
Citation: Mishra, S. An Optimized

Gradient Boost Decision Tree Using

Enhanced African Buffalo

Optimization Method for Cyber

Security Intrusion Detection. Appl.

Sci. 2022, 12, 12591. https://

doi.org/10.3390/app122412591

Academic Editor: Enno van der Velde

Received: 20 October 2022

Accepted: 1 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Optimized Gradient Boost Decision Tree Using Enhanced
African Buffalo Optimization Method for Cyber Security
Intrusion Detection
Shailendra Mishra

Department of Computer Engineering, College of Computer and Information Sciences, Majmaah University,
Al Majma’ah 11952, Saudi Arabia; s.mishra@mu.edu.sa

Abstract: The cyber security field has witnessed several intrusion detection systems (IDSs) that are
critical to the detection of malicious activities in network traffic. In the last couple of years, much
research has been conducted in this field; however, in the present circumstances, network attacks
are increasing in both volume and diverseness. The objective of this research work is to introduce
new IDSs based on a combination of Genetic Algorithms (GAs) and Optimized Gradient Boost
Decision Trees (OGBDTs). To improve classification, enhanced African Buffalo Optimizations (EABOs)
are used. Optimization Gradient Boost Decision Trees (OGBDT-IDS) include data exploration,
preprocessing, standardization, and feature ratings/selection modules. In high-dimensional data,
GAs are appropriate tools for selecting features. In machine learning techniques (MLTs), gradient-
boosted decision trees (GBDTs) are used as a base learner, and the predictions are added to the set
of trees. In this study, the experimental results demonstrate that the proposed methods improve
cyber intrusion detection for unused and new cases. Based on performance evaluations, the proposed
IDS (OGBDT) performs better than traditional MLTs. The performances are evaluated by comparing
accuracy, precision, recall, and F-score using the UNBS-NB 15, KDD 99, and CICIDS2018 datasets.
The proposed IDS has the highest attack detection rates, and can predict attacks in all datasets in the
least amount of time.

Keywords: cyber security; IDS; GA; OGBDT; EABO

1. Introduction

Recently, the need for cybersecurity and protective measures against cyberattacks
has increased. Cyberattacks are typically criminal activities launched over the Internet.
Cyberattacks include theft of corporate intellectual property, theft of online bank accounts,
creation and distribution of malware on systems, disclosure of valuable corporate infor-
mation through public media such as the Internet, and disruption of countries’ critical
infrastructure. Thefts or losses of data or information are very serious consequences of
cyber-attacks worldwide [1]. In order to learn more, cyber threats should be studied
proactively, and the experiences of other organizations affected by cyber-attacks should
be shared [2].

In both the education and digital industries, especially small and medium enterprises
(SMEs), online and computer networks are increasingly exposed to extremely complex
cyber threats, resulting in financial losses [3]. Therefore, the research and development
of cybersecurity technologies are important for IDSs to establish the first lines of defense,
in order to prevent and respond to intrusion threats when new security issues arise. The
development of data-driven intelligent IDS can analyze various patterns of cyber events,
and then predict threats based on the examined data. Therefore, artificial intelligence (AI)
expertise that uses MLTs to learn from security datasets can play a critical role in mitigating
these threats. In the area of predictive analytics, tree-based strategies perform better
in MLTs [4].
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Modern security datasets contain rich features and dimensions in terms of security
properties, with many irrelevant features that add to the complexity of efficient cyberattack
modeling. These additional features also form the basis for several problems, such as
increased variances, leading to overfitting of data in tree-based models that learn decisions
based on single paths; an increase in computation and execution time of training models;
and a lack of model generalization [5–8]. This leads to a lower prediction accuracy of attack
detection rate. One of the most accurate metrics scores, the accuracy score, illustrates how
effectively the model generates correct forecasts in general.

Therefore, the main goal of this work is to minimize the security problems described
above and to develop efficient data-driven IDS for cybersecurity. To achieve this goal, this
work proposed OGBDT-IDS based on MLTs for network security. The proposed scheme
helps to mitigate the above problems. First, the security features are ranked according to
their modeling relevance, and then a tree-based generalized IDS is constructed based on
the selected relevant features using GAs. Model validation of the OGBDT trees created in
training is performed using test data. By reducing overlap in modeling, the computational
complexity of the proposed model is reduced by dimensionality reduction before gener-
ating the results. The proposed scheme is ideal for the improved prediction of new and
not-found cases.

The contributions of this research are listed below:

1. For high-dimensional data, MLTs are proposed as a method for ranking the importance
of security attributes using Gini indices.

