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Abstract: Localizing the audio‑visual events in video requires a combined judgment of visual and au‑
dio components. To integrate multimodal information, existing methods modeled the cross‑modal
relationships by feeding unimodal features into attention modules. However, these unimodal fea‑
tures are encoded in separate spaces, resulting in a large heterogeneity gap between modalities. Ex‑
isting attention modules, on the other hand, ignore the temporal asynchrony between vision and
hearing when constructing cross‑modal connections, which may lead to the misinterpretation of one
modality by another. Therefore, this paper aims to improve event localization performance by ad‑
dressing these two problems and proposes a framework that feeds audio and visual features encoded
in the same semantic space into a temporally adaptive attention module. Specifically, we develop a
self‑supervised representationmethod to encode featureswith a smaller heterogeneity gap bymatch‑
ing corresponding semantic cues between synchronized audio and visual signals. Furthermore, we
develop a temporally adaptive cross‑modal attention based on aweightingmethod that dynamically
channels attention according to the time differences between event‑related features. The proposed
framework achieves state‑of‑the‑art performance on the public audio‑visual event dataset and the
experimental results not only show that our self‑supervised method can learn more discriminative
features but also verify the effectiveness of our strategy for assigning attention.

Keywords: audiovisual event; temporal localization; fusion; representation learning; self‑supervised
learning

1. Introduction
Teaching machines to use captured signals, such as visual and acoustic signals, to un‑

derstand their surroundings is essential for constructing artificial intelligence. At present,
studies in scene perception such as action recognition [1–3] and sound event detection [4,5],
are mainly based on the use of unimodal signals. However, in more realistic situations, it
may not be sufficient to characterize certain scenarios merely with unimodal information.
To cope with the ambiguity caused by the unimodal data, the task of audio‑visual event
(AVE) localization is proposed to investigate how to understand video content by jointly
leveraging audio and visual information in neural networks [6]. Specifically, anAVE refers
to an event that is both visible and audible in a video segment. Localizing an AVE in a
video requires predicting its temporal boundary and identifying its content. For example,
as shown in Figure 1, a car appears in the beginning but can only be heard in the latter half
of the video after its engine is started, thereby only the last three segments are categorized
as ‘car’ while the other segments are background.
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Figure 1. An illustration of the AVE localization task.

Due to the natural heterogeneity gap that exists between visual and acoustic signals,
the key challenge in AVE localization is how to effectively fuse the information contained
in the two modalities. To address the challenge, previous works [6–13] regarded primary
visual and audio features extracted by unimodal backbones as tokens and fed them into at‑
tention modules to model the cross‑modal relationships. However, the features they used
are encoded in different unimodal spaces since they are extracted separately by convolu‑
tional neural networks (CNNs) trained solely on single‑modal datasets [14,15]. Thus, there
is a large heterogeneity gap between these features, which makes it difficult to model the
relationship betweenmodalitieswith only a few sets of scalarweights in previous attention
networks. Unlike these deep learning techniques that use primary features learned on sep‑
arate audio and visual data, the studies in [16–18] show that the human perceptual system
naturally receives signals from multiple sensory streams and associates multimodal infor‑
mation collaboratively at an early stage of the learning process. Therefore, our approach
is motivated to train feature encoders with both audio and visual data and associate their
features in the same semantic space to narrow down the heterogeneity gap.

Another concern laid in existing localization frameworks is the attention module,
which plays a pivotal role in learning cross‑modal relationships. Generally, using the atten‑
tion module to obtain a joint representation fusing audio and visual information can facili‑
tate localization accuracy [8,10–13]. Nevertheless, these existing approaches often ignored
the interference caused by the interaction between event‑unrelated visual and audio fea‑
tures that are generated from background segments. Therefore, the approach in [19] applied
a threshold on the cross‑modal connections to filter out semantically similar feature pairs
that share event‑related information and used them to obtain a better‑fused representation.
However, the thresholding method treats all relevant feature pairs equally, ignoring that
some of these pairs are temporally asynchronous. We argue that the asynchronous audio
and visual feature pairs should also be distinguished since they inherently describe differ‑
ent states of the event. In fact, studies [20,21] on psychophysics have already proven that
the temporal misalignment between vision and hearing can lead to the misinterpretation
of one modality by another. Furthermore, the study [22] on multisensory representation
learning also shows that judging whether visual and audio signals are synchronized can
be used to learn representative multimodal features. Hence, our idea is to adaptively as‑
sign attention to event‑related audio‑visual connections by considering the time difference
between modalities.

In light of the above analysis, this paper proposes a novel AVE localization framework
consisting of two parts: a self‑supervised audio‑visual representationmethod called audio‑
visual Barlow Twins (AV‑BT), and temporally adaptive cross‑modal attention (TACMA).
On the one hand, AV‑BT takes both audio and visual data as inputs and trains the feature
encoders using the intrinsic relation between audio and visual signals as supervision. It
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helps to narrow the heterogeneity gap between the encoded features by matching the cor‑
responding semantic information between synchronized audio and visual embeddings.
On the other hand, a weighting method is introduced in TACMA to adaptively model the
cross‑modal relations by assigning different weights to audio‑visual pairs with different
time differences and semantic similarities. Specifically, the most attention is assigned be‑
tween the synchronized visual and audio features which describe the same state of the
event since they are the most relevant, while the association between those asynchronous
signals (even if both contain the information of the same event) is relatively weakened be‑
cause they are less relevant. The main contributions of this work are concluded as follows:
• We propose a self‑supervised audio‑visual representation method that encodes

features in the same latent space and matches the semantic information contained
in the audio and visual modalities. Such a design can narrow the heterogeneity
gap between different modal features and benefit subsequent modeling of
cross‑modal relationships;

• We propose a weighting‑based cross‑modal attention module that dynamically weak‑
ens the connections between different modal features that are unrelated to events or
temporally asynchronous;

• The proposed methods are combined in a framework to perform the event localiza‑
tion task on the public audio‑visual event dataset. When directly classifying features
learned by our self‑supervised method for event localization, significant improve‑
ments are achieved in both unimodal andmultimodal cases. When further combining
these featureswith the proposed cross‑modal attention, our overall approach achieves
state‑of‑the‑art localization accuracy.
The rest of this paper is organized as follows: Section 2 briefly introduces

several related works about our method. In Section 3, the detailed system flow and discus‑
sions of AV‑BT and TACMA are presented. Both the quantitative and qualitative results
of our methods are given in Section 4. Conclusions and future directions are presented
in Section 5.

