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Abstract: Probiotics are commonly added to yogurt to provide many health benefits for the consumer.
A description is provided for some commonly used probiotics in yogurt. A GRAS (generally rec-
ognized as safe) list of probiotic bacteria that can be added to yogurt or similar types of products
is provided. Additionally, prebiotics, synbiotics (combination of prebiotics and probiotics), post-
biotics, paraprobiotics, and psychobiotics can be added to yogurt. Probiotic yogurt can come in
various forms in addition to spoonable yogurt, and yogurt can be used as an ingredient in other
food products. Many useful functional ingredients can be applied to probiotic yogurt. The safety of
probiotics must be addressed, especially for critically ill patients and other susceptible populations.
Probiotics must survive within yogurt throughout its entire shelf-life and within the gastrointestinal
tract after consumption by the consumer to provide health benefits, and many techniques can be
used to maintain survival of probiotics in yogurt. Furthermore, probiotics can be added to Greek
yogurt acid whey. Many opportunities exist for adding a wide variety of probiotics to a wide variety
of yogurt-based products.
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1. Introduction

Legal requirements of the U.S. Food and Drug Administration for yogurt are stated in
21 CFR 131.200 (www.ecfr.gov) (accessed on 24 August 2022) [1]. Yogurt is basically de-
scribed as the food produced by culturing certain types of dairy ingredients with a bacterial
culture that includes Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.
Optional ingredients that may be added to yogurt include other cultures, nutritive carbo-
hydrate sweeteners, flavoring ingredients, color additives, stabilizers, emulsifiers, preser-
vatives, and vitamins A and D. Dairy ingredients must be pasteurized or ultra-pasteurized
and may be homogenized before addition of the culture. Before addition of bulky flavor-
ings, yogurt must contain at least 3.25% milkfat and 8.25% milk solids-not-fat and either
have a titratable acidity of at least 0.7% (expressed as lactic acid) or a pH of 4.6 or less. The
phrase “contains live and active cultures” may be displayed on the package if there are at
least 107 cfu/g of viable bacteria when manufactured and if it can reasonably be expected
to have 106 cfu/g during its entire shelf-life. The viable microorganisms may be inactivated
after culturing to prolong the shelf-life of yogurt. The definitions and standards of identity
for low-fat yogurt (previously described in 21 CFR 131.203) and non-fat yogurt (previously
described in 21 CFR 131.206) have been revoked as of 7 July 2021 (www.federalregister.gov)
(accessed on 24 August 2022) [2].

Sales of yogurt and probiotics are large and still growing. According to a 2021 report
by Statista, U.S. sales of yogurt were $7.24 billion in 2021 compared to $5.58 billion in
2011 [3]. The Greek yogurt share of the yogurt market was 51% in 2021 [4]. Frozen yogurt
production in the U.S. was 46.4 million gallons in 2021 [5]. The annual growth of probiotic
yogurt was 6.6% in the U.S. in 2020 compared to 11% for the overall yogurt market [6].
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The global value of the probiotics market was $58 billion in 2021 and is predicted to grow
at an annual rate of 7.5% until 2030 [7], and the global probiotic drink market was worth
$13.65 billion in 2019 with an expected annual growth rate of 6.1% from 2020 to 2027 [8].

2. History of Discovery and Definitions of Probiotics

Experiments for studying effects of bacteria on treating health problems and promoting
good health have been performed for a long time. Theodor Escherich has been credited as
the first pediatric infectious disease physician and described Bacterium coli commune (now
referred to as Escherichia coli) in 1886 [9]. While working under Theodor Escherich, Dr. Józef
Brudziński treated infants for acute infectious diarrhea by using a Bacillus lactis aërogenes
suspension described in publications from 1899 [10,11]. Although Élie Metchnikoff [12]
believed that intestinal putrefaction can shorten life, he noted the work of Dr. Brudziński
and similar work by Dr. Henry Tissier and recommended people “to absorb large quantities
of microbes”. He believed that lactic bacteria can fight against intestinal putrefaction. He
also wrote that Stamen Grigoroff observed many centenarians in Bulgaria, which is a region
where yahourth (yogurt) was commonly consumed [12]. The fact that diet affects the types
of bacteria that develops within the intestinal tract was first clearly established by Herter
and Kendall in 1910, but suggested as early as 1886 by Escherich and Hirschler [13].

Many of the starter cultures and probiotics now used in yogurt making were first described
in the late 1800s or early 1900s. The name “Streptococcos” was first used in 1874 by Albert
Theodor Billroth [14]. Streptococcus thermophilus (later reclassified as Streptococcus salivarius subsp.
thermophilus by Farrow and Collins in 1984 [15] but revived back to Streptococcus thermophilus
by Schleifer et al. in 1991 [16]) was described by S. Orla-Jensen in 1919 [17]. In 1901, Martinus
Beijerinck proposed the genus Lactobacillus to include Gram-positive, fermentative, facultatively
anaerobic, non-sporeforming bacteria [18]. Stamen Grigoroff discovered Bulgarian bacillus
(now Lactobacillus delbrueckii ssp. bulgaricus) in 1905 [19]. Lactobacillus acidophilus (originally called
Bacillus acidophilus) was described by Ernst Moro in 1900 [20]. In 1899 and 1900, Henry Tissier
first described Bacillus bifidus communis, later referred to as Lactobacillus bifidus and now referred
to as Bifidobacterium [21]. He found that Bifidobacteria was the main type of bacteria comprising
the gut microflora of breast-fed babies and Bifidobacteria could treat acute gastroenteritis [19].

Dr. Isaac Carosso recommended to his patients who suffered from gastrointestinal
problems to consume yogurt. Afterwards, he started producing yogurt and founded the
Danone Company in 1919 [19].

The term “probiotic” (meaning “for life”) originated in 1953 from Werner Kollath to
mean “active substances that are essential for a healthy development of life” [22]. Lilly
and Stillwell [23] used the term probiotic as “substances secreted by one organism which
stimulate the growth of another” in 1965. Parker [24] described probiotics as “organisms
and substances which contribute to intestinal microbial balance” in 1974. Fuller [25] defined
probiotics as “A live microbial feed supplement which beneficially affects the host animal by
improving its intestinal microbial balance” in 1989. A panel from the International Scientific
Association for Probiotics and Prebiotics defined probiotic as “live microorganisms that,
when administered in adequate amounts, confer a health benefit on the host” in 2014 [26].

3. Criteria for and Types of Probiotics and Its Use in Foods

In order for a microorganism to be classified as a probiotic, the microorganism must
be properly characterized, safe for its intended use, shown to confer a health benefit to
the host by at least one human clinical trial, and be viable at the required dose until the
end of the product shelf life [27]. In general, probiotic viability is affected by temperature,
water activity, pH, ingredients, oxygen level, packaging materials, and storage time [28].
Selection criteria for incorporation of a probiotic into a food includes being of a human
or food origin, safe for human consumption, maintaining desirable properties in the final
product, survival during passage through the gastrointestinal tract including sufficient
acid and bile tolerance, adhesion to intestinal mucosal surface, and providing proven
health benefits to the host [29]. For example, survival of greater than 7 log cfu/g for
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Limosilactobacillus (formerly Lactobacillus) mucosae CNPC007 that was incorporated into goat
milk Greek-style yogurt was found after exposure to simulated digestion, allowing this
strain to be considered a possible probiotic [30].

Probiotics that confer health benefits or pathogens that cause diseases are often strain
specific. In some cases, a certain strain of a species may be a probiotic while another strain of
the same species may be a pathogen. For example, E. coli Nissle 1917 is a probiotic [31], while
E. coli O157:H7 and O104:H4 are pathogens. Bacillus sp. DU-106 from the Bacillus cereus
group is a potential probiotic but other strains of B. cereus are pathogens [32]. Some
strains of Clostridium butyricum can be used as a probiotic to produce bacteriocins, secrete
butyrate, and inhibit pathogens while other strains are linked with botulism in infants and
necrotizing enterocolitis in preterm neonates [33]. Sometimes, probiotics can cause illness
under certain conditions, so potential safety issues must be addressed as will be discussed
in more detail later.

There are many types of probiotic bacteria. Bacteria and yeast with claimed probiotic
or potential probiotic properties that have been incorporated into or isolated from yogurt or
yogurt-related products are listed in Table 1 [34–72]. A list of GRAS (generally recognized
as safe) probiotics that mention incorporation into yogurt or related milk products is
provided in Table 2. GRAS rules originated from the Food Additives Amendment of 1958
to the Federal Food, Drug, and Cosmetic Act of 1938 (sections 201(s) and 409) and require
successful safety evaluations for their intended use by experts in the field, unless it has
been shown to be safe by common use before 1958 [73]. For example, Endres et al. [74]
demonstrated that Bacillus coagulans GBI-30, 6086 is safe for human consumption.

Table 1. Bacteria, including postbiotics, and yeast with claimed probiotic properties, potential
probiotic properties, or potential therapeutic application that have been incorporated into or isolated
from yogurt or yogurt-related products.

Bacteria Reference

Lactobacillus delbrueckii ssp. bulgaricus All yogurt
Lactobacillus delbrueckii ssp. lactis [34]
Lactobacillus acidophilus [35]
Lactobacillus amylovorus [36]
Lactobacillus crispatus [37]
Lactobacillus gasseri [38]
Lactobacillus helveticus [39]
Lactobacillus jensenii [40]
Lactobacillus johnsonii [37]
Lacticaseibacillus casei (formerly Lactobacillus casei) [41]
Lacticaseibacillus paracasei (formerly Lactobacillus casei or Lactobacillus paracasei) [42]
Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) [43]
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) [44]
Lactiplantibacillus paraplantarum (formerly Lactobacillus paraplantarum) [45]
Lactiplantibacillus pentosus (formerly Lactobacillus pentosus) [46]
Latilactobacillus sakei (formerly Lactobacillus sakei) [47]
Latilactobacillus curvatus (formerly Lactobacillus curvatus) [48]
Lentilactobacillus parafarraginis (formerly Lactobacillus parafarraginis) [49]
Levilactobacillus brevis (formerly Lactobacillus brevis) [50]
Ligilactobacillus salivarius (formerly Lactobacillus salivarius) [51] 1

Limosilactobacillus fermentum (formerly Lactobacillus fermentum) [36]
Limosilactobacillus mucosae (formerly Lactobacillus mucosae) [30]
Limosilactobacillus reuteri (formerly Lactobacillus reuteri) [52]
Loigolactobacillus coryniformis (formerly Lactobacillus coryniformis) [38]
Weisella (formerly Lactobacillus) viridescens [34]
Weisella cibaria [53]
Weisella paramesenteroides [45]
Streptococcus thermophilus All yogurt
Streptococcus salivarius [54]
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Table 1. Cont.