2. OGBDT-IDS is a network security technique based on MLTs that produces trees using
derived attribute ranks and selects important features using GAs.

3. To maximize the predictive power of the GBDT models, an OGBDT is created based
on the selected significant attributes. Hyperparameters can be tuned manually or by
automated methods, such as those based on EABOs.

4. The proposed IDS (OGBDT-IDS) is then evaluated through experiments. The experi-
mental results of this study with test data show that the proposed methods improve
cyber intrusion detection for new and unused cases.

The performance of the proposed OGBDT-IDS is compared with the existing one given
in the literature [6–11], for validation reasons. OGBDTs perform better than all other models
in terms of accuracy. In all datasets, OGBDTs can predict attacks in the least amount of time.
By simultaneously optimizing GBDTs and improving classification results, the proposed
OGBDTs framework can significantly improve cyber-attack classification performance.

After this introductory section, Section 2 describes the background and relevant work
on IDSs. Section 3 describes the tree structures used in MLTs for IDSs and the proposed
OGBDT-IDS. Section 4 explains the performance evaluation of the final security model
and examines the results of experiments conducted on the cybersecurity dataset. Finally,
Section 5 concludes this paper and analyzes the planned future work.

2. Related Work

The growing demands for strong and effective IDS have sparked the interest of
academic researchers in suspicious activity detection and cyberattacks. MLTs have the
potential to play an important role in the development of intelligent and effective IDSs.
Recent MLT approaches proposed to predict attacks on communication networks are based
on tree-based approaches [12].

Rahouti et al. [13] and Babiker Mohamed et al. [14] proposed an integrated approach
that combines two methods: “security with SDN” and “security for SDN”, to better protect
globally connected Internet networks from cyberattacks. Sarker et al. [15] proposed a
behavior-based method based on DTs (decision trees) to predict user actions in multidi-
mensional environments. Gifty et al. [16] focused on the security and privacy management
of CPS, and proposed a reliable IDS with reduced failures for Big Data environments.
Improved predictive algorithms to efficiently identify attacks in a given network have also
been the focus of several research papers.
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Puthran and Shah [17] focused on the poor performance of the ID3 algorithm for Probe,
R2L, and U2R attacks. Their model was developed to increase the prediction accuracy
while keeping the processing complexity to a minimum (i.e., adaptations and execution
times). The goal of this research was to raise awareness of this issue by analyzing the risks
associated with DMPC techniques and reviewing defense strategies. Several examples
are given at the end to show the way these defense strategies are implemented in DMPC
controllers [18]. However, this only shows the development of simple rules. Sarkar [19]
proposed Cyber Learning based on binary classifications where anomalies were identified,
while their multi-class classifications could detect cyber-attack types.

A study by Reference [20] found that 142 papers between 2010 and 2015 used the
KDD99 dataset. The dataset includes five classes (Normal, DoS, Probe, Remote-to-Local
(R2L), and User-to-Root) and 41 features (excluding the labels) (U2R). The training and
testing sets of the KDD99 [21] contain 494,021 and 311,029 records, respectively. The DoS
class holds the most records, followed by the Normal class. Furthermore, there are more
entries classed as R2L in the testing set. Numerous duplicate records were discovered in
this set of records.

The freely accessible UNSW-NB15 dataset [22] consists of 42 features and ten classes
(Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode,
and Worms) (not including the labels). Its testing set contains 82,332 records, while its train-
ing set contains 175,341 records. Unevenness also exists in the UNSW-training NB15 classes
and test sets.

CSE-CIC-IDS2018 [23] is the most recent and realistic cyber dataset from the Canadian
Establishment for Cybersecurity (CICmost). CIC and ISCX datasets are used globally for
malware identification and intrusion detection. The primary objective of this dataset is to
develop a methodological framework for handling the generation of diverse and compre-
hensive benchmark datasets, for the purpose of intrusion detection on the generation of
client profiles, which contain theoretical representations of actions and behaviors carried
out on the system. The dataset comprises the captures, structured traffic, and system logs
of each machine, as well as 80 highlights that were taken from the traffic recorded using
CICFlowMeter-V3.Java code, which was used to create CICFlowMeter-V3, a network traffic
flow generator with good control over the features and time flow duration. This particular
dataset is prepared as a CSV document containing six key features—SourceIP, FlowID,
DestinationIP, DestinationPort, and SourcePort—and 80 features designated as Protocol [9].
Intrusion detection in the internet of things is performed using the supervised machine
learning algorithm and the UNSW-NB15 dataset discussed in [10].