2. Related Works
Based on the task and method of this paper, related works are briefly reviewed in

three aspects: (1) Self‑supervised audio‑visual representation learning. (2) Multimodal
fusion. (3) AVE localization.

2.1. Self‑Supervised Audio‑Visual Representation Learning
Self‑supervised representation learning aims to train representation networks in the

absence of human labeling. Existing self‑supervised methods [23–28] fed two randomly
distorted versions of an image into a backbone and maximized the similarity of their pro‑
jected features. Their ideas of learning representations that are both invariant to random
augmentations and distinctive to semantically different targets, inspire many works on
self‑supervised audio‑visual learning [22,29–34].

Mimicking the self‑supervisedmethod for single‑modal representation learning, some
existingmethods focus ondesigningpretext tasks, trying to exploit the cross‑modal correla‑
tion effectively. Considering the co‑occurrence of hearing and sounding, Owens et al. [22]
proposed to predict whether video frames and audio are temporally aligned based on
fused multisensory representations. By solving the pretext problem of audio‑visual syn‑
chronization, Cheng et al. [29] trained a co‑attention network in a self‑supervised man‑
ner. Sarkar et al. [30] find that by relaxing the temporal synchronicity between modalities,
more generalized representations can be learned. Different from defining a pretext task,
Patrick et al. [31] shifted their attention to imposing transformations on multimodal data
and combining themwith existing noise‑contrastive learningmethods and achieved aston‑
ishing results on several downstream tasks. These studies show that a carefully designed
self‑supervised framework can help the network effectively uncover the joint represen‑
tation of multimodal information by exploiting the general connection between different
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modal data. In our work, we develop a framework that matches the corresponding se‑
mantic information between synchronized audio and visual signals to obtain multimodal
features that have a smaller heterogeneity gap.

2.2. Multimodal Fusion
In the real world, many realistic tasks involve inputs of multimodal information that

are complementary to each other. For example, the combination of speaking tone, the con‑
tent of speech, and facial expressions are critical to properly judging a person’s emotion.
Therefore, integrating cues from different modalities, known as multimodal fusion, is nec‑
essary for building a stronger multimodal neural network to tackle real‑world problems.
Here we mainly review some of the commonly used fusion techniques in neural networks.

For information fusion in neural networks, many simple operations can be exploited,
such as direct concatenation [35,36], element‑wise multiplication [37,38], and weighted
sums [39]. Since useful information about the data is often expressed in a highly abstract
fashion in neural networks (which can be linearly related to the output predictions), apply‑
ing these simple operations before the classification layer to directly combine high‑level
information from different sources can be effective. However, these simple operations
often play limited roles because the complex relationships that may exist between differ‑
ent modalities can affect the representation of the data. Hence, modules that utilize the
attention mechanism attract more interest [40,41]. Computed from multimodal cues, at‑
tention blocks that employ sets of scalar weights are more capable when modeling both
inter‑modal and intra‑modal relationships. Lu et al. [42] proposed a co‑attention model to
extract correlated information from both visual and text modalities. Dou et al. [43] devel‑
oped a merged‑attention mechanism to ease the computational cost while also avoiding
modeling the redundant information between modalities. In our solution, we do not re‑
strict the information fusion process to a particular module. In early fusion, we encode
informative multimodal features by self‑supervised representation learning. For late fu‑
sion, we modify the process of cross‑modal attention to make it more attentive to useful
parts. In the classification layer, we directly employ summation for decision‑level fusion.

2.3. AVE Localization
Nowadays, with the development of machine learning and deep learning, there are

more andmore cases of neural network techniques being used in practical applications [44].
As single‑modal deep learning is becoming increasingly mature in applications [45–48],
the machine learning community has turned to multimodal cases. For video content un‑
derstanding based on visual and audio modalities, Tian et al. [6] first defined the AVE
localization task, which is to detect whether an event that is both visible and audible hap‑
pened in a video segment. Other than task definition, they also propose a complete set
of solutions and initially study several basic fusion strategies of features. As the encoded
feature of a video is sequential, Lin et al. [9] employ a bidirectional long short‑term mem‑
ory (Bi‑LSTM) [49] network to better fuse the concatenated audio‑visual feature. Although
the localization task is built on the segment level, Wu et al. [7] consider the potential intra‑
modal misalignment within the segment so they propose a dual attention‑matching mod‑
ule to model high‑level global information over a longer range. Note that in their method,
to compute global features, background segments need to be additionally supervised during
training. Furthermore, in [10,11], Ramaswamy introduced several attention‑based mod‑
ules to interact between audio and visual both locally and globally. Xuan et al. [12] pre‑
sented a different network with multiple attention modules to deal with the task under
temporal inconsistency. Duan et al. [13] took a further step on multimodal attention and
utilized joint co‑attention formodeling both inter‑modal and intra‑modal relations, aiming
to learn robust fused features by recursively stacking attention blocks. Lin et al. [50] com‑
plete the encoding of temporal features and information fusion simultaneously through
their newly proposed audio‑visual transformer. The above works emphasize a variety of
attention‑based designs, resulting in a large increase in computational cost when improv‑
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ing performance. Zhou et al. [19] revisit the localization task from a more concise perspec‑
tive and propose a positive sample propagation module to only aggregate information
from high‑relevance audio and visual features. This cross‑modal attention‑based module
selects positive audio‑visual pairs that are of high attention scores through threshold op‑
eration. However, it cannot be ignored that most of the features that carry event‑related
information are inconsistent in time. Since this inconsistency reflects the fact that features
fromdifferentmodalities describe different states of the event, these asynchronous features
should be distinguished from those feature pairs that are both synchronous and associated.
Therefore, we apply weights on the attentionmap based on the time difference to integrate
information more effectively by weakening the less relevant connections caused by inter‑
modal asynchrony.

