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Abstract: Damage detection and evaluation are concerns in structural health monitoring. Traditional
damage detection techniques are inefficient because of the need for damage detection before eval-
uation. To address these problems, a novel crack location and degree detector based on YOLOX is
proposed, which directly realizes damage detection and evaluation. Moreover, the detector presents
a superior detection effect and speed to other advanced deep learning models. Additionally, rather
than at the pixel level, the detection results are determined in actual scales according to resolu-
tion. The results demonstrate that the proposed model can detect and evaluate damage accurately
and automatically.
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1. Introduction

Automatic structural health monitoring (SHM) and maintenance have always been
a challenging research field because of the aging of concrete structures (such as bridges,
buildings, roads, and dams). The causes of concrete structural damage are various and
complex, for example, earthquake, freeze injury, salt corrosion, and dry shrinkage [1]. As
one of the earliest signs of structural damage, cracks on a concrete surface can be said to be
the core detection part of the SHM [2,3]. Therefore, the timely detection and assessment
of concrete surface cracks can better grasp the state of a concrete structure to effectively
prevent the occurrence of large-scale concrete structure accidents [4].

Currently, the traditional methods for crack inspection are still visual assessment
techniques relying on inspectors. They are inefficient and expensive [2,5–7]. Moreover,
the assessment results are highly subjective [8,9]. Thus, owing to the inevitable draw-
backs of state-of-the-art methods, efficient and economical crack detection technology is
urgently needed.

In recent years, using image processing in crack detection is an appropriate way
to address the above problems, and this technique is highly applied in the field of civil
engineering [1,2,6,10,11]. Both Jahanshahi et al. [10] and Koch et al. [12] have reviewed
the image processing methods for crack detection and evaluation of concrete structures.
Generally, image processing technologies are practical and valuable. Although this research
has made significant progress, there are still some shortcomings. They are too dependent
on image characteristics and easily recognize noise (light, shadow, smudge, etc.) as cracks,
which are not conducive to retrieving crack properties. Furthermore, most of the existing
methods focus on identifying cracks in one single image. If no crack is recognized or the
noise is incorrectly recognized as a crack, the detection results cannot be corrected in time.
To tackle these issues, an automatic detection and evaluation system needs to be developed.

Deep learning technologies have been widely used in crack detection of various struc-
tures, such as roads [13,14], buildings [15], bridges [16,17], tunnels [18,19], and dams [20].
For instance, Zhang et al. [21] proposed an approach to classify each image patch in the
obtained road crack images by training a supervised deep convolutional neural network
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(DCNN). However, this method ignores the complexity of image regions [22] and always
overestimates crack width. Cha et al. [23] adopted a sliding window to divide the image
into blocks and used a convolutional neural network (CNN) to classify whether the block
contains cracks or not. However, the computational cost of this approach is high because
the CNN classifier needs to be applied multiple times to each window in every image.
Chen and Jahanshahi [24] combined a CNN and Naïve Bayes data fusion scheme to identify
cracks in nuclear power plants through analysis of individual video frames. Nevertheless,
this method only locates the crack position without quantifying the properties of cracks. In
addition, when the amount of images is small, the system will not work well. Gopalakrish-
nan et al. [25] applied a transfer learning (TL) technique to perform crack detection on the
pavement. The VGG16 network was first pre-trained on an existing dataset and then auto-
matically detected cracks from the FHWA/LTPP dataset by using transfer learning. This is
a successful attempt to apply TL in crack detection. Zhang et al. [26] presented an automatic
pavement crack detection system based on CNN. This system, called CrackNet, predicted
the category of all pixels to complete crack detection. However, the network architecture of
CrackNet strictly depends on the input image size [27]. Kim et al. [28] utilized Region CNN
(R-CNN) based on a sliding window as a target detector to detect cracks in one concrete
bridge. However, R-CNN is susceptible to the region and is inefficient compared with
the current deep learning models. Dorafshan et al. [29] compared the DCNN and some
traditional edge detectors for image-based concrete structural crack detection. It concluded
that the AlexNet DCNN is better at crack detection. Yet the superior model may be fur-
ther improved when adopting some new networks. Jang et al. [30] offered a CNN-based
crack detection technique by combining vision and infrared thermography data which
can minimize the false detection rate. Guo et al. [31] introduced a deep-width network
(DWN) architecture to classify cracks without handcraft feature extraction. Although this
method avoids hyperparameter tuning to improve efficiency and accuracy, the algorithm is
complicated, which limits its development and extensive application. Li et al. [32] detected
concealed cracks from images using deep learning models. This research compared and
discussed some object detection models. However, it does not apply a high-performance
GPU, which affects the detection efficiency. In summary, the above research proves that
deep learning is excellent in crack identification. However, detecting structural cracks is
only the beginning of SHM, as researchers and inspectors often pay more attention to the
state of detected cracks. It is not enough to just locate the crack but not identify the damage
degrees of the crack. Thus, it is essential to design an application that can directly obtain
crack condition information and crack position.