Utilizing KDD99 Data and the UNSW-NB 15 Dataset with a gradient-boosted machine,
anomaly detection was conducted [11]. The first step in developing the security framework
was to apply common MLTs, including NBs (naïve Bayes), LRs (logistic regressions), SGDs
(stochastic gradient descents), KNNs (K-nearest neighbors), SVMs (support vector ma-
chines), DTs, RFs (random forests), adaptive boosting, extreme gradient boosting, and LD
||As (linear discriminant analyses). Subsequently, a security architecture based on ANNs
(artificial neural networks) has also been included, which takes into account numerous
hidden layers.

A new approach iReTADS was proposed in [24] to increase network security, while
reducing network traffic by leveraging a potent real-time neural network for data sum-
marization. Although data summarizing is a crucial part of data mining, there are no
reliable ways to evaluate the summary at the moment. The goal of Li and Liu’s study
in [25] was to explore the challenges, drawbacks, and benefits of the proposed approaches
by examining and thoroughly analyzing cybersecurity developments. Jahromi et al. [26]
described two-stage attack detection and attribution models which they developed for CPS,
and specifically for ICS (industrial control systems). First, DTs were integrated with new
Ensemble Deep Representation Learning models to detect attacks in unbalanced scenarios
of ICS. In the next phase, Ensemble Deep Neural Networks (DNNs) were used to charac-
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terize attacks. The proposed model was tested on practical datasets of gas pipelines and
water treatment systems.

Zhang et al. [27] proposed a technique for detecting attacks on cyber-physical systems.
In their work, KNNs, DTs, bootstrap aggregations or bagging, and RFs were studied
as classification models. In their proposed study, an auto-associative kernel regression
model was used to improve the timely detection of attacks. Although the proposals were
accurate, due to technical issues, their results were not sufficient. To predict attacks in
virtual networks, Sedjelmaci et al. [28] developed Bayesian game theory IDS to prevent
and predict future activities of monitored vehicles.

Cui et al. [29] proposed attack detection modules relying on Hilbert–Huang transforms
and DLTs to detect attacks on DCs (direct current networks), MGs (microgrids), and DGs
(distributed power generations). Their KHOs (Krill Swarm Optimizations) were a DLT for
current election groups. DTs can play an important role in the development of IDS; however,
these systems must handle large amounts of network traffic with multidimensional data,
while being resilient and effective, and also reducing computational complexity with
increased accuracy in their detection processes.

The African Buffalo Optimal Decision Tree (ABODT) is an algorithm proposed by
Panhalkar, A.R., and Doye, D.D. [30] that uses the intelligent and social behavior of African
buffalos to generate globally optimized decision trees. In order to use the African buffalo
optimization (ABO) method as an optimizer to change the weights of the probabilistic
neural network, Alweshah, M. et al. [31] suggested a hybridization strategy (PNN). It is
critical to limit the number of input variables so as to reduce the computational cost of
modeling and improve model performance in certain cases. A decision tree is a classification
technique that can help in knowledge extraction from a database. When there are more
features and instances, databases grow tremendously quickly and accumulate much data.
Although decision trees have several issues, their key drawbacks are instability, local
judgments, and overfitting for this enormous amount of data.

3. Research Methodology

Data exploration, preprocessing and standardization, and ranking and selection are the
three key components of the proposed OGBTD IDS. These stages are necessary to develop
tree-based IDS methods that select features based on ranks. In the final two modules,
the data are trained and put to the test to determine how effectively it can categorize
cyberattacks. Figure 1 shows the suggested framework, and the following sections evaluate
each stage of the model in more detail.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 
Figure 1. An optimized gradient boost decision trees-based IDSs model. 

3.1. Input Dataset and Data Exploration 
Data quality is one of the most important factors for the prediction accuracy of the 

proposed predictive models in data mining methods. Therefore, in this framework, the 
data are explored in the step of data exploration to learn more about their characteristics 
and evaluate the data integrity, and the data are cleaned. In addition, the features are ex-
plored to find their data types, namely numeric or categorical. The dataset in this study is 
from UNSW-NB 15 [21], KDD99 [22], and CSE-CIC-DS2018 [23]. The dataset UNSW-NB 
15 was developed at the Australian Centre for Cybersecurity’s Cyber Range Lab, and con-
tains 42 features, including attack data. The class features of the dataset define whether 
the activities are normal or attacks. The attack type attribute was not included in this re-
search, because it did not fit within the scope of this study. After data exploration, 42 
features were selected, and the attributes were quantitative, except for the service, proto, 
and state attributes. The KDD 99 dataset contained 41 attributes, of which three (protocol 
type, service, and latency) were qualitative and the rest were quantitative [20]. Seven dif-
ferent attack scenarios, including brute force, botnet, denial of service, distributed denial 
of service, online attacks, and network infiltration, are included in the CSE-CIC-DS2018 
dataset. After data exploration, 41 features were selected from the raw network data. 

