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Abstract: Polymer-based composites with a high dielectric property have shown great potential in
electrical energy storage applications. It is important to predict the dielectric constant in designing
polymer composites, but it is costly and time consuming. In this study, dielectric properties of various
polymer composites have been predicted by using an artificial neural network (ANN) model trained
with hundreds of experimentally measured data. Eight variables such as the dielectric constant of
matrix, filler, and shell, the diameter of filler, the volume fraction of filler, the dimension of filler, the
thickness of shell, and the frequency were considered. To improve the prediction accuracy, hyper
parameters of the ANN model were optimized through the hyperband method. Using the ANN
model, we demonstrated the correlation between the dielectric constant of polymer composites and
the variables. The ANN model predicted the dielectric constant with a coefficient of determination
(R2) of 0.97. Furthermore, the ANN model shows good performance to predict dielectric constant
at various frequencies (spanning from 100 Hz to 100 kHz). Hence, we present that the AI-based
prediction model using ANN method can be helpful in designing the polymer composites with
desired properties.

Keywords: dielectric; polymer matrix; filler; composite; neural network

1. Introduction

Dielectric capacitors have been used in pulsed power weapons, electrical power
systems and hybrid electric vehicles (HEVs) due to their capability of ultrafast charging-
discharging rate and ultrahigh power density [1,2]. In particular, dielectric polymers such
as polyvinylidene fluoride (PVDF) are one of the most promising material candidates for
high-density energy storage applications because of their high breakdown strength, low
dielectric loss, facile fabrication, low cost, and flexibility [3,4]. Dielectric materials store
electrostatic energy through reversible orientation polarization under applied electric field.
High discharged energy density can be attained by high dielectric property. However,
most dielectric polymers have a low dielectric constant, which limits their application
to energy storage devices. In order to improve their dielectric properties, many stud-
ies have been conducted by introducing high dielectric constant ceramic fillers such as
BaTiO3 [5], BaSrTiO3 [6], and Pb(Zr,Ti)O3 [7] as fillers into polymer matrices to improve
their dielectric properties.

It is important to predict the dielectric constant of the polymer composites to achieve a
desirable energy density. However, it is difficult to predict the dielectric constant of the poly-
mer composites because of nonlinearity in the increase of a dielectric constant and diverse
factors such as filler’s morphology, post processing of filler, and frequency [8–12]. In order
to predict the dielectric constant of a polymer composite, the methods of using theoretical
prediction models or directly measuring through experiments has been used. Luo et al. [13]
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introduced modified Rother–Lichtenecker, Maxwell–Wagner, and Jayasundere–Smith mod-
els to compare experimental data and prediction models. Zak et al. [14] used Maxwell,
Furukawa, and Rayleigh prediction models to compare which models showed high accu-
racy with experimental data. However, these theoretical prediction models have limitations
in predicting the dielectric constant of composites. It is difficult to consider all factors,
so the theoretical models approximate many factors except for main variables. These
models use only a dielectric constant of a matrix and filler, and filler’s volume fraction
excluding other conditions such as filler’s morphology and size, frequency, and filler’s post
processing. Therefore, the theoretical models can predict the dielectric properties in only
simple composite models.

With the advent of machine learning (ML) technology based on experimental and
computational data, the machine learning method has been widely applied as a popular
and powerful alternative for material and structural design or for predicting electrical prop-
erties. Shen et al. [15] introduced a ML model to study the effect of nanoparticles physical
properties on the breakdown strength of poly(vinylidene fluoride)-co-hexafluoropropylene
[P(VDF-HFP)]-based nanocomposites, which was performed on a dataset from the high-
throughput phase-filed simulations. Yi et al. [16] applied a ML model to investigate the
influence of the polymer’s key molecular descriptors on the dielectric constant. Although
these studies opened up chances for ML and data-driven methods in dielectric polymer-
based composite, comprehensive research on a more practical predictive model considering
various important factors to predict the dielectric constant has not yet been considered.

In this study, an ML model based on an artificial neural network is developed to
predict the dielectric property of polymer composites using hundreds of experimentally
measured data from existing references in consideration of various polymer matrices and
ceramic nanofillers. An artificial neural network (ANN) network is trained with collected
data considering the dielectric constant of matrix, filler, and shell, volume fraction, diameter
and morphology of filler, operating frequency, and shell thickness in core–shell structures.
In order to improve the model prediction performance, the model structure is optimized
by a hyper parameter method [17]. In addition, the main factors dominating the dielectric
constant of the polymer composite is studied by using the ANN model and a desirable
polymer composite model with a high dielectric constant is presented.