With the fast growth of deep learning methods, many excellent deep learning tech-
nologies have been proposed. Concrete structural crack detection includes target detection,
which can identify and locate cracks. Object detection techniques based on deep learn-
ing could be classified into two types: two-stage approaches and one-stage approaches.
Two-stage approaches, for example, R-CNN [33], Fast R-CNN [34], and Faster R-CNN [35],
first use the image information to decide the potential position of the target, and then
CNNs is used to classify and retrieve the characteristics from these positions. Although
this method provides high accuracy, the detection speed is slow. In contrast, one-stage
methods use end-to-end CNN to estimate the bounding box position and type of objects in
multiple positions. The detection speed can be greatly accelerated because of the simplified
detection process. The main representatives of one-stage approaches are You Only Look
Once (YOLO) series algorithms [36–41], Single Shot Multibox Detector (SSD) [42], and
Deconvolutional Single Shot Detector (DSSD) [43].

The YOLO series as a popular one-stage detection method is applied extensively.
YOLOv1 algorithm was originally proposed by Joseph Redmon et al. [36] in 2016. It
forms an end-to-end CNN by integrating each independent step in the process of object
recognition. Object detection is regarded as a regression process, and the object location
and category of the detection image can be obtained by processing the input image. The
detection speed of YOLOv1 is fast, but the detection accuracy is low. Subsequently, a
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series of YOLO algorithms are proposed (YOLOv2 [37], YOLOv3 [38], and YOLOv4 [39])
with the YOLO methods developing and improving rapidly. They gradually balance the
detection efficiency and the precision detection. In addition, the detection results of small
targets grow better. Recently, two novel YOLO models were updated, that is YOLOv5 [40]
and YOLOX [41]. These two versions combine some progressive methods, which have
more advantages and more efficiency in real-time image processing. At present, there
are few studies on damage recognition using the YOLOv5 or the YOLOX. Consequently,
the application effect of newer YOLO series models in concrete damage remains to be
further investigated.

In this study, an algorithm for detecting and evaluating different degrees of cracks
in images is proposed. The defects in the image are labeled according to the width of
cracks, which compose a new image dataset with different degrees of crack. Using the latest
YOLOX deep learning models, the crack can not only be extracted and localized accurately
but also be evaluated automatically. Moreover, the integration of crack detection and crack
assessment is an innovative trial. Additionally, some advanced deep learning models, such
as Faster R-CNN, YOLOv5, and DSSD, are comprehensively compared to the proposed
method. Furthermore, the pixel-level crack degree obtained by the proposed method is
converted to actual scale through resolution. Results show that the proposed approach
based on YOLOX performs outstandingly in detection accuracy and detection speed.

The remainder of this paper is organized as follows. Section 2 starts with a brief
overview of the proposed model. Section 3 provides dataset construction, which introduces
the composition of the image acquisition system and dataset acquisition and labeling.
Experimental results and analysis are presented in Section 4, which consists of model
evaluation metrics, training setting, training results and analysis, test results, and discussion
and crack degree transformation test and results. Section 5 summarizes the conclusion and
suggestions for future work.