3.2. Steps in Data Preprocessing and Standardization 
This section includes checking the presence of input features that are redundant in 

the datasets, translating the available nominal input features into the numerical form, 
mapping them to the same scale, extracting the most useful input features to prevent the 
features from biasing the classification results, and reducing the computational burden 
during the visualization phase [20]. The mapping of input features to the same scale was 
performed using six algorithmic data transformations, namely normalizers, scalers (Min-
Max, Robust, and Standard), and transformers (Quantile and Power), along with their 
suitability for numerical inputs. In the earlier section, the nominal security features whose 
encoding was to be performed were recognized, including Proto, Service, and State. Two 
techniques (encodings) can be used in this context. The use of label encoding was chosen 
instead of One Hot Encoding because the number of nominal security features is increased 
when One Hot Encoding is used. All feature values are converted to numeric values using 
the Label Encoding method [32,33]. The following step refers to features with different 
value distributions or scales that are not similar. This technique is considered important 
for data preprocessing, and should be completed before tree-based IDSs process the data. 

Figure 1. An optimized gradient boost decision trees-based IDSs model.



Appl. Sci. 2022, 12, 12591 5 of 16

3.1. Input Dataset and Data Exploration

Data quality is one of the most important factors for the prediction accuracy of the
proposed predictive models in data mining methods. Therefore, in this framework, the data
are explored in the step of data exploration to learn more about their characteristics and
evaluate the data integrity, and the data are cleaned. In addition, the features are explored
to find their data types, namely numeric or categorical. The dataset in this study is from
UNSW-NB 15 [21], KDD99 [22], and CSE-CIC-DS2018 [23]. The dataset UNSW-NB 15 was
developed at the Australian Centre for Cybersecurity’s Cyber Range Lab, and contains
42 features, including attack data. The class features of the dataset define whether the
activities are normal or attacks. The attack type attribute was not included in this research,
because it did not fit within the scope of this study. After data exploration, 42 features
were selected, and the attributes were quantitative, except for the service, proto, and state
attributes. The KDD 99 dataset contained 41 attributes, of which three (protocol type,
service, and latency) were qualitative and the rest were quantitative [20]. Seven different
attack scenarios, including brute force, botnet, denial of service, distributed denial of service,
online attacks, and network infiltration, are included in the CSE-CIC-DS2018 dataset. After
data exploration, 41 features were selected from the raw network data.

3.2. Steps in Data Preprocessing and Standardization

This section includes checking the presence of input features that are redundant in the
datasets, translating the available nominal input features into the numerical form, mapping
them to the same scale, extracting the most useful input features to prevent the features
from biasing the classification results, and reducing the computational burden during the
visualization phase [20]. The mapping of input features to the same scale was performed
using six algorithmic data transformations, namely normalizers, scalers (Min-Max, Robust,
and Standard), and transformers (Quantile and Power), along with their suitability for
numerical inputs. In the earlier section, the nominal security features whose encoding
was to be performed were recognized, including Proto, Service, and State. Two techniques
(encodings) can be used in this context. The use of label encoding was chosen instead of
One Hot Encoding because the number of nominal security features is increased when
One Hot Encoding is used. All feature values are converted to numeric values using the
Label Encoding method [32,33]. The following step refers to features with different value
distributions or scales that are not similar. This technique is considered important for
data preprocessing, and should be completed before tree-based IDSs process the data. All
features in the dataset that have a significant variation in the scale of the data are rescaled,
so that the values for each feature F represent a mean of zero with a variance of one.

Fnewscale =
Foriginal − F

σ
(1)

where Fnewscale denotes the feature’s new-scaled value, while Foriginal denotes the feature’s
original values, F denotes the feature’s mean, and σ denotes the standard deviation. All
features are scaled, encoded, and ranked for the selection processes.

3.3. Features Ranking Using Gini Index

Supervised MLTs, such as DTs, require appropriate use of approaches to identify
the most effective attributes that can impact decision-making processes. Two common
approaches are generally considered for this purpose, namely information gains and Gini
indices. The former indicates that features with maximum information gains are used as
root nodes of DTs, while the latter specifies the features with the lowest GIs (Gini indices)
for binary splits (decisions for nodes) [34]. In this work, ranks are added to features before
evolving trees. Gini indices are added to the feature ranks to detect imprecision in the
features. Gini indices are calculated by subtracting one from the sum of the squared
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probabilities of the classes. According to [35], GIs for characteristics (n) can be calculated
using Equation (2).