Bacteria Reference

Bifidobacterium bifidum [55]
Bifidobacterium longum [55]
Bifidobacterium infantis [55]
Bifidobacterium adolescentis [55]
Bifidobacterium breve [55]
Bifidobacterium animalis ssp. lactis [56]
Weizmannia coagulans (formerly Bacillus coagulans) [57]
Bacillus subtilis [58]
Priestia flexa (formerly Bacillus flexus) [58]
Bacillus licheniformis [58]
Bacillus mojavensis [58]
Bacillus amyloliquefaciens 2 [59]
Propionibacterium freudenreichii ssp. shermanii [60]
Propionibacterium acidipropionici [61]
Propionibacterium jensenii [62]
Propionibacterium thoenii (jensenii) [62]
Leuconostoc mesenteroides [63]
Leuconostoc pseudomesenteroides [64]
Leuconostoc lactis [65]
Lactococcus lactis ssp. lactis (formerly Streptococcus lactis) [44]
Lactococcus cremoris (formerly Streptococcus cremoris) [66] 3

Pediococcus acidilactici [67]
Pediococcus pentosaceus [68]
Enterococcus faecium [69]
Enterococcus faecalis [45]
Enterococcus durans [69]
Enterococcus lactis [68]
Bacteroides vulgatus [70] 4

Bacteroides dorei [70] 4

Faecalibacterium prausnitzii [70] 4

Prevotella copri [70] 4,5

Yeast
Saccharomyces cerevisiae var. boulardii [71]
Kluyveromyces marxianus [72]

1 This reference describes adding this probiotic within jelly candy enriched with grape seeds extract. 2 This
probiotic was isolated from yogurt-flavored cultured beverage Yogu Farm™. 3 Although this reference stated that
Lactococcus lactis ssp. cremoris was isolated from yogurt, other papers have described this bacterium as a probiotic.
4 These new generation probiotics were found in homemade back-slopped yogurts. 5 Although this bacterium has
been associated with health benefits, an overabundance of this intestinal bacterium was associated with arthritis
and intestinal mucositis.

Table 2. List of GRAS (generally recognized as safe) substances (viable probiotic, heat-killed mi-
croorganism, or spore preparation) that might be able to be used in yogurt or related products
as of 30 October 2022. Taken from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=
GRASNotices (accessed on 30 October 2022).

GRN Number Substance (Beneficial Microorganism) Notifier Status 1 Date of Closure

1065 Anaerobutyricum soehngenii CH106 Caelus Health Pending
1063 Weissella cibaria CMU OraPharm, Inc. Pending
1022 Streptococcus salivarius DB-B5 Dose Biosystems No questions 8/22/2022

1013 Lactobacillus rhamnosus DSM
33156 (LGG) Chr. Hansen’s, Inc. No questions 12/15/2022

1003 Bifidobacterium longum subsp.
infantis M-63

Morinaga Milk Industry
Co., Ltd. No questions 4/26/2022

1002 Bifidobacterium breve strain MCC1274 Morinaga Milk Industry
Co., Ltd. No questions 7/22/2022

988 Lactobacillus fermentum LfQi6 Quorum Innovations No questions 3/28/2022

https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices
https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices


Appl. Sci. 2022, 12, 12607 5 of 40

Table 2. Cont.

GRN Number Substance (Beneficial Microorganism) Notifier Status 1 Date of Closure

971 Bacillus clausii 088AE spore preparation Advanced
Enzyme Technologies No questions 3/3/2022

969 Bacillus subtilis “Bss-19”
spore preparation Danisco USA No questions 10/6/2021

957 Lactobacillus johnsonii strain
ATCC PTA-124205 Prozure, Inc. No questions 10/26/2021

956 Bacillus subtilis ATCC SD-7280 Advanced
Enzyme Technologies No questions 8/18/2021

955 Bacillus subtilis strain BS-MB40
PTA-122264 spore preparation BIO-CAT Microbials No questions 3/26/2021

953 Lactobacillus plantarum strain CECT 7527,
CECT 7528, and CECT 7529 Kaneka Americas Holding No questions 2/5/2021

952 Bifidobacterium animalis subsp. lactis
strain AD011 BIFIDO CO., LTD. No questions 3/17/2021

950 Bifidobacterium longum subsp. infantis
DSM 33361 Chr. Hansen No questions 3/1/2021

949 Bacillus coagulans strain DSM 17654
spore preparation

Advanced Enzyme
Technologies Ltd. No questions 1/7/2021

875 Bifidobacterium animalis subsp.
lactis AD011 BIFIDO CO., LTD. No questions 10/30/2019

872 Bifidobacterium animalis subsp.
lactis UAB1a-12 UAS Laboratories No questions 12/9/2019

871 Lactobacillus acidophilus DDS-1 UAS Laboratories No questions 10/23/2019

856 Bifidobacterium animalis subsp. lactis
strain BB-12 Chr. Hansen No questions 12/9/2019

847 Lactobacillus plantarum ECGC 13110402 ProBiotix Health No questions 9/30/2019
845 Lactobacillus rhamnosus GG Chr. Hansen No questions 10/30/2019
831 Bacillus subtilis DE111 Deerland Probiotics No questions 8/13/2019
820 Lactobacillus fermentum CECT 5716 Biosearch. S.A. No questions 4/3/2019
814 Bifidobacterium bifidum BGN4 BIFIDO Co., Ltd. No questions 6/25/2019
813 Bifidobacterium longum BORI BIFIDO Co., Ltd. No questions 6/21/2019
807 Streptococcus salivarius M18 BLIS Technologies No questions 6/6/2019
736 Lactobacillus casei subsp. paracasei Lpc-37 Du Pont Nutrition and Health No questions 4/11/2018
722 Lactobacillus plantarum Lp-115 Du Pont Nutrition and Health No questions 2/16/2018

691 Bacillus coagulans SANK 70258
spore preparation

Mitsubishi-Kagaku
Foods Corporation No questions 8/28/2017

685 Lactobacillus plantarum strain 299v Probi AB No questions 10/31/2017

670 Inactivated Bacillus coagulans
GBI-30, 6086 Ganeden, Inc. No questions 3/15/2017

601 Bacillus coagulans SBC 37-01
spore preparation Sabinsa Corp. No questions 4/28/2016

597 Bacillus coagulans SNZ 1969
spore preparation Sanzyme Limited No questions 2/29/2016

591 Streptococcus salivarius K12 BLIS Technologies Ltd. No questions 1/25/2016

526 Bacillus coagulans strain Unique IS2
spores preparation Unique Biotech Limited No questions 3/23/2015

502 Lactobacillus acidophilus La-14 Danisco USA, Inc. No questions 8/19/2014

453 Bifidobacterium breve M-16V Morinaga Milk Industry
Co., Inc. No questions 9/27/2013

445 Bifidobacterium animalis subsp. lactis
strains HN019, Bi-07, B1-04, and B420 Danisco USA, Inc. No questions 4/10/2013

440 Lactobacillus reuteri strain NCIMB 30242 Micropharma Ltd. No questions 2/12/2013
429 Lactobacillus casei strain Shirota Yakult Honsha Co., Ltd. No questions 12/10/2012

415 Heat-killed Propionibacterium
freudenreichii ET-3 culture (powder) Meiju Co., Ltd. No questions 2 12/26/2012

399 Preparation of Bacillus coagulans strain
GBI-30, 6086 spores Ganeden, Inc. No questions 7/31/2012



Appl. Sci. 2022, 12, 12607 6 of 40

Table 2. Cont.

GRN Number Substance (Beneficial Microorganism) Notifier Status 1 Date of Closure

377 Bifidobacterium animalis subsp. lactis
strain Bf-6 Cargill, Inc. No questions 9/29/2011

357 Lactobacillus acidophilus NCFM Danisco USA, Inc. No questions 4/19/2011
288 Lactobacillus rhamnosus strain HN001 Fonterra Co-operative Group No questions 11/1/2009

268 Bifidobacterium longum strain BB536 Morinaga Milk Industry
Co., Ltd. No questions 7/8/2009

254 Lactobacillus reuteri strain DSM 17938 BioGaia AB No questions 5/29/2008
1 “No questions” means “FDA has no questions”. 2 Some uses may require a color additive petition.

The most common probiotics (other than the starter cultures) that are found in yogurt
include species from the former Lactobacillus genus, the Bifidobacterium genus, and the for-
mer Bacillus genus. Recently, the Lactobacillus genus has been divided into 26 lineages with
23 novel genera [14] and these novel genera related to dairy foods have been reviewed by
Oberg et al. [75]. A list of Bifidobacterium species can be found in the taxonomy browser [76].
The genus Bacillus has recently been reclassified as to only consisting of B. subtilis and
B. cereus [77]. Bacillus coagulans has been renamed Weizmannia coagulans.

Next generation probiotics are potentially beneficial bacteria that are newly identi-
fied, non-conventional, and native to the gut microbiota and have possible therapeutic
properties. Akkermansia muciniphila, Bacteroides species, certain Bifidobacterium species,
Christensenella minuta, certain Clostridium species, Eggerthellaceae family, certain Enterococcus
species, Faecalibacterium prausnitzii, certain lactic acid bacteria, Parabacteroides goldsteinii,
Pediococcus pentosaceus, Prevotella copri, and certain Streptococcus species including S. dentisani
7746 and 7747 are possible next generation probiotics [78]. Enterococcus mundtii QAUEM2808
was isolated from dahi (an artisanal fermented milk product) and has potential to be used as
an adjunct culture for fermenting milk [79]. Weissella paramesenteroides MYPS5.1 is another
potential probiotic strain that has been isolated from a dairy source [80]. Oscillospira could
be developed as a next generation probiotic because of beneficial microbial traits and have
future applications in food, nutraceuticals, and biopharmaceuticals [81].

Also, certain probiotics can be bioengineered. Escherichia coli Nissle 1917 can be
metabolically engineered to enhance production of heparosan, which is an acidic polysac-
charide used in heparin biosynthesis and drug delivery [82]. Further examples of bioengi-
neered probiotics prepared for useful purposes are described below.

Probiotics can be used in a wide variety of human foods [83] and in animal nutrition
and health [84]. In addition to cow milk, milk from goats [85], sheep [86], buffaloes [87],
yaks [88], camels [89], horses [90], and donkeys [91] has been used to produce probiotic
yogurt. Dairy sources constitute 80% of the more than 380 types of probiotic products
available worldwide [92]. In addition to yogurt, some types of dairy-based foods that
have incorporated probiotics within research studies include milk [93], infant formula [94],
kefir [95], buttermilk [96], butter [96], sour cream [97], ice cream [98], cottage cheese [93],
white pickled cheese [99], Cheddar cheese [100], and Mozzarella cheese [101]. The non-dairy
products include various types of soy-based yogurt [102], wheat germ [103], dehydrated
wheat/rice cereal matrices [104], fruit and vegetable matrices [105], fruit and vegetable
juices [8], unfiltered and unpasteurized beer [106], coffee brews [107], fermented meat
products [108], chocolate [109], non-fat whipping cream analogues [110], and a milk and
maize African beverage [111]. Bacillus spores can be used in baking due to their high heat
resistance. Permpoonpattana et al. [112] found just over a 1-log reduction in viability of
Bacillus subtilis HU58 and PXN21 lyophilized spores after baking wholemeal biscuits at
235 ◦C for 8 min.