2. Methodology

To quickly assess the crack position and degree, this paper proposes a crack location
and degree detector based on YOLOX. This algorithm can detect cracks with different
degrees automatically and quickly. Figure 1 shows the flow chart of the method, which is
divided into four main parts: (1) dataset construction, which collects data using an image
acquisition system and labels these crack images for training; (2) detector training, which is
the process of finding the optimal hyperparameters of the model; (3) crack location and
degree detection, which outputs model predictions; and (4) actual crack damage assessment,
which converts crack degrees in pixel level to actual scale. The detection principle and the
transformation of damage levels are explained in the following subsections.
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2.1. The Detection Principle of the Proposed Detector

The crack location and degree detector proposed in this study is based on the latest
YOLOX model, which cleverly combines some excellent target detection methods. YOLOX
is a classical one-stage detection network. Unlike two-stage approaches (such as Faster
R-CNN), YOLO algorithm turns the detection problem into the regression problem, where
the bounding boxes and confidence of objects can be obtained immediately. By changing
the width and depth of the backbone network, four versions of the YOLOX model are
obtained, which are YOLOXs, YOLOXm, YOLOXl, and YOLOXx. Figure 2 describes the
architecture of YOLOX. It is composed of four general parts, including the input part,
backbone network, neck network, and prediction part, corresponding to the red dotted
rectangular box in Figure 2. Among them, the CBL is the basic module composed of a
convolution layer (Conv), a batch normalization layer (BN), and a Leaky ReLU activation
function. Resunit is a residual structure to be utilized to deepen neural network, which
contains 2 CBL modules and an Add layer; the Add layer realizes tensors stacked directly,
whereas the Concat layer stitches tensors with expanding dimensions of tensors; the spatial
pyramid pooling (SPP) [44] is mainly for multi-scale fusion; other network modules are
introduced later.
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2.1.1. Input Part

The input part is the input image, including data augmentation and adaptive anchor
box calculation, which can improve the training speed and accuracy.

YOLOX applies Mosaic and Mixup data augmentation methods. The Mosaic data
augmentation method [39] mixes four training images into the image in Figure 3, which
are stitched according to random scaling, random clipping, and random arrangement. The
Mixup data augmentation method fuses two images by setting weight fusion coefficients,
as shown in Figure 4. Both of the two data augmentation methods not only enrich the
dataset, but also reduce the need for large memory.

Adaptive anchor box calculation: In the network training, the model outputs the
corresponding prediction box based on the initial anchor box, calculates the difference
between it and the ground truth box, and performs the reverse update operation to iterate
the parameters of the whole network. Thus, setting the initial anchor box is also a key
step. The optimal anchor box in different training sets is calculated adaptively during
each training.
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2.1.2. Backbone Network

A backbone network is mainly used to retrieve image features. The backbone network
of YOLOX selects the backbone network using Darknet53, and the ResX module consists of
the CBL module and Resunit.

2.1.3. Neck Network

The neck network is usually between the backbone and head networks. Using this
part can detect some complex features and further improve the diversity and robustness
of features.

2.1.4. Prediction Part

The prediction part completes the output task of target detection with the help of the
decoupled head structure, which greatly improves the convergence speed of the model.
Moreover, the decoupled head is very significant for the end-to-end version of YOLO.
Figure 5 shows the decoupled head, which contains a 1× 1 Conv for channel dimensionality
reduction, followed by two parallel branches with two 3 × 3 Conv, respectively.

In addition, YOLOX adopts the anchor-free detector again, which avoids the problems
of poor generalization ability and high complexity of the anchor mechanism. Furthermore,
for the label assignment problem of the algorithm, YOLOX judges the candidate anchor box
based on the center point and target box to realize the preliminary screening. Then, YOLOX
uses the simple optimal transport assignment (SimOTA) to realize a fine screening. This
strategy first calculates pairwise matching degree, that is, the cost or quality of matching
for each prediction box and the ground truth box, as shown in Equation (1):

cij = Lcls
ij +λ Lreg

ij (1)
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where λ is a balancing coefficient, Lcls
ij and Lreg

ij are classification loss and regression loss be-
tween ground truth boxes and prediction boxes. Finally, an approximate solution is obtained
by the dynamic top-k strategy. The corresponding grids of these positive predictions are
designated as positive, whereas the remaining grids are negative. SimOTA used in YOLOX
not only accelerates the training speed but also reduces additional solver hyperparameters.
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2.1.5. The Loss Function of YOLOX

The loss function of YOLOX consists of three parts, which are the loss of predicting
the bounding box (Liou), the classification (Lclc), and the object position (Lobj).

Loss = Liou + Lclc + Lobj (2)

In this paper, YOLOX adopts a generalized intersection over union loss
(GIOU_Loss) [45] as the bounding box region loss, which effectively solves the problem of
noncoincidence of the bounding box and improves the speed and accuracy of prediction
box regression.