GI(n) = 1−
c

∑
i=1

(Pi)
2 (2)

where Pi denotes the likelihood of tuples in n that belong to separate security classes. This
work uses threshold values (t = 0.02) for discovering the most relevant qualities of features
in its suggested framework based on tree structures. It is important to realize that this
number might change depending on the dataset in question.

3.4. Feature Selection Using a Genetic Algorithm

Here, the Genetic Algorithm [36] used is based on a feature selection method to
select useful features. In the Genetic Algorithm, different combinations of features are
called chromosomes, and every chromosome is be evaluated by the Fitness Function.
According to the fitness value, only the highest-scored chromosome can survive to the
next evolution round. The new chromosome replaces the old one in the total chromosome
pool, which is called the initial population. When the evolutionary loop stops, relatively
characteristic features are selected as an output of the Genetic Algorithm. Figure 2 illustrates
the flowchart of the proposed feature selection process. The initial population consisted of
feature chromosomes. Features in the dataset were coded into binary formations, such as
110110111 . . . 00101101. The chromosomes were generated randomly.
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However, to capture as many attack categories as possible in both datasets, the number
of the initial population is limited to 100 to 150. From previous research, the larger the initial
population, the more complex the algorithm, and the more computation time required.
On the other hand, if the initial population is too small, the optimal performance of the
algorithm is reduced, and it can easily slip into a local optimum. Both original datasets are
split into training and test datasets, using K-fold validation during the training process.
The mutation rate and crossover rate are kept constant in the experiments. Based on the
classification results from RF, the fitness function evaluates each chromosome at the end of
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the iteration, and the feature extraction algorithm terminates when certain conditions are
met. This occurs, e.g., when the highest number of specified iterations is reached, or when
the search is complete and the maximum fitness values have not changed for 10 consecutive
generations. At the end of each evolutionary step, the chromosome with the highest score
by the fitness function replaces the chromosome with the lowest score.

A suitable fitness function should preserve chromosomes with high fitness values
and speed up the iterative process of the genetic algorithm. Moreover, in IDS, not only
the accuracy and true-positive rate, but also the false-positive rate should be included in
the fitness functions. As a result, the number of features is reduced to 19, depending on
the feature score. Figure 2 shows the features that will be used to build IDS frameworks
based on tree architectures. The data are first prepared for processing using the proposed
framework based on tree topologies. This work aims to reduce the computational com-
plexity of building IDS frameworks based on tree architectures, and, thus, to improve
their accuracy in terms of attack predictions, as the selected feature significantly affects the
decision-making processes. The following section provides an overview of the evolution of
tree-based IDS.

3.5. Proposed OGBDTs Cyber-Attack Detection

In this study, the combination of the gradient-boosting technique with EABOs is
investigated in order to find the best set of hyperparameters to maximize the predictive
performance of the cybersecurity model. Gradient-Boosted Decision Trees (GBDTS) trees
are binary trees used in assigning label predictions to instances by performing thresholding
on feature values. A decision tree t is initially specified as either a leaf that has a label
prediction ŷ or a non-leaf node

(
f , th, tle f t , tright

)
, where f detects a feature, th refers to

the respective threshold, and tle f t, tright specify the decision trees.

During the time of testing, the instance
→
x performs tree t traversal until it reaches the

leaf, setting its prediction. Particularly, for every visited non-leaf node
(

f , th, tle f t , tright

)
,

→
x is sorted into the left tree tle f t if x f ≤ th; otherwise, it is sorted into the right tree tright.

With a training set trainingset =
{→

x i, yi

}n

i
, the conventional algorithms for decision tree

learning initially predict the best label on the training set for a decision tree consisting of one
individual leaf, and later evaluate whether the loss can be reduced by substituting this leaf
with a non-leaf node, resulting in two new leaves with predictions ŷle f t, ŷ right, correspond-
ingly. The best substitute is achieved through an elaborate search of all the probable features
f and thresholds which are frequent in the training set. The predictions ŷle f t, ŷright are calcu-

lated, which reduces the loss over trainingsetle f t =
{(→

x i, yi

)
∈ trainingset

∣∣∣x f ≤ th
}

and
trainingsetright = trainingset\trainingsetle f t, correspondingly. The building recursively
continues on the new leaves and terminates if the loss cannot be reduced further or if
a certain stop condition is satisfied, e.g., the depth of the decision tree goes beyond a
particular limit.

After the GA model has generated the optimum feature subset, data classification
was carried out with the help of GBT. GBT was a boosting model, aiding in deriving an
exact model with the baseline models included sequentially. The baseline models were
trained at each stage of training to minimize the loss function. Friedman [37] developed
the GBT model and fine-tuned generalized boosting models, employing DTs in both
baseline models.