2. Materials and Methods
2.1. Data Collection and Model Variables Description

The experimental data for various polymer-based composites were collected to train
the ANN model for predicting dielectric constants from the references [18–49]. Table 1
shows the kinds and dielectric constants of all polymer matrices and ceramic nanofillers
used in this work [50,51].

From the data points, the four groups of input parameters were considered: (i) the
properties of matrix and filler (dielectric constant, diameter of filler, and volume fraction),
(ii) the morphology of filler (particle [0D], nanowire [1D], and nanosheet [2D]), (iii) the prop-
erties of shell (dielectric constant and thickness), and (iv) operating parameter (frequency),
as shown in Figure 1.

The total experimental datasets available for modeling was 744. The data used in
this study show the distribution of a normalized εr εcomposite/εmatrix) with a range from
0.25–5.75 in Figure 2. The normalized εr of most composites exceeds 1 with an average value
of 1.27, indicating that the dielectric constant is enhanced by adding ceramic nanofillers
due to their higher dielectric constant. In other hands, some data show values below 1,
which is the case with nanofillers with a lower dielectric constant than polymers such as
boron nitride (BN). Model training mainly concentrated on minimizing a mean squared
error (MSE) to estimate the accuracy of the prediction model given as

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (1)



Appl. Sci. 2022, 12, 12592 3 of 12

where yi is measured output data from the result in previous research, ŷi is a calculated
output data from the prediction model, and N is a total number of datapoints.

Table 1. The dielectric constant values for different polymer matrixes and nano ceramic fillers.

Matrix Dielectric Constant Filler Dielectric Constant

Polypropylene, (PP) 2.1 BNNS 4
Polyimide, (PI) 3.2 Al2O3 9.4

Poly(vinylidene fluoride-co-hexafluoropropylene),
P(VDF-HFP) 8.4 TiO2 110

Polyvinylidene fluoride,
(PVDF) 8.6 NaNbO3 200

Poly(vinylidene fluoride-trifluoroethylene),
P(VDF-TrFE) 12 SrTiO3 200

Poly(vinylidene fluoride-co -chlorotrifluoroethylene,
P(VDF-CTFE) 12.3 BaSrTiO3 300

Poly(vinylidene
fluoride-trifluoroethylene-chlorofluoroethylene),

P(VDF-TrFE-CFE)
41 BaTiO3 1000

Poly(vinylidene
fluoride-trifluoroethylene-chlorotrifluoroethylene),

P(VDF-TrFE-CTFE)
42

Figure 1. Schematic of the input parameters in the machine learning.

Figure 2. Distribution of normalized εr for all samples in the dataset.
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2.2. Development and Optimization the ANN Model

ANN consists of interrelated adaptive network components inspired by the regulation
of connected neurons in the human brain and can perform large-scale parallel computations
for data processing [52]. Typically, the network components of ANN are composed of layer,
node, and connection. Figure 3 shows the structural design of the ANN model with input,
hidden, and output layers. The MATLAB version R2021a was used to build the ANN
model structure. To perform model training, the 774 experimental databases were divided
into training, validation, and testing datasets with 70%, 15%, and 15%, respectively.

Figure 3. Schematic of the ANN model structure with input, hidden, and output layers.

Before model training, it is important to optimize the number of hidden layers and
nodes to improve a prediction accuracy. The hyper parameter optimization was conducted
using Python 3 through a hyperband method [17]. The model was evaluated by increasing
the number of layers from 2 to 5 and the number of nodes from 16 to 64 by 16 steps. The
rectified linear unit (ReLU) was used to optimize the model as an activation function. The
Adam was selected for optimizer. The results of optimization are shown in Table 2, and the
best performance model had 4 hidden layers, 48, 32, 32, and 16 nodes at the hidden layers,
and a learning rate of 0.001.

Table 2. Top 5 model structures in the hyperband optimization.

Ranking 1 2 3 4 5

No. of hidden layers 4 3 2 4 3

No. of
nodes

Layer 1 48 64 32 48 48
Layer 2 32 64 32 48 32
Layer 3 32 48 32 32
Layer 4 16 16

Learning rate 0.001 0.001 0.001 0.01 0.001
Mean squared error 0.1372 0.1384 0.1416 0.1429 0.1431

3. Results & Discussions
3.1. Training of the ANN Model

Figure 4 shows the MSE drops of the proposed ANN model until 200 epochs when
the network learns as expected for a well-trained ANN. This is a good indication of the
network’s learning process. The blue line and red line represent the decreasing error of the
training and validation data, respectively. It measures the network generalization ability
and stops training as soon as the generalization does not improve. As shown in Figure 4,
the training error was smaller than the validation error as expected, and the error lines
were continuously decreased without overfitting.
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Figure 4. Training and validation loss curves of the ANN over epochs.