The calculation equation GIOU_Loss is as follows [45]:

GIOU = IOU − |Ac −U|
|Ac|

(3)

where IOU is the intersection of two rectangular areas divided by the union. Ac is the
minimum box covering the predicted bounding box and ground-truth bounding box. U
is the union of the predicted bounding box and ground truth bounding box. So, the loss
function is:

Liou= LGIOU= 1−GIOU (4)

2.2. The Transformation of Crack Degree

The output of the crack location and degree detector is the pixel-level crack degree,
and the actual crack degree needs to be obtained by resolution.

According to the imaging principle, the resolution K can be calculated from the field of
view (FOV) (or target size) and the image resolution (or the number of pixels of the target).
So the actual crack degree, that is, the crack width Wc is:

Wc= Wp K (5)

where Wp is the crack pixel width, which is obtained by the crack position and
degree detector.

3. Dataset Construction

In this work, an indoor image acquisition system is first built to collect crack images,
and then these images are artificially labeled. The pairwise images and labels are used to
train the crack location and degree detector.
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3.1. Image Acquisition System

To obtain the required dataset and verify the application of the proposed method, an
image acquisition system is built as shown in Figure 6. It is composed of a high-speed
industrial camera, fill lights, a tripod, a slide rail, a laser rangefinder, and a computer.
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The selection of industrial cameras is mainly based on resolution. If the resolution is
too low, it will be hard to acquire high-resolution images, which is easy to cause thin cracks
to be difficult to identify or misjudge. The image acquisition system in this paper adopts
the high-speed industrial camera MARS4112S-23UM, equipped with a LEM2520CD-H2
industrial lens, and the main parameters are shown in Table 1. To avoid ghosting and
darkness, this study tries to acquire crack images in the daytime with sufficient sunshine.
Dual LED ring fill lights are used to ensure uniform illumination. The working distance is
measured by a laser rangefinder. Fixing the acquisition devices on the slide rail can help to
keep the images collected at the same working distance.

Table 1. The main parameters of the industrial camera.

Brand Model Main Parameters

Vision Datum Mars MARS4112S-23UM
Sensor: 1.1” CMOS

Pixel size: 3.45 × 3.45 µm
Resolution: 4096 × 3000

Vision Datum Mars LEM5020CD-H2 Focal length: 25 mm
M.O.D: 0.15 m

3.2. Establish Image Dataset with Labels

The dataset used in this paper is collected and produced by the authors. In the
laboratory, a 1 × 1 × 0.05 m C20 concrete slab with reinforcement mesh was made and
many different degree cracks were artificially made on the concrete slab. Figure 7a,b shows
the complete concrete slab and the damaged concrete slab, respectively.
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The concrete crack images are collected by the image acquisition system. The camera
is perpendicular to the surface of the structure. The distance between the camera and
the concrete slab (the working distance) is 0.35 m and the FOV is 144 mm × 197 mm.
A total of 150 crack images of resolution 3000 × 4096 pixels were acquired. In order to
reduce the computational cost of training, 150 images were cropped into small images
with a resolution of 500 × 500 by automatic segmentation. This research aims at detecting
the concrete surface crack of different scales, so 2177 images with defect characteristics
were finally selected as the final image dataset. In this dataset, these 2177 images were
divided into 3 parts in proportion randomly: 1525 images were selected as the training set,
435 images were selected as the validation set, and 217 images were selected as the test set,
and the ratio is 7:2:1. The training set is used to train the network model, the validation
set is used to test the model during training, and the test set is used for testing after the
network model training is completed.

The LabelImg software is used to manually label the dataset images to generate
some Pascal VOC format [46] samples. In general, the maximum allowable width of the
crack cannot be over 0.3 mm, and the crack width shall not be greater than 0.2 mm in
special situations. According to this, the structural surface crack category is marked into
5 types: super wide crack, wide crack, normal crack, thin crack, and spalling. The detailed
description of each category is shown in Table 2. Therefore, super wide crack, wide crack
and spalling can be the focus of structural health monitoring. The normal crack and thin
crack may generate into critical damage, which can also be used as long-term monitoring
objects. The crack width is measured by an HC-CK103 crack width gauge (as shown in
Figure 8a). The equipment has a self-calibration ability and is easy to operate and reliable.
The main parameters are shown in Table 3. Figure 8b presents crack width measurements
recorded on a concrete slab.

Table 2. The structural surface crack category and characteristics.