4. Gut Microbiome, Inflammation, and Health Benefits Provided by Probiotics

The human gut microbiome (also known as microbiota or microflora) consists of
bacteria (predominantly obligate anaerobes), archaea, fungi, and protists and functions
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by metabolizing nutrients (by converting indigestible carbohydrates into short-chain fatty
acids) for the host, maintaining the gut mucosal barrier, modifying the immune system,
inhibiting pathogens, and even affecting brain activities. Most of these bacteria belong to
the Firmicutes and Bacteroidetes phyla with fewer bacteria belonging to Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia phyla. Firmicutes bacteria are Gram-
positive and are involved in short chain fatty acid synthesis and in hunger and satiety
regulation [113]. Bacteroidetes bacteria are Gram-negative and are involved with enhancing
immune reactions and inflammation. A loss of a balanced ratio between Firmicutes and
Bacteroidetes leads to dysbiosis (lack of normal intestinal homeostasis), obesity (increased
Firmicutes to Bacteroidetes ratio), inflammatory bowel disease (decreased Firmicutes to
Bacteroidetes ratio), and other diseases [113]. The Firmicutes phylum includes Clostridium
(95% of this phylum), Lactobacillus, Bacillus, Enterococcus, and Ruminicoccus genera, and the
Bacteroidetes phylum consists of Bacteroides and Prevotella genera [114]. Although early
studies estimated the microorganism population as more than 100 trillion and number of
human cells as around 10 trillion, more recent estimates state a ratio of 1.3 bacteria cells to
each human cell [115]. The microbiome produces a wide variety of metabolites and can
account for some of the variation in plasma metabolites between individuals [116]. The
composition of the gut microbiome and gut-derived metabolites are associated with the
occurrence of a wide variety of chronic diseases [117]. In addition, the effect that diet and
exercise have on cognition is affected by the gut microbiome [118]. Furthermore, the micro-
biota was found to affect social behavior in zebrafish during early neurodevelopment [119].
However, the gut microflora can be affected by various factors including consumption of
fermented dairy products [120–122].

While acute (high-grade but short-term) inflammation is needed for healing, trigger
removal, and tissue repair, systemic chronic (low-grade but persistent) inflammation can
lead to a wide variety of adverse health conditions including metabolic syndrome (hyper-
tension, hyperglycemia, and dyslipidemia), type 2 diabetes, nonalcoholic fatty liver disease,
cardiovascular disease, chronic kidney disease, multiple cancer types, depression, neurode-
generative and autoimmune diseases, osteoporosis, and sarcopenia [123]. Probiotics, along
with prebiotics, resistant starch, and resistant proteins, can decrease chronic low-grade
inflammation by producing short-chain fatty acids (acetate, propionate, and butyrate),
improving phagocytic activity, and reducing pro-inflammatory cytokine production to
potentially promote healthy aging [124].

Probiotics provide many health benefits. Some of these health benefits provided by
probiotics, postbiotics, and paraprobiotics (to be discussed later) with either mixed or
strong evidence for effectiveness in clinical trials are summarized in Table 3 [125–225].
Because of the complexity involved in being consistent when evaluating the strength of the
evidence for the effectiveness of probiotics in preventing or treating each of these adverse
health conditions or providing the health benefits, no attempt was made for this evaluation.
The efficacy of probiotics in controlling Crohn’s disease usually could not be shown [226].
More details about the health benefits provided by yogurt and probiotic fermented milks
are provided by Sakandar and Zhang [227], and Hadjimbei et al. [228].

Table 3. Some health benefits for which probiotics, postbiotics, and paraprobiotics have shown a
mixed to favorable result in an original study or in a meta-analysis. Due to the difficulty of being
consistent involved in evaluating the strength of the evidence for the effectiveness of probiotics in
preventing or treating each of these health conditions, no attempt was made for the evaluation of
effectiveness for the probiotics listed in this table.

Health Condition Probiotic Original Article or
Review Paper Reference

Periodontal disease Review [125]
Bacterial tonsillitis Streptococcus salivarius BIO5 Original [54]
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Table 3. Cont.

Health Condition Probiotic Original Article or
Review Paper Reference

Anti-inflammatory and antibiofilm
activities against oral pathogens

Enterococcus faecalis M157 in
fermented whey Original [126]

Lactose intolerance Review [127]

Galactosemia Galactose positive S. thermophilus NCDC
659 (AJM), 660 (JMI), and 661 (KM3) Original [128]

Short-chain fatty acid production VSL#3 1 Original [129]
Vitamin production Review [130]
Gamma-aminobutyric acid production L. plantarum K16 Original [131]
Protection against foodborne illness Review [132]
Colonization of Campylobacter L. plantarum LPS Original [133]

Anti-listerial activity Postbiotics of L. acidophilus LA5, L. casei
431, and L. salivarius Ls-BU2 Original [134]

Antimicrobial therapy Review [135]

Gut microbiome development in very
preterm infants

Either B. bifidum and L. acidophilus or B.
bifidum and B. longum subsp. infantis and
L. acidophilus

Original [136]

Healthy microbiome B. subtilis DE111 Original [137]
Restoration of microbiome after
antibiotic treatment L. acidophilus and B. bifidum Original [138]

Improve microbiome in cirrhosis patients Multispecies probiotics Original [139]
Modulate gut microbiota and reduce
exposure to uremic toxins in
hemodialysis patients

Bifico (B. longum NQ1501, L. acidophilus
YIT2004, and E. faecalis YIT0072) Original [140]

Gut bacterial diversity Bacillus coagulans GBI-30 6086 Original [141]

Leaky gut Probiotic cocktail of 5 Lactobacilli and 5
Enterococci strains Original [142]

Improve Gut Epithelial Barrier S. thermophilus BGKMJ1-36 and
L. bulgaricus BGVLJ1-21 Original [143]

Antioxidative activity Review [144]
Antioxidant activity and intestinal
permeability in cancer carcinogenesis VSL#3 1 Original [145]

Oxidative and inflammatory
stress reduction

L. plantarum S1 (viable and heat-killed
cells and metabolites) from
fermented whey

Original [146]

Immunity Review [147]
Exopolysaccharide production for
immunomodulatory, antimicrobial,
antioxidant, and anticancer activities

Lactobacillus Review [148]

Highly symptomatic celiac disease Bifidobacterium infantis NLS super strain Original [149]
Viral infections Various probiotics and paraprobiotics Review [150]
Possible inhibition of HIV transmission
and replication Engineered L. rhamnosus GG and GR-1 Original [151]

Diarrhea in HIV/AIDS patients Probiotic yogurt with L. rhamnosus GR-1
and L. reuteri RC-14 Original [152]

Antibiotic-associated diarrhea B. animalis subsp. lactis XLTG11 Original [153]
Chemotherapy-induced diarrhea in lung
cancer patients Clostridium butyricum Original [154]

Enteral-tube-feeding diarrhea 2 Review [155]
Childhood rotavirus infections Review [156]
Acute pediatric diarrhea Review [157]
Travelers diarrhea Lactobacillus GG Original [158]

L. acidophilus and B. bifidum Original [159]
Clostridioides difficile diarrhea L. rhamnosus GG Original [160]
Helicobacter pylori infection Limosilactobacillus fermentum UCO-979C Original [161]
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Table 3. Cont.

Health Condition Probiotic Original Article or
Review Paper Reference

Constipation

L. acidophilus LA11-Onlly, L. rhamnosus
LR22, L. reuteri LE16, L. plantarum
LP-Onlly, and B. animalis subsp.
lactis BI516

Original [162]

L. rhamnosus LR-168, L. acidophilus LA-99,
and B. animalis BB-115 Original [163]

Irritable bowel syndrome Review [164]
Necrotizing enterocolitis B. longum subsp. infantis Original [165]
Ulcerative colitis Review [166]

Review [167]
Hospital stay for acute pancreatitis Review [168]
Colorectal cancer Review [169]
Gastrointestinal cancer Review [170]

Liver and breast cancer Streptococcus salivarius BP8, BP156,
and BP160 Original [171]

Breast cancer Review [172,173]

Prostate cancer
Whey beverages with L. acidophilus La-05,
L. acidophilus La-03, L. casei-01, and
B. animalis Bb-12

Original [174]

Cervical cancer Review [175]
Polycystic ovary syndrome Review [176]
Vaginosis Lactobacillus Original [177]
Antimicrobial activity (hydrogen peroxide,
bacteriocins, and lactic acid production) for
vaginal health

Lactobacillus crispatus Review [178]

Inhibit sperm activity Lactobacillus crispatus Original [179]
Male fertility disorders Review [180]
Bladder cancer Review [181]
Bladder diseases (bladder cancer,
interstitial cystitis, and overactive bladder) Review [182]

Reduce exposure to uremic toxins in
hemodialysis patients

Bifico (B. longum NQ1501, L. acidophilus
YIT2004, and E. faecalis YIT0072) Original [140]

Pediatric urinary tract infection recurrence L. acidophilus, L. rhamnosus, B. bifidum,
and B. lactis Original [183]

Urinary excretion of oxalate (risk factor for
renal stones)

L. acidophilus, L. brevis, L. plantarum,
B. infantis, and S. thermophilus Original [184]

Idiopathic nephrotic syndrome Clostridium butyricum Original [185]
Lung metastasis of melanoma cells VSL#3 1 Original [129]
Respiratory tract infection Review [186]
Influenza A virus L. mucosae 1025 and B. breve CCFM1026 Original [187]
COVID-19 Probiotics and their metabolites Review [188]
Ventilator-associated pneumonia in
critically ill patients Review [189]

Allergic rhinitis Bifidobacterium mixture Review [190]
Respiratory allergy Commercial probiotic fermented milk Original [191]
Asthma L. paracasei K47 Original [192]
Cystic fibrosis Review [193]
Atopic dermatitis Review [194]
Skin disorders (atopic dermatitis, psoriasis,
rosacea, and acne vulgaris) Review [195]

Skin health L. reuteri ATCC 6475 Original [196]
Dry eye L. plantarum NK151 and B. bifidum NK175 Original [197]
Vernal keratoconjunctivitis L. acidophilus eye drops Original [198]
Rheumatoid arthritis 2 Review [199,200]
Recovery from bone fractures L. casei Shirota Original [201]
Pain relief after rib fracture L. casei Shirota Original [202]
Mineral absorption and bone health L. rhamnosus HN001 Original [203]
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Table 3. Cont.