Formally, given a loss function Loss and a dataset with n instances and f features
(trainingset = {(xi, yi)}

(∣∣∣trainingset = n, xi ∈ Id, yi ∈ I
∣∣∣)), GBDT minimizes the follow-

ing objective function. Loss can be calculated using Equation (3).

L̃oss = ∑
i

Loss(ŷi, yi) + ∑
k

Reg( fk) (3)
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where Reg( f ) = γTloss +
1
2 λw2 refers to a regularization term to penalize the model

complexity. Here, γ and λ are hyper-parameters, Tloss indicates the number of leaves, and
w stands for the leaf weight. Each fk corresponds to a decision tree. Training the model in
an additive manner, GBDT minimizes the following objective function at the m-th iteration.
The GBT is initialized with a value a0. A gradient descent process was used for every training
process m to minimize the loss function. Lossmin can be calculated using Equation (4).

Lossmin =
n

∑
i=1

Loss(yi, fm−1(xi) + ambasem(xi)) (4)

DTs are built from the ground up until they hit certain constraints, such as the maxi-
mum depth. The 1st-order Taylor loss function’s expansions were calculated in training
phases, and Fim was calculated for finding the diminishing direction ambasem(xi). GBTs
chose features with maximum information gain, such as the tree’s root node, where root
nodes then distribute additional characteristics into child nodes with the next best in-
formation gain. Iterations of the division and addition processes resulted in new sets
of grandchild nodes. The input space (I) was divided into km joint regions I1m, I2m, Ijm,
with estimated constant values of c1m, c2m, cjm,, correspondingly. The base learner basem(x)
constitutes the total of these predicted values. In the next step, ambasem(xi) was chosen
to minimize the loss function. At the end, the new model fm(x) was updated with the
sum of f (m− 1) and ambasem(xi). However, the highest number of rounds leads to badly
generalized models. To deal with this problem, Friedman’s algorithm uses a shrinkage
variable S on the computed technique ambasem(xi), so that the learning rate of the training
process is reduced. Further, the EABOs is used to optimize the hyperparameters of GBDT.
γ and λ are hyper-parameters, Tloss refers to the number of leaves, and w indicates the
leaf weight.

Enhanced African Buffalo Optimization (EABOs)

The EABOs can be developed using the integration of the Discrete Crossover opera-
tors (DCOs) and African Buffalo Optimization (ABO) algorithms, with the special swap
sequence operator SS principle, as shown in Algorithm 1.

Figure 3 shows an illustration of the tree structure-based framework in conjunction
with penetrating OGBDTs, utilizing a depth of 3 or d = 3 to highlight the part of trees used
for IDS that is determined by features. For instance, the branches of the tree were further
expanded after the feature was still chosen as the root node based on the Gini indices. The
decision nodes show the class names, the feature names, the Gini index, samples, and
recorded values. The class name denotes whether a specific behavior is expected or hostile.
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Algorithm 1: Enhanced African buffalo optimization algorithm

Step 1: The population size (Pop size), the learning parameters L1 and L2, the
maximum iterations count tmax, and the GBDT’s parameters, such as γ, λ, Tloss, and w,
are set. EABOs evaluate the movements (arbitrary exploitation and exploration of buffalos,
i.e., αk and βk), where the buffalos represent random parameter value
vectors, and the characteristics can be chosen. Exploitations are substitutions made up
of random sequences produced by the swap operator (S̃O).

Step 2: Buffalo’s evaluations, wherein buffalos are assessed in terms of their objective
function values, computed based on (Equation (3)).

Step 3: DCOs (discrete crossover operators): to ensure that the entire population
moves towards global optimal solutions, DCOs [26] are incorporated to create a child
from two parents using random real numbers. The offspring can be created by
randomly selecting genes from both parents and distributing them evenly, depending on
the random real number r ∈ 〈 0, 1 〉. To produce new solutions, DCOs are applied
between the global herd’s best solution bg and the present solutions αt

k (i.e., child),
resulting in αt

k−cross as the solution.
Step 4: Updating exploitations: the initial buffalo’s exploitations βt

k consists of
random swap operator sets S̃O, which can be modified based on Equation (5).