3. The Proposed Framework
The whole scheme of our framework is depicted in Figure 2, in which our network

is trained in two stages. First, the two‑stream representation network is trained in a self‑
supervised manner to encode spatial–temporal features with the proposed AV‑BT. At this
point, the heterogeneity gap between features fromdifferentmodalities is narrowed. Then,
the extracted features are fed into the proposed TACMA to adaptively integrate useful in‑
formation from eachmodality. To start with the description, the task statement is outlined
in Section 3.1. Next, the detailed system flow and discussion of the AV‑BT and TACMA
are described in Sections 3.2 and 3.3, respectively.
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Figure 2. The pipeline of our proposal. The whole method is divided into two parts. We first train
the audio‑visual representation network using the proposed AV‑BT. Then, the fixed representations
produced by audio and visual encoders are sent to the proposed TACMA for late information fusion.

3.1. Task Statement
The meanings of the symbols used throughout this paper are provided in Table 1.

Following [6], an AVE is defined as an event in a video clip that is both visible and audible.
Performing the AVE localization task involves both predicting the temporal boundaries



Appl. Sci. 2022, 12, 12622 6 of 21

and identifying the content information. Specifically, given a synchronous audio‑visual
video sequence S = (Sa, Sv), where Sa and Sv denote the auditory portion and visual
portion, respectively. S is continuously divided into T nonoverlapping segments of equal
duration. As in [19,50], the annotation of the t‑th segment St = (St

a, St
v) is defined as

yt =
{

yt
c
∣∣yt

c ∈ {0, 1}, ∑c yt
c = 1

}
∈ RC, where C denotes the number of categories. If

no event happens in a video segment, it will be labeled as background. Note that in our
method, we directly classify the background as one of the categories and use no additional
supervision to help the network distinguish it from events. Compared to an AVE, it is
noticeably more challenging to identify a background because its audio and visual content
are not correlated with each other.

Table 1. Main symbols used throughout the paper.

Symbols Definition

Sa/Sv Audio/visual portion of the video

yt Annotation of the t‑th video segment

A/V Preprocessed audio/visual data

fa/fv Encoded audio/visual feature

Za/Zv Projected audio/visual embedding

C Cross‑correlation matrix of Za/Zv

W1
a/W1

v Parameters for computing audio/visual query and key

Mav/Mva Cross‑modal attention matrix

Wmv/Wma Weight matrix forMav/Mva

Wav/Wva Weighted attention matrix

W2
a/W2

v Parameters for computing audio/visual value

A f use/V f use Attended audio/visual feature

W3
a/W3

v Parameters for A f use/V f use

fa←v/fv←a Fused audio/visual feature

pred Prediction of the input video

3.2. Self‑Supervised Audio‑Visual Representation
According to the above definition, the localization of an AVE requires a combination

of information from both visual and audio signals. To extract useful information from
the raw signal, we followed existing methods [6–13] to extract spatial features in video
frames and audio spectrograms using two‑dimensional CNN. Considering that the video
is sequential, Bi‑LSTMs are then used for the modeling of temporal relations.

Due to the scarcity of audio‑visual video samples that can be used for training, the
performance of training feature encoders from scratch is often unsatisfying, making it nec‑
essary to pretrain the CNN on large‑scale datasets [14,15]. However, this pretraining also
poses a problem: there is a huge heterogeneity gap that exists between the features ex‑
tracted by the pretrained CNN and it naturally hinders information fusion. To overcome
this problem, our solution is to adapt the CNN features from different modalities to the
same semantic space. In practice, we accomplish the feature adaptation in a self‑supervised
manner by exploiting the relationship between vision and hearing as supervision. Specif‑
ically, there are two general cross‑modal relationships in AVEs, namely, audio‑visual co‑
occurrence and correspondence. On the one hand, co‑occurrence refers to the fact that when an
AVE happens in a video segment, its visual and auditory stimuli are provided simultane‑
ously. For example, a baby’s cry is accompanied by a sad facial expression. Audio‑visual
correspondence, on the other hand, means that the appearance of a particular object is as‑
sociated with its characteristic sound. For example, when a bell appears in a scene, the
neural network should match it to the ringing sound in the audio stream at that moment.
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Utilizing these two attributes of AVE means that the network should match the relevant
semantic information carried by the synchronized audio and visual signal pairs.

3.2.1. Audio‑Visual Barlow Twins
Based on the above consideration, we modified the pipeline in [23] and design an

AV‑BT that trains the audio‑visual encoder in a self‑supervised manner to narrow the het‑
erogeneity gap between different modal data. Figure 2 illustrates the full AV‑BT pipeline,
with the three steps involved detailed below.

Preprocessing. For each video segment, we convert the raw audio into a log‑Mel
spectrogram and randomly sample one frame from the visual stream. The resulting spec‑
trograms and extracted frames of the whole video are denoted as A ∈ RT×Ha×Wa and
V ∈ RT×Hv×Wv×C, respectively. Since random data augmentations can boost the per‑
formance of self‑supervised learning and help to fight against overfitting [23–28,51], we
employ similar strategies in AV‑BT. Specifically, cropping and Gaussian blurring are ran‑
domly applied to the extracted visual frames. To simplify notation, V is assumed to be
augmented. In addition, the random frame sampling technique also plays a role in data
augmentation, as it can provide slight variations in visual content during each training
epoch and helps the feature encoder capture more information along the timeline when
the visual content remains stable. An in‑depth analysis of the random sampling technique
is provided in the next subsection.