Health Condition Probiotic Original Article or
Review Paper Reference

Calcium absorption L. rhamnosus GG * Original [204]
Iron absorption Review [205]
Blood lipids B. subtilis DE111 [206]
Fasting glucose and insulin levels Review [207]
Diabetes (blood pressure, fasting blood
sugar, cholesterol, triglyceride, hemoglobin
A1c, high sensitive C-reactive protein)

Probiotic yogurt Original [208]

Serum triglyceride and glucose Bacillus coagulans GBI-30 6086 Original [141]
Atherosclerosis (lesion formation,
dyslipidemia, endothelial dysfunction,
inflammation, hypertension and
hyperglycemia, and TMAO
(trimethylamine N-oxide))

Review [209]

Infantile colic B. breve CECT7263 Original [210]
Obesity L. reuteri ATCC 6475 Original [211]

Review [212]
Liver fibrosis L. paracasei, L. casei, and Weissella confusa Original [213]
Non-alcoholic fatty liver disease Review [214]
Hyperuricemia Review [215]
Phenylketonuria Genetically engineered probiotics Review [216]
Exercise performance and decrease fatigue L. salivarius subsp. salicinius SA-03 Original [217]
Sleep Review [218]
Depression and anxiety Review [219]
Anxiety Original [220]
Serotonin biosynthesis from tryptophan L. plantarum LRCC5314 Original [221]
Mood Original [222]

Memory and learning
L. paracasei ssp. paracasei BCRC 12188,
L. plantarum BCRC 12251, and
S. thermophilus BCRC 13869

Original [223]

Age related dementia Review [224]
Autism Review [225]

1 VSL#3 includes B. breve, B. infantis, B. longum, L. acidophilus, L. bulgaricus, L. casei, L. plantarum, and S. thermophilus.
2 Mixed results. * Inulin was also included in the treatment which may have contributed to the favorable results.

Different strains of bacteria provide their health benefits by different mechanisms [229],
and knowledge of these mechanisms can help in probiotic selection and modification for ef-
fectively treating disease. Four main mechanisms by which probiotics confer health benefits
include potential pathogen interference, barrier function improvement, immunomodula-
tion, and neurotransmitter production [230]. Pathogen interference mechanisms include
production of antimicrobial compounds including bacteriocins and defensins, competition
with pathogens, inhibition of adherence of pathogens, and luminal pH reduction [229].
Probiotics such as L. rhamnosus can be bioengineered for an alternative method for pathogen
inhibition within the field known as pathobiotechnology [231].

Gut microbiomes vary from person to person [114]. Individuals vary in the ability
of which consumed probiotics, such as in a fermented milk product, are able to modify
the composition of the autochthonous gut microflora, suggesting that a tailored diet may
be needed for individuals that are on a beneficial microbial based therapy and have a
resistant gut microbiota [232]. Veiga et al. [233] predicts that many people will have their
genome sequenced in the future that will allow them to tailor specific probiotics (referred
to as precision probiotics) to their unique human-microbiome symbiosis to optimize their
microbiome-centered nutrition and preventative health care. Perhaps in the future, yogurt
could be a carrier for these precision probiotics.
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5. Probiotic Strains Used in Yogurt and Related Probiotic Milk Beverages and Their
Health Benefits

One question a product developer working with yogurt needs to ask is whether to
use a single strain probiotic or to use multiple strains for forming potential symbiotic
relationships (similar to the relationship between S. thermophilus and L. bulgaricus) or for
potential health benefits. Peng et al. [234] manufactured yogurt with incorporated L. casei
Zhang, B. lactis V9, or their combination. The use of this combination stimulated the growth
of B. lactis V9 compared to use of B. lactis V9 by itself, likely because of valine, leucine,
and isoleucine biosynthesis. However, the use of this combination did not stimulate the
growth of L. casei Zhang compared to the use of L. casei Zhang by itself. Furthermore, the
use of this combination stimulated short-chain fatty acid production. In a similar type of
experiment, Fan et al. [50] manufactured yogurt with incorporated Lacticaseibacillus casei
CGMCC1.5956, Levilactobacillus brevis CGMCC1.5954, or their combination. They found
improved probiotic growth, increased hardness and adhesiveness, less syneresis, and en-
hanced antioxidant capacity in the yogurt prepared with both probiotics. In another study,
Fan et al. [235] found that use of binary probiotics (Lacticaseibacillus casei CGMCC1.5956
and Lactiplantibacillus plantarum subsp. plantarum CGMCC1.5953) enhanced hardness, vis-
cosity, and gumminess compared to use of these probiotics by themselves. McFarland [236]
reviewed whether single strains or multiple strains are more effective in preventing and
treating diseases. Although there were cases in which multiple strains were more effective
than single strains in eradicating diseases, multi-strain mixtures were not usually more
effective than single strain probiotics. However, Washburn et al. [237] reported that micro-
bial gastrointestinal diversity was not significantly influenced in their study when healthy
adults consumed Bifidobacterium infantis as a single probiotic species.

It has been debated as to whether or not the yogurt starter cultures, S. thermophilus
and L. bulgaricus, should be considered as probiotic [238]. Obviously, if the yogurt is
heat treated to kill the cultures after fermentation, then it is not probiotic yogurt. One
would not consider yogurt starter cultures as probiotic if they were not acid and bile
tolerant or if they did not survive within the intestinal tract [238]. In an early study,
Cheplin and Rettger [239] were not able to implant Bacillus bulgaricus (now L. bulgaricus)
into the human gastrointestinal tract. However, Mater et al. [240] and Elli et al. [241]
found that L. bulgaricus and S. thermophilus can survive within the human gastrointestinal
tract. Martinović et al. [242] reviewed whether or not S. thermophilus survives within
the gastrointestinal tract and concluded that most studies did not perform taxonomic
studies with sufficient accuracy for distinguishing S. thermophilus from S. salivarius to
determine if S. thermophilus can be recovered. Uriot et al. [243] supported the idea that
certain strains of S. thermophilus be considered as probiotic, and Guarner et al. [244] likewise
concluded that both S. thermophilus and L. bulgaricus should be considered as probiotic.
Popović et al. [143] showed that S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJI-21
can function as yogurt starter cultures and possess probiotic properties by modulating
gut autophagy and improving the gut epithelial barrier. Recently, Taj et al. [245] found
that certain exopolysaccharide producing strains (RIRT2, RIH4, and RIY) of S. thermophilus
fulfill the basic criteria to be considered as probiotics. In this paper, the emphasis is on
yogurt that has probiotic cultures in addition to S. thermophilus and L. bulgaricus.

Lactobacillus acidophilus NCFM (North Carolina Food Microbiology) (ATCC 700396)
has been available since 1972 and is GRAS (GRN Number 357). The complete genomic
sequence has been published by Altermann et al. [246]. This strain is of human origin
and was isolated and characterized by Gilliland et al. [247]. This probiotic was reviewed
by Sanders and Klaenhammer [248]. Health benefits provided by L. acidophilus NCFM
include antimicrobial activity against foodborne pathogens, in vitro evidence for adherence
to human cells, possible ability to assimilate cholesterol from lab growth media, ability to
survive within the gastrointestinal tract and to be isolated in human feces, possess active
lactase to possibly assist with lactose digestion, beneficially effect colonization in the small
bowel, decreasing potentially harmful microbial activities related to cancer development
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in the intestine, improve immune response when combined with other yogurt cultures to
oral antigens, potentially controlling urogenital infections in women, potentially reducing
incidence of diarrhea when combined with other probiotics, and protecting against systemic
infections [248].

Lactobacillus acidophilus LA-5 provides many health benefits and has been incorporated
into food and dietary supplements since 1979 [249]. This strain is frequently investigated
with Bifidobacterium animalis subsp. lactis BB-12 which will be discussed below. When
combining L. acidophilus LA-5 with B. animalis subsp. lactis BB-12, improved suppression of
Helicobacter pylori infections [250], improved relief from chronic constipation [251], reduced
symptoms and inflammation from ulcerative colitis [252], better recovery to colonic surgery
as part of an optimization package [253], improved glycemic control and antioxidant
status in patients with Type 2 diabetes [254,255], and reduced oxidative stress [256] have
been reported. L. acidophilus LA-5, B. animalis subsp. lactis BB-12, and L. casei TMC
incorporated into milk reduced total cholesterol and low-density lipoprotein cholesterol
levels in mild hypercholesterolemic study volunteers [257]. L. acidophilus LA-5 produces
lactacin B bacteriocin (peptides that inhibit certain other types of bacteria within the same
environment) in the presence of yogurt starter cultures [258]. Furthermore, L. acidophilus LA-
5 can produce conjugated linoleic acid in supplemented cheese whey [259] and attenuate
obesity [260].

Lactobacillus helveticus has been used as a probiotic in yogurt. Zhou et al. [39] manu-
factured yogurt using L. helveticus H9 as an adjunct starter culture and found shortened
fermentation time, increased richness of volatile flavor compounds, production of fer-
mented milk antihypertensive peptides Val-Pro-Pro and Ile-Pro-Pro, but lower sensory
scores compared to their control yogurt. Kajimoto et al. [261] manufactured a liquid yogurt
that contains lactotripeptides and the starters L. helveticus and Saccharomyces cerevisiae, and
found that consumption of this product decreased systolic and diastolic blood pressure
significantly more than the placebo group in mild hypertensive subjects in a placebo-
controlled, double-blind study. Yamamura et al. [262] reported that milk fermented with
L. helveticus strain CM4 may improve sleep in healthy elderly Japanese subjects.

Lacticaseibacillus casei (formerly Lactobacillus casei) DN-114001 (L. casei strain CNCM
I-1518 or L. casei Immunitas®) is used in the probiotic yogurt-like drink DanActive (Ac-
timel) and has been patented [263]. L. casei DN-114001 was effective in increasing fecal
Bifidobacterium counts but decreasing fecal Clostridium counts in children [264] and may be
effective in reducing atopic dermatitis in children [264,265]. Agarwal et al. [266] reported
that L. casei DN-114001 was effective in controlling diarrhea in people from developing
countries and using L. casei DN-114001 as a starter for producing dahi was also effective.
Guillemard et al. [267] found a reduced average and cumulative duration of common infec-
tious diseases and reduced episodes and cumulative durations of upper respiratory tract
infections and rhinopharyngitis in the free-living elderly upon consumption of a fermented
dairy product containing L. casei DN-114001. Marcos et al. [268] studied anxiety levels and
immune responses of academically-stressed university students who consumed fermented
milk containing L. casei DN-114001 versus a control. Although there was no significant
difference in treatment effect in anxiety, they found that consumption of this fermented
drink modified the number of lymphocytes and CD56 cells in the stressed students [268].