βt+1
k = βt

k ⊕ L1 ⊗
(
αt

k−cross − βt
k
)
⊕ L2 ⊗

(
bt

g − αt
k

)
(5)

When referring to an integrating sequence operator that consists of two swap
operators, the terms L1 and L2 specify the learning parameters with random values
ranging between [0, 1], respectively. All swap operators can be selected from the swap

sequence
(

αt
k−cross − βt

k

)
, and all swap operators can be selected from the swap

sequence
(

bt
g − αt

k

)
which are provided as swap sequence operators SSO1 and SSO2,

respectively. Therefore, we find βt
k =

(
S̃O1, S̃O2, . . . , S̃Os

)
, where s signifies the number

of swap operators in βt
k, SSO1 and SSO2.

Step 5: The series of swap operators is applied on the existing solution to obtain a
new solution, as well as a new movement, based on the present buffalo’s movement
using Equation (6).

αt+1
k =

(
αt

k + βt
k
)

u
∀k, k = {1, . . . , Popsize} (6)

where u is a time interval initialized to 1 unit across the exploration motion.
Step 6: The global herd’s best solution, bg, is checked. Whether the best fitness

value of the herd is updated or not is also checked; i f (bt
gmax > bt

g ), then the process
from step 2 must be repeated until the stop condition maxiter is satisfied. Otherwise, we
eturn step one, and the procedure is repeated.

Step 7: The global best solution is obtained as the ultimate solution of
hyperparameter values after a specific number of repetitions. Algorithm 1 explains the
Enhanced African buffalo optimization method procedure.

4. Experiment Results and Discussion

The datasets (KDD99, CSE-CIC-DS 2018, and UNSW-NB 15) used in this study were
selected based on a variety of factors, including the number of samples, attributes, and
classifications. TPs (true positives), FPs (false positives), TNs (true negatives), and FNs
(false negatives) were all measured to calculate various performance measures. The first
performance measure was precision, which is expressed as the percentage of applicable
instances found. Recall, characterized as the percentage of relevant instances, was the
second performance metric. Despite their often conflicting nature, the ratings of precision
and recall are both critical to how effective a prediction strategy is. Therefore, these two
measures can be added together and weighted equally to create the F-measure, a single
metric. The accuracy measure, which was the final performance requirement, was defined
as the percentage of events which were accurately predicted.
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The proposed OGBTDS-IDS was evaluated using accuracies, precisions, recalls, and
F-scores, and the results were compared using other traditional MLTs. Evaluating metrics
for precisions (Equation (7)), recall (Equation (8)) F-measures (Equation (9)), and accuracy
(Equation (10)) are given below.

Precision =
TP

TP + FP
× 100 (7)

Recall =
TP

TP + FN
× 100 (8)

Fmeasure = 2 ∗
(

precision ∗ recall
precision + recall

)
(9)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (10)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
Figure 4 compares the precision rates for the suggested and existing methods for

identifying cyberattacks. The outcomes indicate that extracting the desired data can be
accomplished by ranking the features using OGBDT. The number of usable features in the
proposed model has little to no impact on how well the jointly learned feature transforma-
tion performs. Due to the lack of high-dimensional features or derived factors, an OGBDT
may identify a comparatively better-sorted collection of inputs in a specified amount of
time. The performance of the model was superior to all others, and KDD99 had a higher
detection rate than the other two datasets.
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Recall rate comparison is shown in Figure 5 for proposed and existing models. An
increased feature number maximizes recall as well. The OGBDTs achieve higher recall
compared to DT, SVM, ANN, and KNN. This is because the EABOs save the computation
time of the derived factors, which allows easier fine-tuning of the GBDT. Therefore, the
proposed network can be safely used for intrusion detection.
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The f-measure for the number of features in the given databases for the proposed and
current models is shown in Figure 6. The OGBDTs have a high f-measure compared to
other models. EABOs use the parameters set with random values, and terminate when
predefined stop conditions, such as maximum time, number of parameters, or performance
target, are met. This avoids overfitting of the data, which is possible in real-time problems
and leads to better performance.
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Based on the number of features in the given databases, Figure 7 illustrates the accuracy
of the proposed and existing models. As a result of OGBDTs, the processing time is reduced
and accuracy is increased. The OGBDTs achieve higher accuracy compared to all other
models because they do not require a large amount of derived factors during preprocessing.
The proposed OGBDTs framework can significantly improve the performance of cyber-attack
classification by jointly optimizing the GBDTs and improving the classification results.

It can be observed from Figure 8 that the OGBDTs tree outperforms other models by
taking the least time to train the framework compared to others. Each one of the approaches
consumed much reduced time for training once the relevant attributes were eliminated. In
all datasets, OGBDTs have a maximum accuracy rate to predict the attack.
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It can be observed from Figure 8 that the OGBDTs outperform other models by taking
the least time to train the framework compared to others. Each one of the approaches
significantly reduced the time for training once the relevant attributes were eliminated. In
all datasets, OGBDTs have minimum time to predict the attack.