Crack Type Super Wide Crack Wide Crack Normal Crack Thin Crack Spalling 1

Crack
characteristics Crack width > 0.3 mm

Crack width
between 0.2 mm

and 0.3 mm

Crack width
between 0.1 mm

and 0.2 mm
Crack width ≤0.1 mm Block Spalling

1 The authors label spalling as peel, that is, the type of peel damage is spalling.
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Figure 8. The crack width measuring instrument and the concrete slab with width marks. (a) The
crack width measuring instrument; (b) the concrete slab with width marks.

Table 3. The main parameters of the crack width measuring instrument.

Brand Model Test Range Measurement Accuracy Magnification

HaiChuangGaoKe HC-CK103 0~8 mm 0.01 mm 40

The number of labels and box position information marked on 2177 images is 10,388 in
total, including 2102 super wide crack, 1993 wide crack, 1856 normal crack, 2321 thin crack,
and 2116 spalling. Sample images with marked bounding boxes and labels are shown in
Figure 9.
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4. Experimental Results and Analysis

This section first introduces the metrics of model evaluation and some settings of the
training model and then analyzes the performance of the trained model to find the optimal
model result. Next, the test results of the constructed detector are compared with other
classic models. Finally, the effectiveness of the proposed method is verified by a crack
degree transformation test.

4.1. Model Evaluation Metrics

In this paper, the performance of the deep learning networks is comprehensively
evaluated by (1) average precision (AP) and mean average precision (mAP) and (2) detection
speed and inference time.
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4.1.1. AP and mAP

First, IOU is a measurable standard in the accuracy of detecting corresponding targets
in a specific dataset. According to the experimental results, if the crack type is positive (P)
and the model detection is P, it is marked as a true positive. In general, when IOU ≥ 0.5,
the detection result can be considered as a true positive (TP). Similarly, if the crack type
is negative (N) but the model detection is P, it is marked as a false positive (FP), that is,
when IOU < 0.5, the detection result is considered as a false positive. If the crack type is
P, but the model does not detect the crack type, it is marked as a false negative (FN), and
the model does not detect the ground truth box at this time. If the crack type is N but the
model detection is correct, it is marked as a true negative (TN).

Then, Precision and Recall are defined, which are two basic evaluating indicators in
object detection, as shown in Equations (5) and (6). Precision represents the proportion
of correctly recognized targets among all detected targets, while Recall represents the
proportion of correctly recognized targets among all detected positive samples:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP is the number of the crack type correctly recognized, TN is the number of the
non-crack type correctly recognized, FP is the number of the non-crack type regarded as
the crack type, and FN is the number of the crack type regarded as the non-crack type.

Finally, AP, as shown in Equation (8), could be calculated by the area under the
Precision and Recall curve, which completely considers the impact of the Precision and
Recall. In addition, the average value of each crack type of AP in the data set is mAP, which
can reflect the accuracy of crack detection. Additionally, mAP can be used as a criterion for
the comparison among difference detection models.

AP =
∫ 1

0
P(R) dR (8)

4.1.2. Detection Speed and Inference Time

The frame per second (FPS) is used to evaluate the detection speed, that is, the number
of images processed per second. When the FPS of the network is over 30, it is considered to
have real-time detection capability [47]. Moreover, this study also uses inference time to
evaluate processing speed of the model, which is the time consumed to deal with an image.

4.2. Training Setting

The training platform is based on the PyTorch framework and all experiments are
performed using one GPU mode workstation equipped with the following configuration:
i9-10900X CPU @ 3.70 Hz RAM 64 G, NVIDIA Geforce GTX 2080Ti GPU. The software
configuration is as follows: Ubuntu 18.04, CUDA10.0, cuDNN 7.5, Python 3.7, Pytorch 1.1.

Most of the parameters of the YOLOX model adopt the default initial parameters.
Some main hyperparameters are set as follows: the weight_decay coefficient is 0.0005;
the momentum is 0.937; the batch size is 8; and the epoch is 100. It is worth mentioning
that YOLOX series models require that the size of the input image must be a multiple of
32, so the network automatically modifies the input image size from 500 × 500 pixels to
512 × 512 pixels.