Lacticaseibacillus paracasei (formerly Lactobacillus casei) Shirota strain is used in a fer-
mented milk drink called Yakult® and is GRAS (GRN Number 429). This product was
launched in 1935 and is fermented by this probiotic until a titratable acidity of 2% is
reached [269]. The resulting curd is broken, sweetened and flavored, homogenized at
15 MPa, and diluted with water before being packaged into 65-mL plastic bottles. This
strain is indigenous in the human intestinal tract [270]. Yasuda et al. [271] analyzed genes
in L. casei strain Shirota (YIT 9029) related to synthesis of polysaccharides associated with
the cell wall involved in regulating host immunity based on their unpublished in-house
data of the complete genome sequence of this probiotic. Kato-Kataoka et al. [272] reported
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that medical students who daily consumed fermented milk containing L. casei strain Shirota
displayed fewer physical symptoms when exposed to stressful academic examinations.

Lacticaseibacillus rhamnosus GG (Gorbach and Goldin) (formerly Lactobacillus rhamnosus
GG and Lactobacillus acidophilus GG and also called LGG) (ATCC accession number 53103)
(GRN Numbers 845 and 1013) is a widely studied probiotic. It has been patented [273,274]
and its complete genome sequence has been published [275]. Capurso [276] reviewed
the effect of L. rhamnosus GG on gastrointestinal infections and diarrhea, antibiotic and
Clostridium difficile associated diarrhea, irritable bowel syndrome, inflammatory bowel
disease, respiratory tract infections, allergy, cardiovascular diseases, nonalcoholic fatty liver
disease, nonalcoholic steatohepatitis, cystic fibrosis, cancer, exercise physiology, and the
elderly. Szajewska and Hojsak [277] concluded that the symptoms of acute gastroenteritis
can be managed and antibiotic-associated diarrhea can be prevented upon administering
L. rhamnosus GG to toddlers and older children.

Limosilactobacillus (formerly Lactobacillus) reuteri DSM 17,938 is GRAS (GRN Number
254), and its use in treating various pediatric gastrointestinal disorders has been recently
reviewed [278]. This species inhibits pathogen growth by secreting reuterin and other
substances and restores homeostasis by interacting with intestinal microbiota and mucosa.
Furthermore, this species can increase the pain threshold and gastrointestinal motility. The
duration of acute diarrhea and hospitalization for acute gastroenteritis can be decreased.
Likewise, antibiotic-associated side effects from treating Helicobacter pylori infections can
also be decreased with this species [278].

Lactiplantibacillus plantarum (formerly L.actobacillus plantarum) can successfully be used
in producing probiotic yogurt. Li et al. [279] added various strains of L. plantarum to produce
yogurt. They found that milk as a medium is appropriate as a carrier for L. plantarum
because of their survival both during fermentation and storage. No negative sensory
quality effects were found. Strain IMAU 70,095 of L. plantarum was found to be the most
suitable strain for yogurt [279]. L. plantarum CCFM47 and CCFM232, L. acidophilus CCFM6,
and L. rhamnosus GG were able to inhibit α-glucosidase and survive at rates up to 60%
in simulated gastrointestinal juices [280]. Furthermore, viability of L. plantarum CCFM47
and L. acidophilus CCFM6 in yogurt was improved when yogurt was supplemented with
soybean oligosaccharides, indicating that this type of yogurt would be expected to have
antihyperglycemic properties.

Bifidobacterium animalis subsp. lactis BB-12 is a probiotic that is GRAS (GRN Number
856). It is commonly studied with L. acidophilus LA-5. Garrigues et al. [281] published
the complete genome sequence of B. animalis subsp. lactis BB-12. This microorganism
can survive within the gastrointestinal tract with excellent resistance to acid and bile and
supports a healthy gastrointestinal microbiota. Also, it improves bowel function, protects
against diarrhea in infants and children, and reduces antibiotic-associated diarrhea. Addi-
tionally, this microorganism provides protection against respiratory tract infections [282].
A potential anti-inflammatory effect was found in healthy adults upon consumption of
yogurt with incorporated B. animalis subsp. lactis BB-12 [283].

Bifidobacterium animalis subsp. lactis HN019 has been patented (US patent 6379663) [284]
and is GRAS (GRN Number 445). Its complete genome sequence has been described in
Morovic et al. [285]. Magro et al. [286] found that the colonic transit time for constipated
patients consuming yogurt containing B. lactis HN019, L. acidophilus NCFM, and polydex-
trose was shortened compared to control yogurt. Likewise, Miller et al. [287] analyzed
15 clinical trials representing 675 subjects for determining the effectiveness of various
probiotics in reducing intestinal transit times and found that B. animalis subsp. lactis
HN019 and Bifidobacterium animalis DN-173 010 were the most effective probiotic strains.
Gut health benefits provided by B. animalis subsp. lactis HN019 have been reviewed by
Cheng et al. [288].

Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 is a probiotic that is
added to various forms of the Activia brand of yogurt and drinks (Groupe Danone) that
was launched in France in 1987 for relieving minor digestive discomfort. Studies have
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shown that consumption of fermented milk containing B. animalis DN-173 010 increased
stool frequency for constipated children [289], improved health-related quality of life
with increased stool frequency (in a subgroup of subjects with fewer than three bowel
movements per week) and with decreased bloating in constipated adult subjects with
irritable bowel syndrome [290], and decreased gut transit times in elderly people [291].
Reducing gastrointestinal inflammation in inflammatory bowel disease, ulcerative colitis,
and/or Crohn’s Disease or preventing or treating irritable bowel syndrome by having a
subject consume B. animalis or Activia® have been patented (US patent 8,685,388 B2) [292].

Weizmannia coagulans (formerly Bacillus coagulans) and Bacillus subtilis are probiotics
that can be used in yogurt. Ma et al. [57] found that W. (B.) coagulans-70 was a desirable
strain when used as an adjunct starter culture due to its high count in yogurt during
fermentation and storage, the increased in yogurt hardness and viscosity during storage,
and high sensory evaluation scores of the yogurt samples. W. (B.) coagulans GBI-30, 6086
(BC30TM) has been patented [293] and has FDA GRAS status (GRN Numbers 399 and 670).
W. (B.) coagulans was originally called Lactobacillus sporogenes, but this nomenclature is not
correct [294] since lactobacilli do not form spores. Bacillus subtilis can be successfully added
to yogurt, and peptides that are present in this yogurt have a high antioxidant potential
and can improve shelf-life [295].

6. Prebiotics, Synbiotics, Paraprobiotics, Postbiotics, and Psychobiotics

The definition of prebiotic has evolved over time. Gibson and Roberfroid [296] defined
prebiotic as “non-digestible food ingredients that beneficially affects the host by selectively
stimulating the growth and/or activity of one or a limited number of bacterial species already
resident in the colon”. More recently, the definition of prebiotic has been modified to “a sub-
strate that is selectively utilized by host microorganisms conferring a health benefit” [297]. Ex-
amples of prebiotics include inulin, fructo-oligosaccharides, galacto-oligosaccharides, isomalto-
oligosaccharides, human milk oligosaccharides, xylo-oligosaccharides, xylan, lactulose, oat
fiber (β-glucan), pectin, guar gum, resistant starch, stachyose, select polyphenols, bacterio-
phage, omega-3 fatty acids, and yeast hydrolysate [219,298,299]. Prebiotics are discussed in
detail by Gibson and Roberfroid [300].

Synbiotics were defined by a panel from the International Scientific Association for
Probiotics and Prebiotics as “a mixture comprising live microorganisms and substrate(s)
selectively utilized by host microorganisms that confers a health benefit on the host” [301].
Therefore, the proper type of prebiotic must be used with a given probiotic. Stronger health
benefits occur when a product contains synbiotics rather than either a probiotic or prebiotic
alone [302]. Dairy products incorporating synbiotics in research studies include yogurt
and a yogurt-based drink, fermented skim milk, cheeses, ice cream, and infant formula.
Some of the probiotics and prebiotics that have been incorporated into synbiotic yogurt
are listed in Table 4. For non-dairy based products, this list includes bread buns, chocolate,
candy, mousse, Andean blackberry slices, soybean beverage, fermented soy food, cereal
mix, traditional Indian dry snack, dry malted drink, and salad dressing [302].

Table 4. Some of the probiotics and prebiotics that have been incorporated into synbiotic yogurt.

Probiotic Prebiotic Reference

L. acidophilus ATCC 4357 Fructooligosaccharide and Isomaltooligosaccharide [303]
L. acidophilus LA-5 Oligofructose-enriched inulin [304]
L. acidophilus LA-5 Honey and aqueous cinnamon extract [305]
L. acidophilus ATCC 4356 Flaxseed [306]
L. acidophilus White oyster mushroom flour and Taro flour [307]
L. acidophilus 100021 and L. helveticus 501699 Inulin and maltodextrin [308]
L. acidophilus LA-5 and B. animalis subsp. lactis BB-12 Monk fruit extract, inulin, and pectin [309]
L. acidophilus ATCC 4356 and B. longum Purple Sweet Potato [310]
L. acidophilus and B. animalis subsp. lactis Black carrot pulp and Exudate acacia gum [311]
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Table 4. Cont.