The results of the statistical metrics are as follows:
Accuracy: The accuracy score shows how effectively the model generates precise

predictions in general. Among all the proposed models, OGBDT had the highest accuracy
rate to predict the attack (0.9981). Out of all the datasets, OGBDTs had the greatest attack
prediction accuracy rate. To obtain a more complete picture of the model’s performance,
it is important to analyze it using various performance measure scores, such as Recall,
Precision, and F1 SCORE.

Recall: Recall can be utilized as a metric to assess the efficacy of our model when all of
the real values are positive, and OGBDT has a high recall rate for all of the datasets.

Precision: Compared to all other classifiers over the full dataset, OGBDT’s precision is
high, and this actual value can be discriminated from all expected actual values.

F1 score: This metric can combine recall and precision by calculating its mean value,
and it is also noticeably higher for OGBDT.

Prediction Time: OGBDTs outperform other models by taking the least time for
training the framework, compared to others.
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Evaluation criteria used to assess SVM, DT, K.N.N, ANN, and suggested OGBDT
algorithms included sensitivity, specificity, accuracy, recall, and F1 score. These algorithms
were tested using a binary classification method, and the performance of the algorithms was
statistically quantified and compared to the body of existing literature [6–11] (Table 1) for
validation purposes. The findings showed that the OBGDT algorithm was quite effective in
identifying attacks. The performance of the suggested model was superior to all others.
KDD99 had a higher detection rate than the other two datasets. The OGBDTs outperformed
all other models in terms of accuracy, because they do not require as many derived factors
during preprocessing. OGBDTs can forecast attacks with a minimum amount of time
in all datasets. The proposed OGBDTs framework can significantly improve the perfor-
mance of cyber-attack classification by jointly optimizing the GBDTs and improving the
classification results.

Table 1. Results compared from similar studies.

Dataset Used Machine Learning Algorithms Attack Detection Rate ACCURACY

UNBS-NB 15 Dataset [10]

RF 0.9867

SVM 0.9769

ANN 0.9478

DT 0.9323

KDD99 Dataset [8]

ANN 0.9744

SVM 0.9155

USML 0.9808

DT 0.9333

UNBS-NB 15 Dataset [8]

ANN 0.6397

SVM 0.8432

USML 0.9478

ANN 0.9744

DT 0.9443

UNBS-NB 15 Dataset [7]

KNN 0.9611

RF 0.9237

XGBoost 0.9835

UNSW-NB 15
Dataset [6]

DT 0.9015

ANN 0.8411

Proposed approach GIWRF-DT 0.9301

KDD99 Dataset [11]
DT 0.8100

Proposed approach (GBM) 0.9182

UNBS-NB 15 Dataset [11]
DT 0.9570

Proposed approach (GBM) 0.9508

CSE-CIC-DS-18
Dataset [9]

ANN 0.9997

KNN 0.9973

RF 0.9983

SVM 0.9980
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Table 1. Cont.

Dataset Used Machine Learning Algorithms Attack Detection Rate ACCURACY

Proposed System
Dataset KD99

DT 0.9110

SVM 0.9300

ANN 0.9800

KNN 0.9810

Proposed OGBDT 0.9981

Proposed System
Dataset UNBS-NB 15

DT 0.9010

SVM 0.9300

ANN 0.9500

KNN 0.9600

Proposed OGBDT 0.9865

Proposed System
Dataset CSE-CIC-IDS2018

DT 0.9201

SVM 0.9400

ANN 0.9700

KNN 0.9832

Proposed OGBDT 0.9915

5. Conclusions and Future Work

This study proposes an intelligent framework based on tree topologies that is effective
and accurate in predicting and detecting cyber threats. The model uses the basic stages
seen in MLTs, such as data rescaling and encoding. In addition, a security attribute se-
lection scheme was designed, the processing of which will be based on the ranking of
each security attribute prior to the construction of the OGBDTs-based intrusion framework.
Gini indices helped to measure the imprecision of security attributes. To obtain useful
and accurate results, the features with the highest rank were used for training and testing
the proposed framework, instead of using all security attributes, and the optimal features
were selected using a genetic algorithm. This model will be compared with other popu-
lar machine-learning approaches to determine its accuracy and reliability. Furthermore,
future research will focus on predicting the types of cyber-attacks using the model and
evaluating its efficiency with additional dimensions of security attributes. The application
of deep learning techniques in supervised and semi-supervised MLTs to increase classifica-
tion rates and minimize training and testing runtimes for cyber-attack classification will
also be prioritized.
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