shown as follows.

(1) According to FE analysis, the influence of the rise-to-span ratio on critical axial force
is generally small. The critical axial force decreases with increasing arch rib spacing when
the stiffness ratio is relatively large. A smaller ratio of arch rib length provided with lateral
bracing (γ-value) significantly reduces the critical axial force, and normalized critical axial
force decreases with increasing stiffness ratio. The critical axial force of half-through type
arch bridges is lowest when the stiffness ratio is relatively small. A deck-type bridge has a
larger critical axial force than a through-type bridge when the stiffness ratio is relatively
large, while the results are the opposite when the ratio is small.

(2) The Chinese code generally overestimates the critical axial force when the γ-value
is more than 0.86 and otherwise underestimates it, except in cases with a smaller stiffness
ratio. The code also overestimates the positive effect of the γ-value and the negative effects
of the rise-to-span ratio and stiffness ratio. The effect of arch rib spacing is estimated to
be non-monotonous when the stiffness ratio is small. Otherwise, the negative effects are
overestimated. The influence of bridge type is properly evaluated.

(3) The Japanese code accurately estimates the critical axial force when the stiffness
ratio is small and otherwise overestimates it. The positive effects of the rise-to-span ratio
and stiffness ratio, and the negative impact of γ-value, are overestimated. The influence of
bridge type and arch rib spacing is properly evaluated.

(4) The Eurocode generally underestimates the critical axial force for deck-type bridges.
It accurately estimates the critical axial force for through and half-through type bridges
when the stiffness ratio is small and the γ-value is smaller than 0.86, and otherwise mostly
overestimates it. The Eurocode also overestimates the negative effects of the rise-to-span
ratio, arch rib spacing, and stiffness ratio. The effect of γ-value on through and half-through
type bridges is estimated to be non-monotonous, while the positive effect of γ-value is
overestimated for deck-type bridges.

(5) Considering the influence of the rise-to-span ratio, the ratio of lateral bracing, and
arch rib spacing with different stiffness ratios, factors to improve the accuracy of the critical
axial force obtained by the three codes are proposed for a practical design process. The
accuracy of these proposed corrections is verified.
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