Probiotic Prebiotic Reference

L. acidophilus and Bifidobacteria Citrus peels of sour orange, sweet orange, and lemon [312]
L. acidophilus and L. casei Stachyose [313]

L. casei 01 Inulins of varying chain lengths: short (P95), medium
(GR) and long (HP) [314]

L. casei 01 Inulin, polydextrose, and modified starch [315]

L. casei strain Shirota Inulin or fructans from Agave salmiana Otto
ex Salm-Dyck [316]

L. casei and L. gasseri Banana fiber and peel banana fiber [317]
L. casei 431, L. rhamnosus LGG, and
B. animalis subsp. lactis BB-12 Banana peel powder and Mango peel powder [318]

L. rhamnosus LGG Inulin [204]
L. paracasei 1 Lactitol 1 [319]
L. paracasei Galactofructose, inulin, soy protein isolate, and spirulina [320]
L. plantarum CFR 2194 and L. fermentum CFR 2192 Fructooligosaccharides [321]
L. plantarum 1 Sorbitol [322]
L. plantarum TISTR 1465 Black waxy rice [323]
L. reuteri DPC16 Manuka honey [324]
B. longum ATCC 15707 Rosemary extract [325]
B. animalis Bb-12 Inulin [56]
B. infantis Bb02 Gluten Friendly Flour™ [326]
Propionibacterium freudenreichii ssp. shermanii (PS-4) Inulin [327]

1 Synbiotic microcapsules.

Paraprobiotics (ghost probiotics) are “non-viable microbial cells (intact or broken)
or crude cell extracts (i.e., with complex chemical composition), which, when adminis-
tered (orally or topically) in adequate amounts, confer a benefit on the human or animal
consumer” [328]. A wide variety of probiotics can be used for paraprobiotic produc-
tion [328,329]. Techniques for inactivating probiotics to produce paraprobiotics include the
use of irradiation, high pressures, sonication and high-intensity ultrasound, ultraviolet rays,
ohmic heating, pulsed electric field, supercritical carbon dioxide, drying, pH changes, and
thermal treatments [329,330]. Paraprobiotics can be produced by ohmic heating at electric
field magnitudes of 8 V/cm for inactivating probiotic cultures (Lactobacillus acidophilus LA-5,
Lacticaseibacillus casei 01 and Bifidobacterium animalis subsp. lactis Bb-12) [331]. However,
ohmic heating performed at sub-lethal conditions can increase cellular permeability and im-
prove nutrient absorption leading to faster cellular growth [332]. High-intensity ultrasound
can also be used to inactivate probiotics for generating paraprobiotics by adjusting process
parameters resulting in a high level of sonoporation within the cell, leakage of cellular
content, and fluctuation of the cell membrane lipid bilayer [330]. Health benefits provided
by the use of paraprobiotics include immunomodulation, pathogen inhibition, intesti-
nal microbiota modulation, intestinal injury recovery, reduction of bacterial translocation
and preservation of the intestinal barrier, treatment of diarrhea, inflammation modula-
tion, reduction of lactose intolerance, cholesterol reduction, respiratory disease reduction,
treatment of alcohol-induced liver diseases, cancer growth inhibition, atopic dermatitis
treatment, visceral pain response modulation, colitis treatment, suppression of certain age
related diseases, and dental caries inhibition [329].

Paraprobiotics have been incorporated into yogurt. Parvarei et al. [333–335] incorpo-
rated heat-killed or viable L. acidophilus ATCC SD 5221 or heat-killed or viable B. lactis BB-12
into yogurt either before or after fermentation and compared the properties to a control
yogurt. Viability of starter cultures was increased with the addition of paraprobiotics [333].
They typically found less syneresis and greater water holding capacity for yogurts contain-
ing the paraprobiotics added before fermentation compared to the remaining yogurts due
to the presence of exopolysaccharides derived from the inactivated cells [333]. There were
pores and void spaces within the microstructure of these yogurts containing paraprobiotics
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added before fermentation [334]. Yogurts incorporating heat-killed B. lactis BB-12 into
yogurt before fermentation had the highest flavor and mouthfeel sensory scores [335].

Postbiotics have been defined by a panel from the International Scientific Association
for Probiotics and Prebiotics as a “preparation of inanimate microorganisms and/or their
components that confers a health benefit on the host” [336]. Guimarães et al. [330] suggested
that postbiotics can be produced by high-intensity ultrasound. Advantages of using
postbiotics are their inability to cause infections because they are not alive and their long
shelf-life. Depommier et al. [337] administered pasteurized (killed) Akkermansia muciniphila
to individuals who were overweight or obese with insulin resistance and found improved
insulin sensitivity but reduced insulinemia and plasma total cholesterol. Darwish et al. [338]
produced a functional yogurt incorporating the postbiotic E. coli Nissle 1917 and Cape
gooseberry, and increased the antimicrobial, antitumor, and antioxidant activities and total
phenolic content of the yogurt.

Zendeboodi et al. [339] proposed a new classification of probiotics as true probiotics
meaning viable and active, pseudoprobiotics meaning viable and inactive either in the form
of vegetative cell or spore, and ghost probiotics meaning nonviable cell either in the form
of intact or ruptured cells.

Psychobiotics have been defined as “a live organism that, when ingested in adequate
amounts, produces a health benefit in patients suffering from psychiatric illness” [340].
There is bilateral communication between the gut microbes and the brain, and this associ-
ation is known as the gut–brain–microbiota axis. Although gut dysbiosis (an imbalance
of the microorganisms in the gastrointestinal tract as discussed earlier) can lead to altered
brain function, mental illness (including major depressive disorder and schizophrenia), and
neurological decline (such as Alzheimer’s disease) in old age [341], certain probiotics may
provide positive mental health effects. These probiotics can produce neuroactive substances
(including gamma-aminobutyric acid and serotonin) that affect the brain–gut axis and
provide an antidepressant effect [340]. There are many fermented food and beverage appli-
cations for these potential psychobiotic strains as summarized by Toro-Barbosa et al. [342].
Benton et al. [222] supplied subjects with Yakult (a milk drink containing the probiotic
L. casei (now L. paracasei) Shirota) and found improvements in the mood of subjects with
initially poor moods after they consumed this product. In another study in which sub-
jects consumed L. casei (now L. paracasei) Shirota, Rao et al. [220] found reduced anxiety
among subjects with chronic fatigue syndrome consuming the probiotic compared to
the placebo. Furthermore, these researchers found that the probiotic-consuming subjects
had a greater increase in Lactobacillus and Bifidobacteria in their feces compared to the
placebo-controlled subjects.

7. Probiotic Yogurt Products Currently Available in the Market

Many brands of probiotic yogurt with varying claims can be found on the market.
Use of only A2 milk for making yogurt has been claimed. Some brands claim to be made
from milk from grass-fed cows that optimize the ratio of omega-6 fatty acids to omega-3
fatty acids and have enhanced conjugated linoleic acids. Other brands claim that the milk
used to produce the yogurt is organic or comes from cows not treated with rBST. Fat
contents of yogurt of up to 10% have been reported. A reduction of 90% lactose compared
to regular yogurt has also been claimed. Honey or chia seed can be found in certain types of
commercial yogurt. High protein yogurt is available on the market. Low and slow heating
has been declared for one type of yogurt. Some manufacturers do not homogenize their
milk used to make their yogurt. A wide variety of probiotics are used in commercial yogurt.
Bacillus coagulans, which becomes active upon reconstitution with water, is used in a brand
of frozen yogurt. One yogurt culture manufacturer claims that over 300 probiotic strains
are present in their product. A shelf-life of 11 weeks has been claimed for a yogurt made
with L. bulgaricus G-LB-44, a powerful pathogen inhibitor. Types of commercial probiotic
yogurt include conventional spoonable yogurt, Greek yogurt, Bulgarian yogurt, Balkan
yogurt, and frozen yogurt. Yogurts containing postbiotics are also on the market.
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8. Various Forms of Yogurt

There are many different types of yogurt in addition to spoonable yogurt. Baker [343]
has patented a procedure for producing a low calorie, low-fat fruit and L. acidophilus -
containing yogurt that has the appearance, texture, and taste similar to a conventional
fruit-containing yogurt. Pachekrepapol et al. [344] used β-galactosidase enzyme to hy-
drolyze the lactose found in milk to produce a lactose free, probiotic yogurt with incorpo-
rated fructooligosaccharides. Drinkable yogurt may contain a wide variety of probiotic
strains including L. reuteri WHH1689 [345], L. gasseri [346], L. rhamnosus HN001 [347], or
L. plantarum DSM 20205 and P. acidilactici DSM 20238 [348] or a combination of probiotics
(Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus LA-5) and prebiotics (soluble corn
fiber, polydextrose, and chicory inulin) [349]. A shelf-stable yogurt can be produced by
UHT sterilizing milk with a lactose content reduced to about 1% to 1.5%, cooling this
product, adding lactic acid bacteria including probiotics, aseptically packaging the prod-
uct into a container, and storing it under suitable conditions to allow 1 × 107 cfu/g to
3 × 109 cfu/g live bacteria to form in the yogurt, resulting in a pH lower than 4.7 [350].
A method for producing high-protein Greek yogurt by concentrating the skim milk by
ultrafiltration, combining this concentrated skim milk with other milk fractions to form
the yogurt base, fermenting the resulting yogurt base with a yogurt culture and probi-
otics, and concentrating the fermented product with a ceramic membrane system has been
patented [351]. Imer [352] described a process in a patent for producing frozen yogurt by
freezing a fermented yogurt mix that may include L. acidophilus, L. casei, L. rhamnosus, and
Bifidobacterium and incorporating air to an ideal overrun between 30% and 60%. A method
of producing Greek frozen yogurt from fermented lactose-reduced skim milk and made
without straining, but possibly containing various probiotics, has been described by Bunce
and Dave [353]. Natural yogurt that is produced by fermentation by either L. bulgaricus
or L. acidophilus may be dried by various techniques to produce an instant, dry powdered
yogurt composition [354]. This composition has a long shelf-life without refrigeration and
it can be reconstituted into a yogurt meal or drink. Another patent describes freeze-dried,
aerated yogurt that could incorporate prebiotics and probiotics and is readily dissolvable
to reduce choking hazard risks [355].

9. Use of Probiotic Yogurt as an Ingredient

Probiotic yogurt can be used as an ingredient in the production of other products. Bite
sized refrigerated yogurt that can be eaten using fingers can be prepared by coating frozen
yogurt portions (possibly containing probiotics) with two layers of fat-based coating [356].
The second layer of this fat coating is applied before allowing the frozen yogurt to thaw,
and this second layer may contain particulate inclusions [356]. A snack bar coated with
a yogurt containing probiotics (L. acidophilus or B. lactis or both) and incorporating waxy
grains held together by an inulin binder has been patented [357]. A shelf-stable fruit snack
that contains an outer layer that could consist of yogurt containing probiotic cultures has
been patented [358]. Gutknecht and Ovitt [359] patented low-fat yogurt cheese consisting
of 15% to 75% cream cheese, 10% to 40% yogurt incorporating L. acidophilus, Bifidobacterium,
or L. paracasei subsp. casei in addition to yogurt starter cultures, and 15% to 45% milk
protein. Freeze dried yogurt that may contain probiotic cultures is an ingredient in a
dry mix food product that also contains other food ingredients (whole grain, fruits, nuts,
granola, etc.), and this dry mix can be hydrated to form a thick texture similar to yogurt
within 3 min [360]. A shelf-stable light and crunchy yogurt crisp, a snack food, is made
from a viscoelastic dough that contains dehydrated yogurt and may contain probiotics,
either in the spore form or microencapsulated form [361].

10. Useful Functional Ingredients in Probiotic Yogurt

Many ingredients have successfully been added to probiotic yogurt. Some of these
useful functional ingredients are listed in Table 5. These functional ingredients include
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grains, seeds, flours, fibers, fruits, vegetables, a berry, a nut, juices, spices, essential oils, bee
products, and a cyanobacterium.

Table 5. Some of the useful functional ingredients that have been incorporated into probiotic yogurt
including their concentration and effect on the properties of the resulting yogurt.

Functional Ingredient
Category (in Bold)

and Ingredient
Concentration Effect on Properties Ref.