4.3. Training Results and Analysis

There are four standard versions of YOLOX, namely YOLOXs, YOLOXm, YOLOXl,
and YOLOXx. Each version holds the same network structure, but the depth and width are
different. The model depth and width can be set by the pre-weights required for training.
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The initial learning rate (lr) is an important hyperparameter of the YOLOX model,
which affects the accuracy and convergence speed by controlling the step size of the weight
update. If the learning rate is too large, it is likely to exceed the optimal value and make the
loss function unable to converge. If the learning rate is too small, the network optimization
efficiency is too low, the loss function cannot converge for a long time, and it is easy to
make the network fall into local optimization. Therefore, an appropriate learning rate needs
to be found through continuous attempts, which does not only ensure model convergence
as soon as possible but also makes the model recognition effect the best.

This study discusses the impact of different initial learning rate settings on the per-
formance of four YOLOX models and selects the optimal result file as the crack location
and degree detector. The initial learning rates are set to 0.01, 0.001, and 0.0001, respectively,
and the validation results of the model after training with the same parameters are shown
in Figure 10. YOLOX models obtain the best results on the validation set when the initial
learning rate is 0.001, with mAP values of 88.57% (YOLOXs), 89.39% (YOLOXm), 90.05%
(YOLOXl), and 91.17% (YOLOXx), respectively. Therefore, the proposed detector is trained
with an initial learning rate of 0.001.
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4.4. Test Results and Discussion

To verify the superiority of using the YOLOX model as a crack location and degree
detector, this study comparatively analyzed the recognition performance of 10 models
with 4 different deep learning networks, i.e., YOLOX (YOLOXs, YOLOXm, YOLOXl, and
YOLOXx), Faster R-CNN, DSSD, and YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x). To ensure fairness, this study is calculated on the same dataset and training
platform, and each model has been effectively trained, and their parameters are selected
with the best choice.

Table 4 lists all testing results of different deep learning models, including mAP
value to measure the detection effect, FPS and inference time to measure the real-time
performance and the model training time to measure the complexity. In general, the mAP
values of YOLOX series models all exceed 88.5%, especially the YOLOXx. The best mAP
value is 91.05% in YOLOXx. Even in YOLOXs the mAP value is 88.71%. These results
demonstrate the applicability of YOLOX series models in the detection of cracks with
different degrees. In contrast, the mAP value of the Faster R-CNN is only 69.77%, the mAP
value of the YOLOv5 is the highest at 88.11%, and the mAP value of the DSSD is slightly
higher at 88.92%, but other performance indicators are bad. Therefore, the YOLOX model
has significantly higher accuracy in identifying the location and extent of cracks.
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Table 4. Performance comparison of different deep learning models.

Model mAP (%) FPS Inference Time (ms) Training Time (h)

YOLOXs 88.78 284.90 3.51 0.583
YOLOXm 89.98 159.74 6.26 0.900
YOLOXl 90.17 112.36 8.90 1.517
YOLOXx 91.05 68.49 14.60 2.533

Faster R-CNN 69.77 22.69 44.07 1.867
DSSD 88.92 97.47 10.26 4.822

YOLOv5s 85.85 500.00 2.00 0.343
YOLOv5m 86.33 212.77 4.70 0.598
YOLOv5l 87.85 121.95 8.20 0.889
YOLOv5x 85.11 65.79 15.20 1.811

Furthermore, object detection needs to ensure better real-time performance. The FPS
and inference time are also shown in Table 4. With the exception of the FPS of Faster
R-CNN being only 22.69, the other models all exceed 30, which can complete the real-time
detection. The FPS of YOLOv5_s is up to 500, and the inference time is also the fastest. It
takes just 2 ms to detect the cracks with extent in an image. Of course, the inference times
of YOLOX are also rapid, all with 15 ms, and the inference time of the YOLOXs is only
1.51 ms longer than that of the YOLOv5s.

Additionally, Table 4 shows the training time of each model; the longer the training
time, the more complex the model network structure. The training time of the YOLOXs for
the training set in this paper is 0.583 h, which is only 0.24 h more than the training time
of the YOLOv5s, whereas the training of the DSSD is the most time-consuming, requiring
4.822 h.

In this study, the crack degrees are divided into five categories according to the
different crack widths. Table 5 presents the detection test results of each crack degree,
which is expressed by AP value. The YOLOX has superior detection results for wide crack,
normal crack, thin crack, and spalling, which are 92.59% (YOLOXl), 91.65% (YOLOXx),
84.75% (YOLOXx), and 99.86% (YOLOXs), respectively. The best AP value of the super
wide crack is 95.36% from YOLOv5x. Generally, super wide crack and spalling are easy
to detect due to their severe damage and prominent features. In contrast, thin crack, with
a width of less than 1 mm, is more difficult to detect because of the small degree. In this
study, the crack location and degree detector constructed by the YOLOX model can realize
the identification of thin crack with a high accuracy, which is a great breakthrough. The AP
value of YOLOX for thin crack is above 74%, which highlights the advantages of the crack
location and degree detector for the detection of small features.