Feature encoding. A and V are then sent to a two‑stream audio‑visual encoder simul‑
taneously to learn spatial‑temporal features. The output features are denoted as fa ∈ RT×dl

and fv ∈ RT×dl , where dl denotes the feature dimension.
Projecting. Eventually, two three‑layer multi‑layer perceptrons (MLP) are used as

projectors to map the fa and fv into the same latent space, where we compute their cross‑
correlation matrix afterward to explore the audio‑visual relationships. We assign d as the
output dimension of these projectors, so the output embeddings are denoted as Za ∈ RT×d

and Zv ∈ RT×d. To simplify notations, Za and Zv are assumed to be normalized along the
time dimension after projection. It is necessary to note that these two projectors share the
same parameters so that they can force the encoders to learn joint representations carrying
similar semantic information about the video.

To calculate the objective function of AV‑BT, we first compute the cross‑correlation
matrix C ∈ Rd×d of the normalized embeddings Za and Zv along the time dimension.
Specifically, the element in C is obtained by the following equation:

Cij ≜
∑t Zat,iZvt,j√

∑t (Zat,i)
2
√

∑t (Zvt,j)
2

, (1)

where t indexes the time dimension and i, j indexes the feature dimension of Za and Zv
individually. Then we optimize the network by minimizing the difference between C and
the identity matrix, and the objective function is written as:

LAVBT ≜ ∑i (1− Cii)
2

invariance term

+ λ ∑i ∑j ̸=i Cij
2

redundancy reduction term

, (2)

where λ is the same hyperparameter in the original method [23] and is used to trade
off the importance between the first term (invariance term) and the second term
(redundancy reduction term). Note that Equation (1) is defined for each video, and the to‑
tal loss of a training step is obtained based on the average C over all videos in a batch. By
minimizing LAVBT , the representation network is trained to bridge the semantic informa‑
tion between synchronized audio and visual data. Another key point in Equation (1) is that
our approximative identity correlation matrix is computed on the video level rather than
the segment level. This is because of the existence of the background segment where audio
and visual signals are not semantically associated with each other. In‑depth analysis of
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how the objective function LAVBT guides the network to encode informative audio‑visual
representations is discussed in the next subsection.

The pseudocode of our AV‑BT is shown in Algorithm 1.
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3.2.2. Discussion on Audio‑Visual Barlow Twins
Insight of the LAVBT. First, we need to briefly explain the original design in [23]. The

original objective function was applied to the projected embeddings of two identical net‑
works fed with different distorted versions of an image. The outputs were forced to be
invariant to the distortions by the invariance termwhile the redundancy reduction term decor‑
related different components of the embedding so that the outputs comprised as much
information as possible. Although our objective function is very close in form to the origi‑
nal one, there are differences and connections in many aspects.

First, the information from both audio and visual modalities needs to be considered
for judging an AVE. Therefore, our cross‑correlation matrix is computed through differ‑
ent modalities in the same latent space, while the original method only needs to consider
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one modality. Second, similarly to the different distorted versions of an image, vision and
sound can be regarded as two heterogeneous expressions of the same event. Hence in our
LAVBT , the invariance termmakes the features extracted from audio and visual streams both
carry semantic information about the underlying target. Note that such a “target” refers
to an object that may potentially have both visual and aural attributes. For example, for a
person who appears in the scene, the semantic representation of the appearance extracted
by the visual encoder should be tightly bound to the representation of the speaking voice
extracted by the audio encoder. This is like how humans naturally associate the sound of
speechwhen they see a person talking. In contrast, a table does notmake any characteristic
sound, so it is not audibly perceptible despite its visual characteristics. Therefore, an ob‑
ject like a table is treated as visual background and the encoder naturally ignores it. Third,
since ambient noise and visual background in the environment do not carry meaningful
semantic information across modalities, the redundancy reduction term forces the represen‑
tations of both modalities to contain as little information about irrelevant interference as
possible. This is analogous to the idea of the original method.

Examination of random frame sampling technique. It is worth noting that in
Equation (1), the cross‑correlation matrix is calculated along the time dimension for each
sample in a batch (while it was computed along the batch dimension in [23]), whichmeans
that only the similarity of visual and audio embeddings from the same moment is mea‑
sured. This is general to exploit audio‑visual co‑occurrences but inadequate for AVE rep‑
resentation owing to the possible contextual relevance between asynchronous audio and
visual signals. For example, if the t‑th segment and the (t− 1)th segment contain the same
AVE, obviously Za,t and Zv,t−1 are correlated. To fully describe our technique for compen‑
sating for this defect, an example is given as follows.

We first denote the t‑th audio‑visual segment pair as (St
a, St

v), and there are N frames
in St

v, denoted as f t
n where n ∈ {1, 2, . . . , N}. Suppose that we extract f t

1 at random during
a training epoch, such that the network is taught to match the information shared between
f t
1 and St

a. Similarly, the network will learn to model pairs such as St
a, f t

1 and St−1
a , f t−1

N
by training with abundant epochs. Note that f t

1 and f t−1
N are indeed two adjacent frames

and only a minor difference exists between them (if visual content has not changed much
in this period), such that the association within St

a, f t−1
N can be broadcast through f t

1. This
technique allows the network to model the relation between adjacent segments to a certain
extent. An intuitive example is demonstrated in Figure 3. Moreover, processing only one
frame for each segment can help to fit the video memory of the GPU and this random
sampling technique also helps to prevent overfitting.
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Figure 3. An illustration of the random sampling technique in AV‑BT. Three continuous video
segments segments that contain the “train horn” are depicted in this example. The random frame
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sampling process is denoted as red arrows and the modeled cross‑modal relations are denoted as
green arrows. Since the frames picked from the last two segments are nearly identical, the audio‑
visual correlations across the last two segments can be broadcast through these frames, as indicated
by the yellow arrows. Best viewed in color.