The results of predicted εr and experimental εr of composites are shown in Figure 5.
The ANN model had high accuracy in the prediction of composite’s dielectric constant.
Figure 5a presents the prediction results were trained by all 744 databases with a high
coefficient of determination (R2) of 0.95. The three red circles indicate relatively larger errors
between the predicted εr and experimental εr than the other predicted values. Although the
prediction error of some data points are relatively large, the ANN model shows a pretty high
prediction accuracy. Data points in red circles were collected from the reference [18] using
P(VDF-TrFE-CFE) as the matrix and a relatively high frequency of 106 Hz. Ferroelectric
matrices with high dielectric constant can abruptly decrease dielectric constant at high
frequencies, and under these conditions, there were only a limited number of data points in
this study. Figure 5b shows the accuracy of an ANN model trained without the data in red
circles. As expected, the prediction accuracy is higher than Figure 5a with the R2 of 0.97.

Figure 5. Dielectric constant prediction accuracy between ML prediction vs. experimental values
from (a) original dataset and (b) modified dataset.

3.2. Correlation Analysis of Variables

The Pearson coefficients between various input parameters and composite’s εr were
calculated to discover the key factors, as shown in Figure 6. The Pearson coefficient ranges
from −1 to 1 with −1 representing the strongest negative correlation and 1 representing
the strongest positive correlation [53]. The largest positive correlation to εr is dominated
by εrm and filler’s volume fraction, while the most negative correlation comes from shell’s
thickness. The εr f has also a positive correlation to εr, but considering that the correlation
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coefficient of εrm is higher than that of εr f , it can be seen that the dielectric constant of the
polymer matrix is more dominant to increase the dielectric constant of the composite. On
the other hand, the operating frequency and thickness of the shell are negatively correlated
with εr. The shell plays a role to compensate a dielectric mismatch between polymer
matrices and ceramic fillers in core–shell structure. It shows that the shell is important
for the purpose of increasing breakdown strength, but it is consistent with the results of
previous studies that it plays a negative role in terms of increasing dielectric constant [54].

Figure 6. Pearson coefficients between the eight input variables and composite’s dielectric constant.

In polymer-based composites, the dielectric constant of the composites primarily
depends on the dielectric constant of the matrix and filler, and filler’s volume fraction
as shown in Figure 6. The combined effect of the dielectric constant of matrix and filler,
and the volume fraction of filler on composite’s dielectric constant was studied using
the ANN as shown in Figure 7a–c. When we set the x-axis and y-axis with the main
variables, the other variables are fixed based on the most overlapping data, with a filler
diameter of 200 nm, a filler dimension of 1D nanowire, a frequency of 1 kHz, and without
a core–shell structure. Figure 7a,b show the combined effect of the dielectric constant of
matrix and filler, and the volume fraction of filler, respectively. As we can estimate, the
dielectric constant of the composite shows a typically proportional tendency to increase
as the dielectric constant of the matrix and the volume fraction of the filler increase. In
Figure 7b, there are some distortion contour lines. It is derived from insufficient data
with the dielectric constants of filler between about 500 and 800. Despite the lack of data,
it shows the tendency of the composite’s dielectric constant to generally increase as the
dielectric constant and the volume fraction of the filler increase. When matrix and filler’s
dielectric constant are considered together in Figure 7c, it shows the same tendency as in
Figure 7a,b that composite’s dielectric constant increases as matrix and filler’s dielectric
constant increase. Furthermore, it is presented to discuss the effect of minor variables such
as filler’s diameter and shell’s thickness in Figure 7d,e. When it comes to filler’s diameter,
the dielectric constant of the composite represents a general tendency to decrease as the
filler’s diameter decreases. This is mainly attributed to the lowered dielectric constant of
filler caused by decreasing particle size. The dielectric constant of nanofillers decreases
with decreasing particle size due to depolarization fields, surface properties, electrical
boundary conditions, and defects [55]. As for the effect of the shell’s thickness, it shows the
tendency of the composite’s dielectric constant to decrease as the shell’s thickness increases.
This is because in the core–shell structure, the shell reduces the high electrical mismatch
between the filler and the matrix. Therefore, as the shell’s thickness increases, the electrical
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mismatch and the effect of filler introduction to increase the composite’s dielectric constant
are reduced at the same time [56]. It can be seen in Figure 7a–e that the dielectric constant
of the polymer composites through the ANN model can be predicted without a theoretical
model or empirical measuring method regarding the major and minor parameters.