Grain, seed, and flour

Aqueous fennel extract 2, 4, and 6%

Reconstituting whole milk powder into aqueous
fennel extract to manufacture probiotic yogurt
resulted in a product with increased phenolic
content and antioxidant activity compared to
fresh yogurt.

[362]

Flaxseed 0–4%

Flaxseed was successfully added to yogurt
containing L. acidophilus ATCC 4356. This yogurt
had increased L. acidophilus counts, viscosity,
hardness, cohesiveness, gumminess, and water
holding capacity but decreased syneresis and
adhesiveness compared to their control yogurt.

[306]

Sesame seeds 6%
Incorporation of roasted sesame into stirred
yogurt improveds probiotic viability, sensory
properties, and antioxidant properties.

[363]

Psyllium husk (Native and
acid-modified psyllium husk) 0.5 g per liter of buffalo milk

Incorporation of psyllium husk into frozen
yogurt containing the encapsulated probiotics
L. acidophilus and L. plantarum formed a product
with high consumer acceptability.

[364]

Oat β-glucan 0.15%
β-glucan and EPS-producing B. bifidum
increased viscosity and water holding capacity
but decreased syneresis.

[365]

Wheat bran 4%
Incorporation of wheat bran significantly
increased total bacterial counts and
titratable acidity.

[366]

Resisant starch (RS2 and RS3) 1 1.5%

This yogurt was made from reconstituted skim
milk. RS2 increased serum held within gel
network. RS3 protected B. animalis subsp. lactis
BB-12, increased viscosity, and decreased
titratable acidity.

[367]

Chickpea flour 0, 1, 2.5, and 5%

Fortification of chickpea flour into probiotic
yogurt resulted in improved water holding
capacity and decreased syneresis for the
resulting yogurt.

[368]

Fiber Ingredient

Inulin of varying chain lengths 2 1.5%

P95 lowered the pH but maintained similar
flavor scores compared to the control. HP
decreased syneresis and improved body and
texture compared to the control.

[369]

Orange fiber 0.5, 1, 1.5, and 2%

Incorporating orange fiber into yogurt
containing L. acidophilus LA-5 and
Bifidobacterium animalis subsp. lactis BB-12
improved antioxidant activity and angiotensin
converting enzyme (ACE)–inhibitory activity.

[370]

Lemon and orange fibers 3 g to 200 mL
The enriched fermented milk had good sensory
acceptability. L. acidophilus and L. casei had better
survival than B. bifidum.

[371]
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Table 5. Cont.

Functional Ingredient
Category (in Bold)

and Ingredient
Concentration Effect on Properties Ref.

Wolfberry dietary fiber
(goji berry) 0.5–5%

Yogurt containing 2% (w/v) wolfberry dietary
fiber had less syneresis, higher apparent
viscosity, and increased hardness compared to
control yogurt.

[235]

Fruit or fruit ingredient
and vegetable
Fruit purees (peach, apple,
and pear) 10 and 20% Peach and apples were the most suitable fruits

for probiotic yogurt. [372]

Dragon fruit 12%
The optimal formulation was 12% dragon fruit,
11% sugar, and 2% L. plantarum. Fermentation
time was 19 h at 37 ◦C.

[373]

Isabel “Precoce”
grape ingredients

Isabel grape preparation
(20 g/100 mL)
By-product flour
(2 g/100 mL)

This goat milk yogurt had high L. acidophilus
La-05 counts, distinct phenolic profile, higher
antioxidant capacity, sensory acceptance, and
consumer preference compared to control
probiotic yogurt.

[374]

Orange sweet potato 15 and 25% Orange sweet potato purees incorporated into
probiotic yogurt were accepted by consumers. [375]

Berry and nut
Gobdin (Dry white mulberry
and walnut paste) 0, 5, and 10% Adding 5% gobdin to yogurt containing

L. acidophilus resulted in an acceptable product. [376]

Juice (fruit or vegetable)

Pomegranate juice 16%
Yogurt fortified with pomegranate juice and
probiotics had desirable sensory properties
during storage.

[377]

Carrot juice 8, 16, 24, and 32%
There was increased color intensity, carrot flavor,
creaminess, mouth coating, and chalkiness with
increased carrot juice levels.

[378]

Juice and flower

Juice from kiwifruit and
jasmine flour

20% kiwi fruit juice and 15%
jasmine flower juice

The best formulation was 20% kiwi fruit juice,
15% jasmine flower juice, and 5% inoculum
concentration. Fermentation time was 8 h
at 40 ◦C.

[379]

Spice and Oil
Spices (Cardamom, cinnamon,
and nutmeg) 0.5% (v/w) Yogurts containing spices had good sensory

properties with enhanced antioxidant activity. [380]

Ginger and chamomile
essential oil 0.2 and 0.4%

Ginger and chamomile essential oils and B. lactis
Bb12 addition enhanced yogurt properties.
Incorporation of essential oil significantly
decreased fermentation time.

[381]

Dill essential oil 50 and 100 ppm
Yogurt containing 100 ppm dill essential oil
received high sensory scores and maintained
high viability of B. bifidum and L. casei.

[382]

Peppermint, Basil, and Zataria
essential oils 0.5%

Antioxidant potential was improved by addition
of all three essential oils.
Peppermint and basil yogurts had acceptable
sensory properties, but zataria yogurt was not
as acceptable.

[383]

Bee products

Pine honey 2, 4, and 6% The 2% level was the preferred level during
sensory evaluation. [384]

Royal jelly 2% (w/v)

Royal jelly incorporation Ssignificantly improved
physicochemical, rheological, sensory, and
microbiological properties (increased probiotic
viability) compared to control probiotic yogurt.

[385]



Appl. Sci. 2022, 12, 12607 20 of 40

Table 5. Cont.

Functional Ingredient
Category (in Bold)

and Ingredient
Concentration Effect on Properties Ref.

Cyanobacterium

Spirulina (a biomass
of cyanobacterium) 1 g per liter of yogurt mix.

This yogurt was less acidic than the control
yogurt on the 7th day, and there was higher
growth of lactic acid bacteria in this yogurt than
for the control yogurt on the 7th day.

[386]

1 RS2 is high amylose corn starch while RS3 is physically modified corn starch. 2 Inulin chain lengths were short
(P95), medium (GR), and long (HP).

11. Safety of Yogurt

Although yogurt is generally a safe product because of the added starters added to,
food poisoning outbreaks related to yogurt consumption have occurred as summarized
by Aryana and Olson [387]. Furthermore, Aziz et al. [388] found pathogens (including
Streptococcus equinus, Escherichia fergusonii, Ralstonia pickettii, and Delftia tsuruhatensis) in
probiotic yogurt in Pakistan. Gram-negative psychrotrophic bacteria, yeast, and mold con-
tamination must be avoided in yogurt and is more common in traditionally manufactured
yogurt than in industrially manufactured yogurt [389]. Conversely, Montaseri et al. [390]
found that probiotic yogurt can lower aflatoxin M1 during storage.

The probiotics themselves must also be evaluated for their safety. Although lactobacilli
are not generally pathogenic [391], Sims [392] has reported a lactobacillus (an oral strain of
L. casei var. rhamnosus) that was lethal to mice and rats. Bifidobacteria, with the exception of
the pathogenic Bifidobacterium dentium, have only rarely been found to be involved with
certain dental and other infections [393]. Potential risk factors for consuming probiotics
include systemic infections arising from bacterial translocation, antimicrobial resistance
gene transfer to pathogenic bacteria, divergent immune stimulation in susceptible groups,
and undesirable metabolic activities [394].

Although probiotics are frequently associated with positive health outcomes, there
have been studies in certain populations in which subjects in the probiotic group had worse
outcomes than subjects in the placebo group. Callaway et al. [395] found higher percent of
cases of gestational diabetes mellitus (18.4% versus 12.3%, (p = 0.10)), higher oral glucose
tolerance test results (79.3 mg/dL versus 77.5 mg/dL (p = 0.049)), and higher incidences
of preeclampsia (9.2% versus 4.9% (p = 0.09)) in overweight and obese pregnant women
who took capsules or sachets of Lactobacillus rhamnosus GG and Bifidobacterium animalis
subsp. lactis BB-12. In the PROPATRIA (Probiotics in Pancreatitis Trial) study (a trial
attempting to reduce infectious complications in patients with severe acute pancreatitis
by supplying them with a multi-species probiotic preparation (freeze-dried Ecologic 641)
delivered enterally), 16% (24 of 152) of patients died in the treatment (probiotic) group
versus 6% (9 of 144) of the patients who died in the placebo group [396]. These authors
thought that this high mortality rate for the treatment group was due to a lethal combination
of pancreatic enzymes (mainly proteolytic) and probiotic therapy and resulting in the
production of excessively high levels of lactic acid. They recommended that researchers
immediately start probiotic therapy after the initial onset of disease, limit fermentable
carbohydrate supply, prevent bacterial overgrowth of the microflora within the patient, and
dramatically increase the probiotic bacterial dose [396]. Therefore, extra care must be taken
when administering probiotics to critically ill patients or other susceptible populations.

12. Survival of Probiotics in Yogurt

Several studies have examined survival of probiotics in yogurt. Gilliland and Speck [397]
reported that L. acidophilus does not survive well in yogurt during storage, probably
because of hydrogen peroxide produced by L. bulgaricus. Ng et al. [398] concluded that the
reason that counts of some strains of L. acidophilus decrease in the presence of L. bulgaricus
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is not due to the low pH, as these strains of L. acidophilus can survive in a similar pH
yogurt that was produced by glucono-delta-lactone. (Glucono-delta-lactone gradually
releases gluconic acid at a comparable rate to acids produced by starter cultures.) Similar
to Gilliland and Speck [397], Ng et al. [398] also suggested that this inhibition of some
strains of L. acidophilus may have been caused by high concentrations of hydrogen peroxide
produced by L. bulgaricus. Shah et al. [399] obtained five brands of commercial probiotic
yogurt and determined how counts of L. acidophilus and B. bifidum changed over 5 weeks of
refrigerated storage. Initial viable L. acidophilus counts were in the range of 107 to 108 cfu/g
for three of the brands, around 106 cfu/g for another brand, and around 104 cfu/g for
the final brand, and the three brands with the highest counts maintained their counts
better than the two brands with lower initial counts. Initial viable B. bifidum counts
were around 107 cfu/g for two brands and between 103 to 104 cfu/g for the remaining
three brands, and all of these counts decreased during storage, especially during the
latter stages [399]. Mani-López et al. [400] reported that L. acidophilus maintained better
viability than L. reuteri and L. casei during storage of yogurt and fermented milk containing
S. thermophilus. Hekmat et al. [401] used Lactobacillus reuteri (now Limosilactobacillus reuteri)
RC-14 and Lactobacillus rhamnosus (now Lacticaseibacillus rhamnosus) GR-1 in the preparation
of yogurt and found that L. rhamnosus GR-1 was surviving better than L. reuteri RC-14. For
Limosilactobacillus mucosae CNPC007 incorporated into goat milk Greek-style yogurt, de
Morais et al. [30] reported that counts decreased from 9.53 log cfu/g at 1 day of storage to
8.96 log cfu/g at day 28.