3.3. Temporally Adaptive Cross‑Modal Attention
The attention mechanism was first proposed to deal with natural language process‑

ing tasks, and it is very capable of modeling the complex relationships within serialized
tokens [52]. By considering features from each segment in the video as tokens, the atten‑
tion module can also be modified to learn cross‑modal relationships in AVE [8,10–13]. Fur‑
thermore, since task‑related information is often contained in only some of the tokens, a
threshold‑based approach can better model the relationships between modalities sparsely
by obtaining all the semantically similar feature pairs at all times [19]. However, unlike
sentences, where words that are far apart may still be highly correlated, the changing state
of events in the video is often continuous, namely, the audio (visual) signal at one moment
is primarily correlated with its synchronized visual (audio) signal. Therefore, this paper
designs a TACMA that makes one modality adaptively assign attention to useful infor‑
mation in another modality by considering their temporal difference. In such a way, the
multimodal information is integrated along the timeline in a more fine‑grained manner.
The detailed structure of our adaptive attention is depicted in Figure 4.
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Given the fixed fa and fv output from feature encoders as input, the first step is to
compute the attention matrices Mav ∈ RT×T and Mva ∈ RT×T by the scaled dot‑product
along the feature dimension:

Mav = (faW
1
a)(fvW

1
v)

T
/
√

dl , Mva = (Mav)T , (3)

where W1
a and W1

v ∈ Rdl×dh are learnable weight matrices implemented as linear layers.
Note that we adopt a similar strategy as in [19] that uses the same set of queries and keys
(which are both the linear projections of input features) in the computation of the attention
matrices. This can help to reduce computational costs and ensure efficiency. ReLU acti‑
vation is applied on Mav and Mva afterward to filter out negatively correlated audio and
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visual feature pairs. Then, the softmax function is performed along each row ofMav and
Mva to rescale the values between 0 and 1. The larger the elements in Mav and Mva are,
the more event‑related information that is shared between their corresponding audio and
visual features.

To weaken the connections between features that share no event‑related information
or are temporally asynchronous, weweigh the scores of all the feature pairs in the attention
matrices. Particularly, given Mav

i,j and Mva
i,j as the elements in the i‑th row and the j‑th

column of the attention matrices, where i, j also index the time dimension of audio and
visual features, respectively, their corresponding weights Wmv

i,j and Wma
i,j areWmv

ij ≜ exp
(
−θ|i− j|/Mav

i,j

)
,

Wma
ij ≜ exp

(
−θ|i− j|/Mva

i,j

)
,

(4)

where θ is a hyperparameter and themagnitudes ofW mv
i,j andWma

i,j are adjusted by the ratio
of θ to the corresponding element inMav andMva. Hence, the overall weighting method
is expressed as the element‑wise product, written as:{

Wav =Wmv ⊙Mav ,
Wva =Wma ⊙Mva,

(5)

whereWmv ∈ RT×T andWma ∈ RT×T are the weighting matrices, andWav ∈ RT×T and
Wva ∈ RT×T are the resulting attention matrices. With the above equations, we generally
weaken those connections between asynchronous audio and visual signals, but also retain
the consideration of the semantic similarity between features. That is to say when an event
in the video continues for a long time, i.e., when the features of different modalities carry
similar information over a long period, we do not weaken these connections very substan‑
tially (even if some of the audio and visual features are far apart). In contrast, if adjacent
features of different modalities do not share useful information about the event, then the
connections between them are still significantly weakened.

Once the attention matrices are adjusted,Wav andWva are used to update the linear
projected audio and visual features (which are also known as the value in the attention
mechanism) by matrix multiplication, and features from each modality are summed to‑
gether to further reduce their differences in amplitude and direction. The vectors that
carry fused information are updated as V f use =Wva

(
fvW

2
v

)
+ fa ,

A f use =Wav
(
faW

2
a

)
+ fv ,

(6)

where W2
a, W2

v ∈ Rdl×dl and V f use, A f use ∈ RT×dl . Before being sent to the classification
layer, we linear transform V f use and A f use followed by layer normalization, written as: fv←a = layernorm

(
V f useW3

v

)
,

fa←v = layernorm
(
A f useW3

a

) (7)

whereW3
a,W3

v ∈ Rdl×de and fv←a, fa←v ∈ RT×de . Compared to AV‑BT, TACMA can further
improve the overall performance especially when the visual content changes rapidly since
it constructs all pair relationships by attention matrices.
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3.4. Classification and Optimization
After the information from both modalities is further fused by TMCMA, we simply

add fv←a and fa←v together and the final prediction is made by a three‑layer MLP, written
as follows:

pred = MLP(fv←a + fa←v) (8)

where pred ∈ RT×C. Since the ground truth is denoted as Ygt =
[
y0,y1, . . . , yT−1] ∈ RT×C,

we minimize the cross entropy (CE) loss between pred and Ygt to optimize our adaptive
attention network during training, written as

LCE =
1

TC

T

∑
t=1

C

∑
c=1

Ygt
t,clog(predt,c) (9)

where t and c index the time dimension and category, respectively. Compared to the
threshold‑based attention in [19], our method does not require additional loss items to
supervise the challenging background segment but only uses the basic CE loss.

4. Experiments
4.1. Experiment Setup

Dataset. For the AVE localization task, we conduct our experiments on the AVE
dataset which is introduced in [6] and consists of 4143 videos, covering 28 event categories
(e.g., human activities, instrument playing, vehicle sounds, etc.). All videos are tempo‑
rally labeled with audio‑visual boundaries on the segment level. We follow the default
split where the train/validation/test sets are 3339/402/402 clips, respectively. All clips are
divided into 10 segments, with each segment lasting for one second. Whether training
AV‑BT or TACMA, both networks only have access to the training set.