Figure 7. 2D contour plots showing combined effect of (a) matrix’s dielectric constant, (b) filler’s
dielectric constant and filler’s volume fraction, (c) matrix and filler’s dielectric constant, (d) filler’s
diameter, (e) shell’s thickness and filler’s dielectric constant.
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3.3. Influence of Variables on Dielectric Constant
3.3.1. Effect of Filler Dimension

Figure 8 presents the predicted dielectric constant depends on three types of different
filler’s dimensions (0D, 1D, and 2D) as a function of filler volume fraction. The predicted
εr of 0D nanoparticle and 1D nanowire increases with the volume fraction, while 2D
nanosheet decreases with the volume fraction. It is derived from the different ceramic
filler’s shape (0D, 1D, and 2D). Compared to spherical nanoparticles (0D), nanofibers or
nanowires (1D) can induce higher dielectric constants at much lower concentrations due to
their large dipole moments as a result of their high aspect ratio [54]. On the other hand,
BN(εr ~ 4) used in this study as the 2D nanosheet filler, has a lower dielectric constant than
P(VDF-HFP) (εr ~ 8.4), used as a matrix, showing a tendency to decrease as the volume
fraction increases.

Figure 8. Predicted dielectric constant depends on different filler’s dimensions as a function of filler
volume fraction.

3.3.2. Effect of Operating Frequency

In general, the dielectric constant of a dielectrics comes from the result of complex
interactions of a total of four polarizations: (i) the electronic polarization between the
nucleus and electrons of an atom, (ii) the ionic polarization between a cation and an
anion, (iii) the directional polarization according to the orientation of the permanent
dipoles, and (iv) the space charge polarization caused by the movement of charge carriers
(electron, hole, ion, and vacancy) to form a space charge [54]. For these polarizations
to appear, a displacement of the charged particle must occur. When the applied electric
field is alternating current, polarization can occur only when the displacement of the
particle follows the change in the direction of the electric field. Therefore, as the charged
particles are heavier, they cannot respond to high-frequency electric fields, and the dielectric
constant decreases gradually. Although it is important to predict the dielectric constant with
increasing frequency because of these characteristics, it has not been studied much [55,56].

To further confirm the accuracy of the ANN model with increasing frequency, three
polymer composites were considered: P(VDF-TrFE-CFE)/BaTiO3 nanoparticle, P(VDF-
HFP)/TiO2 nanowire, and P(VDF-HFP)/BN nanosheet. The normalized εr as a function
of volume fraction with the increasing frequency range from 100–100 kHz is shown in
Figure 9a–d. It can be seen that the trends of the volume fraction and frequency-dependent
εr for the three composites are predicted fairly well. The normalized εr of P(VDF-TrFE-
CFE)/BaTiO3 nanoparticle and P(VDF-HFP)/TiO2 nanowire increases with the volume
fraction, while P(VDF-HFP)/BN nanosheet decrease with the volume fraction, which agree
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with Figure 8. When we compared the experimental and predicted values, there is no big
difference with increasing frequency until 100 kHz. From the above, the ANN models can
well show high accuracy between predicted εr and experimental εr at various frequency
ranges.

Figure 9. Comparison of experimental and predicted dielectric constant as a function of filler volume
fraction depends on increasing frequency: (a) 100 Hz, (b) 1 kHz, (c) 10 kHz, and (d) 100 kHz.

4. Conclusions

In this work, a machine learning driven an ANN model was developed to rationally
design the desired dielectric constant of polymer composites, using hundreds of experi-
mentally measured data. The hyper parameters were optimized by a hyperband method to
improve the prediction performance. The designed ANN model can represent the corre-
lations between 8 input variables and a dielectric constant of polymer composite with an
accuracy of 97%. The main conclusions obtained from this ANN model are listed as the
follows. Firstly, when considering the polymer matrix and the ceramic filler, it was found
that the dielectric constant of the matrix was more dominant in increasing the dielectric
constant of the composite than that of the filler. Secondly, regarding the dimension of the
filler, it was shown to increase the dielectric constant of the composite in the order of 1D and
0D. As for 2D, additional studies are required because other 2D fillers except BN were not
considered in this study. Lastly, the ANN model shows a good prediction performance for
a dielectric constant at various frequencies (spanning from 100 Hz to 100 kHz). Therefore,
we demonstrated the AI-based ANN model can design the dielectric constant of polymer
composites for a high energy density in electrical energy storage applications.
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