Some factors may affect survival of probiotics in yogurt during storage. Kailasapa-
thy et al. [402] manufactured fruit yogurts containing L. acidophilus and B. animalis ssp. lactis
and found that the fruit preparation usually did not decrease viability of these probi-
otics during storage compared to their plain yogurt controls. Ferdousi et al. [403] found
faster declines of viable counts of various types of probiotics in yogurt stored at 20 ◦C
compared to 5 ◦C, and L. rhamnosus HN001 maintained better viability than B. animalis
subsp. lactis BB-12).

Viability of probiotics in frozen yogurt has been reported in the literature. Hekmat and
McMahon [404] manufactured frozen yogurt by fermenting an ice cream mix with L. acidophilus
and B. bifidum before freezing and found decreases in counts from 1.5 × 108 cfu/mL to
4 × 106 cfu/mL for L. acidophilus and from 2.5 × 108 cfu/mL to 1 × 107 cfu/mL for B. bifidum
during 17 weeks of frozen storage at −29 ◦C. Davidson et al. [405] manufactured frozen yogurt
containing L. acidophilus and B. longum and found little to no change in culture survival during
storage at −20 ◦C for 11 weeks. Atallah et al. [406] manufactured frozen yogurt using either
sucrose or sugar replacements as the sweetener and found decreases in B. bifidum counts from
about 7.6 log cfu per gram at 1 day of storage to about 6.2 to 6.3 log cfu per gram at 60 days of
frozen storage.

Many steps can be taken to improve viability of probiotics in yogurt or frozen yogurt
during storage. Although L. acidophilus counts in yogurt can be raised by increasing its
inoculation level during manufacture to a certain extent, L. acidophilus inoculation levels
that are excessively high lowered the counts during storage, resulting in a lower quality
of yogurt including reduced apparent viscosity and sensory scores but increased synere-
sis compared to yogurts produced with lower inoculation levels of L. acidophilus [35].
A method has been patented [407] for enhancing growth and viability of L. acidophilus
in yogurt by inoculating this microorganism into a base that includes heat treated and
cooled milk and possibly other ingredients including fiber) and then growing this mi-
croorganism during incubation. S. thermophilus and L. bulgaricus are then inoculated into
this yogurt mix containing the L. acidophilus culture for further incubation to form a yo-
gurt with significantly higher counts of L. acidophilus but typical counts of S. thermophilus
and L. bulgaricus [407]. Incorporating increasing concentrations of ascorbic acid of up to
250 mg/kg of probiotic yogurt led to a slower decrease in L. acidophilus counts during stor-
age [408]. The viability of bifidobacteria was improved by the addition of cysteine, whey
protein concentrate, acid casein hydrolysates, and tryptone, but not by the addition of dried
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whey [409]. Costa et al. [410] reported that incorporating oligofructose or polydextrose to a
probiotic yogurt containing L. casei improved probiotic survival and texture but lowered
flavor acceptance. Sarwar et al. [71] manufactured synbiotic yogurt incorporating 0.5%
Saccharomyces boulardii CNCM I-745 probiotic yeast and up to 2% inulin and found a slower
decrease in viability of S. boulardii during 4 weeks of refrigerated storage with yogurts
containing increasing inulin concentrations. Muzammil et al. [411] manufactured frozen
yogurt supplemented with inulin and glycerol and found smaller decreases in viability of
L. acidophilus and B. lactis in frozen yogurt when supplemented with up to 6% inulin or
4% glycerol after 12 weeks of storage. Although presence of oxygen (oxidative stress) is
undesirable in yogurt (toxic to some cells, leads to production of hydrogen peroxide by
certain strains, and production of free radicals from food component oxidation), addition
of glucose oxidase for oxygen removal maintained probiotic culture viability and lactic
and acetic acid levels but increased diacetyl, acetaldehyde, conjugated linoleic acid, and
polyunsaturated fatty acid levels in yogurt in the study of Batista et al. [412].

Microencapsulation is a process in which at least one potentially sensitive substance
becomes entrapped by a coating material for its protection and has recently been reviewed
by Gullo and Zotta [413]. Pour et al. [414] prepared yogurt incorporating either free or
encapsulated probiotics (L. rhamnosus and L. plantarum) and found increased survival
with probiotics encapsulated in a multi-layer emulsion (decrease of 7.59–7.65 log cfu/mL
at 1 day of storage to 7.45–7.55 log cfu/mL at 21 days of storage) versus free probiotics
(7.59–7.71 log cfu/mL to 6.82–6.93 log cfu/mL for the same times). Ajlouni et al. [415]
encapsulated L. acidophilus LA-5 and B. lactis BB-12 and added these to yogurt either before
or after yogurt fermentation. Although the encapsulated probiotic count decreased in
yogurt stored for 21 days under refrigeration regardless if added before or after fermen-
tation, the probiotic count increased after 24 h of in-vitro colonic fermentation, even after
21 days of storage. These results indicated that the encapsulated probiotics would be more
bioaccessible in the colon. Incorporation of encapsulated probiotics before fermentation
resulted in higher counts than incorporation after fermentation [415]. Dimitrellou et al. [41]
freeze-dried Lactobacillus casei ATCC 393 on casein and apple pieces to be used as an adjunct
culture for producing yogurt and found a lower pH, higher titratable acidity, less synere-
sis, altered concentration of key volatile compounds, and improved sensory properties
compared to yogurts produced traditionally. They also reported detection of greater than
107 log cfu per gram of this probiotic after 28 days of storage.

Ultrasound and packaging can be used to improve probiotic viability. The fermentation
time during yogurt manufacturing was reduced by 30 min when applying sonication after
inoculation [416]. Use of glass bottles and thicker plastic packaging can reduce oxygen
permeability into yogurt and better maintain probiotic survival [417].

Probiotics must survive not only during storage throughout its shelf-life, it must also
survive within the body for it to confer health benefits to its host. These probiotics must
survive the acidic conditions within the stomach and bile salts in the intestinal tract. In vitro
tests performed in the lab can be performed to determine if the probiotic can survive in
broth adjusted to a low pH (typically pH 2) in the acid tolerance test and in broth to which
a bile salt (oxgall) has been added in the bile tolerance test. Acid and bile tolerance of
probiotics from dairy and nondairy products was recently reviewed by Ayyash et al. [418].

13. Properties of Probiotic Yogurt

Some research projects have investigated effects of probiotic incorporation on physico-
chemical and sensory properties of probiotic yogurts. Cui et al. [419] produced cow milk
yogurt with yogurt starter cultures alone and with yogurt starter cultures combined with
probiotics (Bifidobacterium animalis subsp. lactis BB-12, L. acidophilus La-5, and L. rhamnosus
GG) and found probiotic supplementation decreased time to reach pH 4.5 and pH obtained
during storage but increased initial firmness. However, syneresis, color, and microstruc-
ture were not affected by probiotic supplementation. Soni et al. [420] prepared yogurt by
incorporating individual probiotics (L. acidophilus, L. casei, L. plantarum, and B. bifidum)
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and certain combinations of these probiotics, and found that the incorporated probiotics
affected various nutritional, physicochemical, organoleptic, and probiotic properties. Addi-
tionally, these authors found that using a combination of probiotics resulted in improved
texture and often better probiotic potential. He et al. [421] reported that a higher viscosity
resulting from probiotic addition is due to increased total solids content and increased
packing of the three-dimensional casein cluster network arising from exopolysaccharide
production. Similarly, de Morais et al. [30] reported a higher viscosity for their probiotic
goat milk Greek-style yogurt than for their control yogurt, probably arising from increased
exopolysaccharide production by their Limosilactobacillus mucosae adjunct culture.

Mixed results have been reported for the effects of probiotic incorporation into yo-
gurt on sensory properties. Some studies found that addition of probiotics to fermented
milk or yogurt does not significantly affect sensory properties [400,422,423]. However,
Hussain et al. [424] purchased probiotic and natural yogurt in the UK and found that
the probiotic yogurt was organoleptically favored over the natural yogurt. Likewise, the
probiotic goat milk Greek-style yogurt in the de Morais et al. [30] study received higher
sensory scores for color, flavor, texture (at 28 days), and overall acceptance than their
control yogurt.

14. Greek Yogurt Acid Whey

Production of Greek yogurt leaves acid whey as a by-product. Although this Greek yo-
gurt acid whey is commonly spread on fields for use as a fertilizer or fed to livestock, it does
have potential uses in foods. Smith et al. [425] neutralized this Greek yogurt acid whey and
claimed that it can be incorporated into bakery, beverage, snack, confectionery, soup, dry
meal, dairy, and cereal products. Food uses for Greek yogurt acid whey can include utiliza-
tion in ranch dressing [426], in pancake and pizza crust [427], and milk protein concentrate-
based extruded snack product [428]. Rivera Flores et al. [429] prepared a beverage by
fermenting Greek-style yogurt acid whey using pure cultures of Saccharomyces cerevisiae,
Kluyveromyces marxianus, Brettanomyces claussenii, or Brettanomyces bruxellensis and using a
yeast nitrogen base supplemented with lactose, glucose, or a 1:1 mixture of glucose and
galactose under aerobic conditions. For the glucose and galactose mixture for B. clausenii,
all of the glucose was consumed with acetic acid production, but galactose was not utilized,
conferring this beverage with prebiotic properties. Dufrene et al. [430] manufactured a
pineapple-flavored probiotic acid whey drink incorporating L. acidophilus and found some
survival of L. acidophilus after 4 weeks of storage.

15. Conclusions

A wide range of probiotic strains can be added to yogurt and yogurt-like products.
Many different innovations and unique selling points can be found for probiotic yogurt
already on the market. There are many different forms of probiotic yogurt (spoonable,
drinkable, concentrated (Greek), dried, low lactose, shelf-stable, frozen), and probiotic
yogurt may be used as an ingredient, including as a coating or as a snack, in many other
types of foods. Many research papers have described useful functional ingredients that
have been added to probiotic yogurt. It is important to maintain viability of these probiotics
during their shelf-life and within the body for the consumer to obtain the health benefits,
and many factors and technologies can be used to improve their probiotic counts and their
shelf-life. As with any type of food product, ensuring food safety is critical, especially for
critically ill patients and other susceptible populations. Even the acid whey by-product
from Greek yogurt manufacturing can be used as an ingredient in other food products or
incorporated with probiotics to form a probiotic by-product beverage. The wide variety
of available probiotics, methods for improving probiotic viability, and forms and uses of
probiotic yogurt present many exciting opportunities for new product development to
improve sales and consumer health.
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