Evaluation. We follow the routing in [7,10,11,13,19,50] and consider global segment‑
wise classification accuracy as the evaluation metric. Specifically, for evaluating TACMA,
the predictions made by the classification layer are used for evaluation. To evaluate the
audio‑visual feature learned by AV‑BT, we train another three‑layer MLP to directly pro‑
duce predictions based on the fixed feature without any other late fusion modules. All of
our results are reported on the test set.

Architecture. During preprocessing before feature extraction, we sample 160 RGB
frames at a resolution of 256 × 256 from each 10 s video. Then for each 1 s long segment
that contains 16 frames, we randomly pick one frame for each training epoch. For raw
audio, we sample it at 16,000 Hzwith an equal duration of 10 s for each video. After that, a
short‑time Fourier transform (STFT) is performed and the signal in the frequency domain
is then transformed into Mel‑scale filter banks with 64 bins. The resulting spectrogram is
96 × 64 for every segment. For the random augmentations applied to the frames, we use
the same settings as in [23].

Considering the size of the AVE dataset is too small to train the feature encoder from
scratch, ResNet‑50 [53] (removing the final fully connected layer and retaining the 512‑
dimensional representation) pretrained on ImageNet [14], and VGGish [54] (outputting
128‑dimensional representation) pretrained on AudioSet [15], are employed as CNN back‑
bones for extracting spatial features. InAV‑BT, the projector has three linear layers, and the
output dimensions of each are 2048/4096/4096. For TACMA, the parameter θ in Equation
(4) is set to 0.03 to achieve the best performance.

Optimization. For training AV‑BT, we use the LARS optimizer [55] and train
100 epochs with a batch size of 128. The learning rates of weights and biases in the rep‑
resentation network are the same in [23] except that we multiply them by 2e‑4. We reduce
the learning rate by a factor of 10 using a cosine decay schedule after using 10 epochs of
warm‑up period [56]. In Equation (2), λ is set to 5e‑3. For training TACMA, we use an
initial learning rate of 1e‑4 and multiply it by 0.98 after every 10 epochs, and the batch size
is 128 using the Adam [57] optimizer.
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4.2. Results
4.2.1. Evaluating AV‑BT

AVEL in [6] adopts an audio‑guided visual attention module (AGVA) which interacts
between the audio and the visual encoder. It uses audio information to help the visual
encoder focus on the sounding target to better filter out interference caused by the visual
background. Apart from the AGVAmodule, the structures of our encoders are quite simi‑
lar to those of AVEL. Particularly, the CNN backbone used for audio feature extraction is
identical while the backbone for visual features has comparable capabilities. Even if AVEL
is trainedwith full labels in an end‑to‑endmanner, we still think it is reasonable to compare
with it since the following research [12,13,19] directly adopted it to extract features.

Comparison with existing methods. Analogous to the protocols in self‑supervised
image representation learning [23–28], we directly train a classifier on top of the fixed repre‑
sentations produced by the encoders trainedwith AV‑BT. Unlike using a single linear layer
as the prediction head for single‑modal representations, sequential audio‑visual represen‑
tations are much more complex, so we adopt a three‑layer MLP (which has the same struc‑
ture as the classification layer in Figure 4) to make predictions. The results are reported in
Table 2, where our AV‑BT significantly outperforms the supervised method in both uni‑
modal and multimodal cases. Specifically, in the case where the CNN backbone used for
audio feature extraction is identical, our method surpasses AVEL by 4% when using only
audio data. This improvement in the unimodal case suggests that by maximizing the simi‑
larity of different modal features in the same latent space, features from each modality are
enhanced to be more discriminative. An intuitive explanation is that by reducing the dif‑
ferences between different modal representations, both the visual and auditory properties
of an object can be considered more collaboratively. For example, mandolins and guitars
may be very close in appearance, but they are very different in sound. Combining both the
visual and audio characteristics of the mandolin allows it to be better distinguished from
the guitar. Moreover, the results also show that the improved separability of the unimodal
feature also further enhances the performance in the multimodal case.

Table 2. Evaluation of AV‑BT. Our results are in bold. Note that we use no extra module for fusion at
this point, but simply add audio and visual features together tomake classifications. For comparison,
the result of AVEL in [6] is obtained by end‑to‑end fully supervised training and they used the same
strategy of addition before prediction.

Method Accuracy (%)

Audio only [6] 59.5
Visual only [6] 55.3

AVEL [6] 71.3
Ours (Audio only)
Ours (Visual only)
Ours (Audio‑Visual)

63.5
61.0
75.6

4.2.2. Evaluating TACMA
PSP in [19] is one of the state‑of‑the‑art solutions for AVE localization. It adopts a

threshold‑based attention stylemodule to aggregate information from all the similar audio
and visual features. This module is highly reliant on applying additional supervision for
the background to force the network to learn appropriate features for thresholding.

Comparison with state‑of‑the‑art. By training the proposed TACMA based on fixed
representations produced by AV‑BT, we decoupled multimodal data representation and
late fusion in the AVE localization task. From this perspective, it increases the difficulty
of adapting from the source domain to the target domain while the solutions we compare
are all combined late fusion networks with feature encoders, and are trained in an end‑to‑
end manner supervised with full labels. Nevertheless, our overall method still achieves
state‑of‑the‑art performance on the AVE localization task, as shown in Table 3. This re‑
sult suggests that channeling attention according to both the time difference and seman‑
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tic similarity between features encoded from AV‑BT can further improve the quality of
fused features.

Table 3. Comparing the proposed method to state‑of‑the‑art methods. Our result is in bold.

Method Accuracy (%)

CMAN [12] 73.3
AVRB [10]
AVIN [11]
MPN [8]
JCAN [13]
PSP [19]
AVT [50]

AV‑BT+TACMA (Ours)

74.8
75.2
75.2
76.2
76.6 *
76.8
77.2

* For a fair comparison, the result of PSP is obtained by training without audio‑visual pair similarity loss, which
applies additional supervision for differentiating the background.

Detailed comparison with AV‑BT. In addition to comparing with the latest meth‑
ods, we would also like to know the detailed performance improvement of TACMA com‑
pared to AVBT. Hence, we show the confusion matrices of our solutions in Figure 5. From
Figure 5a we can observe that most of the categories can be well represented by AV‑BT.
However, there are still many misclassifications between events and the background. After
further fusing information with TACMA, the misclassification of events as the background
improves for almost all categories, indicating that TACMA can grasp more event‑related
information since it dynamically considers all connections between different modal fea‑
tures to integrate useful cues, as shown in the bottom row in Figure 5b. In addition, for
certain categories with very few samples, TACMA also improves the accuracy based on
AV‑BT. For example, index 11: “Truck”, index 12: “Shofar”, index 13: “Motorcycle”, index
22: “Cat” and index 23: “Horse”.
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4.3. Ablations
In this section, we delve into the designs of our method and explore their influences.

It is necessary to clarify that we employ our results reported in the previous subsection as
the baseline of the ablation study.
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4.3.1. Architecture of AV‑BT
Weight sharing. The two projectors share the same parameters by default in AV‑BT.

One may wonder how heterogenous audio and visual features can be mapped to the same
latent space by a single MLP. For this problem, we cut off the weight sharing between two
projectors to deeply explore our AV‑BT, denoted as “w/o sharing projector” in Table 4.

Table 4. Ablations on the architecture of the representation network. The best performance is in
bold. Note that when applying an interaction module such as AVGA, the feature extraction network
is no longer able to encode features under single modal data input.

Modification Audio‑Visual Audio Only Visual Only

Baseline
w/AGVA

w/o sharing projector

75.6
71.5
72.5

63.5
‑

63.0

61.0
‑

60.4

Attention. Sound source localization on the visual portion is one of the optional de‑
mands in the AVE localization task. Most existing approaches ambiguously localize the
event‑related sounding object by a heatmap generated in the attention block as a byprod‑
uct. Although theAVEdataset does not have bounding boxes as annotations (so the results
of localization cannot be quantified for comparison) and localizing sound sources is not in
the scope of this paper, we still wonder if we could improve feature quality by integrating
attention modules such as AGVA. We denote this setting as “w/AGVA” in Table 4.

Analysis. As discussed above, the architecture of AV‑BT is adjusted in two ways and
Table 4 recapitulates these modifications tested along with their results. When disabling
the weight sharing between projectors, the performance dropped in the unimodal case. In
addition, the quality of audio‑visual joint representation is significantly worse. We argue
that the point here is not about the method of mapping heterogeneous data. Using the
same MLP for projection forces the encoders to learn representations that carry as similar
semantic information as they possible can. Another phenomenon that can be observed
from Table 4 is that spatial attention modules such as AGVA, which are successful in other
methods, conversely fail in our case. We argue that because our representation network is
trained in a self‑supervised way, the attention block is not guided by event labels, thereby
the network is uncertain about which sounding objects should be focused on. Especially
when encountering a background segment, AGVAmay further corrupt the representations
since it may attend to an interfering area. Multi‑head co‑attention may be a potential solu‑
tion to the visual localization problem because it allows the construction of complex many‑
to‑many audio‑visual relationships spatially, and we will investigate such a design in
the future.

4.3.2. Data Augmentations in AV‑BT
Data augmentations. Popular self‑supervised methods such as [23,26,27] are compet‑

itivewith supervised learning partly thanks to their randomdata augmentations. Random
cropping, horizontal flipping, color jittering, Gaussian blurring, solarizing, and converting
to grayscale are among the most used methods. We also study their influences in our self‑
supervised method. Multiple representative experimental results are presented in Table 5.

Analysis. Compared to unimodal self‑supervised learning cases, our results in Table 5
suggest thatmost of the commonly used augmentations (except color jittering) do notmake
a huge difference in our case. Different from a single image, AVE has a stricter definition
that requires the target to be both seen and heard. Adding strong interruptions on data
may break the agreed rules. An extreme case in Table 5 is thatwhen applying color jittering,
performance is badly damaged. We argue that altering the exposure and contrast ratio of
a visual frame too much would make the target very likely to be undetectable in a noisy
environment. For example, a black church bell ringing in almost complete darkness in an
attic. Before the experiment, we suspect that cropping too many regions might result in
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losing the target in a frame. However, as the results shown in the first two rows of Table 5
indicate, a larger cropping ratio helps to train stronger encoders. After delving deeper into
the dataset, we found that certain kinds of events were still defined as visible when only
a portion of the sounding object was observed, such as the nose of an airliner. Ultimately,
the best result is achieved by randomly adopting cropping and Gaussian blurring.

Table 5. Ablations on adding random data augmentations in our AV‑BT. The best result is in bold.
Note that * denotes that the crop scale is adjusted to be relatively smaller. The original intention for
this was to prevent cropping out the entire sounding target, resulting in breaking the agreed rule of
an AVE, i.e., visible and audible at the same time.

Crop Flip Solarize Grayscale Jitter Blur Accuracy (%)

3 * 3 3 3 3 3 74.0
3 3 3 3 3 3 74.5
3 8 3 3 3 3 74.2
3 8 8 3 3 3 74.3
3 8 8 8 3 3 74.4
3 8 8 8 8 3 75.6
3 8 8 8 8 8 74.3
3 3 8 8 8 3 74.7
3 3 3 3 8 3 74.5
8 8 8 8 8 8 74.4

4.3.3. Ablation on θ in TACMA
In this section, we further study how the proposed weighting operation influences

the performance of TACMA by gradually changing the hyperparameter θ in Equation (4).
The corresponding results are shown in Figure 6. The overall localization accuracy reaches
a high level when θ is set in the range from 0.01 to 0.06, and peak performance is achieved
when θ = 0.03, indicating that the proposed weighting method contributes a lot to model‑
ing cross‑modal relations by discriminating those less‑relevant audio‑visual connections
that are unrelated to the event or temporally asynchronous. In addition, when θ = 0, the
proposedweightingmethod is completely disabled and thewhole design degrades to stan‑
dard cross‑modal attention which has a very limited contribution to the localization per‑
formance by only improving by 0.4% compared to the result in Table 2. This shows that
such a cross‑modal attention module, without considering the time difference and seman‑
tic similarity, is not very capable of fusing audio and visual information.
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The curvature of Equation (4) is controlled by θ and the similarity of the feature pair
together so that θ is playing a similar role of thresholding that filters out those feature pairs
with smaller similarity scores. This is close to the idea in PSP [19], while our weighting
operation works in conjunction with the similarity determined by the feature itself instead
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of counting on an external loss item to guide it. This makes our attention module more
adaptive, and our results verify the effectiveness.

4.4. Visualization
Feature visualization. To verify that our methods can learn discriminative audio‑

visual features, we visualize several classes of the features learned by AV‑BT and TACMA
with the high‑dimensional data visualization tool, t‑SNE [58], as shown in Figure 7. Specif‑
ically, we selected features from categories covering diverse targets, such as people, ani‑
mals, vehicles, and environmental objects, to demonstrate the adaptability of our approach
to a variety of situations. Despite its relatively small sample numbers for a certain class,
such as index 23: “Horse”, good within‑class cohesion is still achieved in both audio and
visual features. In addition, the discrimination between classes is also greatly enhanced
after further information fusion by TACMA, and this is particularly remarkable for the
visual stream.
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Qualitative results. We evaluated our whole method with several interesting sam‑
ples from the AVE dataset to verify the design. Predictions made by our networks are
presented in Figure 8. Through these representative samples, we can intuitively gain a
better understanding of our method, especially how TACMA coordinates with AV‑BT for
superior performance.

First, we observed that both of our proposed methods can detect various AVEs in
the real world, including human speaking, vehicle sounds, environmental object activities,
etc., as shown in in Figure 8b–d. Even if some samples are exceptionally challenging, for
example, the visual quality of (e) in Figure 8 is very poor and the sound of the helicopter is
almost completely distorted by extreme wind noise, our method still holds up to a certain
extent. Generally, based on AV‑BT, more accurate predictions can be made after fusion
by TACMA.

Second, our networks only represent the data from a semantic perspective. This con‑
clusion can be obtained from a typical case in Figure 8a, where there is a ringing across
the whole timeline while only the first appearing bell is emitting sound. When the cam‑
era’s view is turned to the second bell, both AV‑BT and TACMA still treat the sounding
objects as visible (since a bell is still visible even though it’s not the one ringing at this
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moment). We argue that adopting mono audio signals for feature encoding makes it diffi‑
cult to solve this kind of problem because of the lack of information for tracking sounding
targets spatially.

Last, wedesignedTACMA to integratemore useful information from the audio‑visual
pairs that are of various time intervals, and Figure 8f proves that our design meets such
expectations to a certain extent. In that example, a man is trimming branches on a tree
with a chainsaw and the video is recorded from a first‑person perspective. Since the visual
content is very unstable and the chainsaw is only captured in very few frames, it is very
difficult for AV‑BT to deal with such rapidly changing visual content (resulting in predict‑
ing all segments as background). After further aggregating useful cues with TACMA, the
network can grasp more event‑related information.
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Figure 8. Qualitative results of our methods on the AVE dataset are shown in (a–f). For each sample,
the annotations of the data are given in the first row. The purple box on the audio wave diagram
indicates that the sound emitted by the target is audible, while the orange box on the frame represents
the sounding object (person) that is visible at this moment. Predictions directly made by features
from AV‑BT are shown in the fourth row, and the results of TACMA are shown in the last row. ‘bg’
denotes background, and ‘heli.’ in (e) represents helicopter. Best viewed in color.

5. Conclusions
In this paper, we proposed a self‑supervised audio‑visual representation method and

temporally adaptive cross‑modal attention for AVE localization. When representing video
data, the audio and visual features are encoded in the same space with their association ex‑
plored in a self‑supervised manner. When modeling cross‑modal relationships, attention
is channeled adaptively by considering both the time difference and semantic similarity
between features. Our proposed framework performs better than previous event localiza‑
tion methods on the public AVE dataset and the results show that: (1) more discriminative
features can be encoded by narrowing the heterogeneity gap between modalities with our
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self‑supervised method. (2) Our strategy for adaptively assigning attention by consider‑
ing the temporal asynchrony of event‑related features can effectively fuse the information
across modalities.

6. Future Direction
Although our proposed framework achieves competitive AVE localization accuracy

and the effectiveness of our design is verified by experiments, there is still room for further
improvement. Specifically, the visualization result shows that both AV‑BT and TACMA
focus on representing the multimodal data and cross‑modal relationships from a semantic
perspective, which makes our network lack the ability to track the sound source spatially.
This limits the event localization performance, especially in the face ofmultiple objects that
may emit sound. A potential solution such as multi‑head co‑attention which can construct
complex audio‑visual relations spatially can be studied in the future. Moreover, as the task
of AVE localization provides an intuitive form of multimodal video analysis, we will also
investigate whether our proposed self‑supervised method with improved encoder struc‑
tures can be transferred to more tasks such as video parsing and object segmentation.
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