Table 5. Test results of different object detection models.

Model mAP (%)
AP (%)

Super Wide Crack Wide Crack Normal Crack Thin Crack Spalling 1

YOLOXs 88.78 90.58 91.98 86.98 74.48 99.86
YOLOXm 89.98 91.67 91.88 86.04 80.90 99.43
YOLOXl 90.17 90.08 92.59 88.44 80.28 99.47
YOLOXx 91.05 89.83 90.04 91.65 84.75 99.01

Faster R-CNN 69.77 78.86 81.95 65.21 33.80 89.01
DSSD 88.92 91.43 89.57 82.21 84.72 96.69

YOLOv5s 85.85 92.16 87.51 77.56 73.35 98.67
YOLOv5m 86.33 92.91 87.12 82.05 71.11 98.46
YOLOv5l 87.85 95.23 91.10 81.35 73.04 98.53
YOLOv5x 88.11 95.36 88.57 81.32 76.58 98.72

1 The authors label spalling as peel, that is, the type of peel damage is spalling.



Appl. Sci. 2022, 12, 12572 13 of 17

Figure 11 visualizes the partially recognized results of the 10 networks from the same
image. There are three crack degrees in the example image 1 (I1), which are a super wide
crack, a normal, and a spalling, respectively. Example image 2 (I2) contains two thin cracks,
two wide, and a spalling. Although the above models could accurately identify these
cracks in the image, some false detections exist during the test process, which directly
impact the mAP values. However, the proposed method can effectively avoid too many
wrong identifications. Figure 12a–c describes some examples of detected errors, which are
roughly divided into three categories. The first type is undetected, as shown in Figure 12a
from DSSD, that is, the algorithm does not detect the crack in the image; the second type
is pseudo-detection, as shown in Figure 12b from Faster R-CNN, that is, the algorithm
recognizes a non-existent crack; the third type is misdetection, as shown in Figure 12c
from YOLOv5, that is, the algorithm incorrectly recognizes one crack degree as another
crack degree.
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In summary, the YOLOX performs well in the detection and assessment of different
types of crack. First, the great mAP values suggest that the model’s ability to detect cracks
with different degrees is a relatively reliable performance. Secondly, high FPS and short
inference time represent that the detection speed is very rapid and can be content with
real-time detection. Thirdly, the short training time indicates that the network structure
is not complex. Finally, the high AP for thin crack suggests that this model is suitable for
small crack detection. Therefore, the trained YOLOX model is selected as the crack location
and degree detector.

4.5. Crack Degree Transformation Test and Results

The output of the crack location and degree detector proposed in this study is the pixel
level, and the actual crack degree needs to be obtained according to the resolution.

The application images are collected under different working distances by the con-
structed image acquisition system. The application image I3 is still obtained at a working
distance of 0.35 m, the pixel resolution K1 is 0.048 mm/pixel; the application image I4 is
obtained when the working distance is 0.70 m, and the FOV is 291 mm × 397 mm, the
corresponding pixel resolution K2 is 0.097 mm/pixel. The application images are shown in
Figure 13a,b, and the actual width of the crack measured by the crack width measuring
instrument is 0.45 mm.
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Figure 13c,d show the detection results of application images using the proposed
crack location and degree detector. There are two super wide cracks (the width greater
than 0.3 mm) in I3, which is consistent with the actual situation and is correctly identified.
Nevertheless, the detection results are two wide cracks for I4, because of the difference
in resolution. The pixel resolution of the data set in this paper is 0.048 mm/pixel, and
the defined wide crack is a crack with a width between 0.2 mm and 0.3 mm. Therefore,
the corresponding crack pixel width in the image is 4–6 pixels. According to the pixel
resolution transformation relationship, K2 is 0.097 mm/pixel. The wide crack is between
0.388 mm and 0.582 mm. The actual crack width is 0.45 mm; it is also a correct detection.
Therefore, the actual crack degree can be obtained by the proposed detector.
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5. Conclusions and Future Work

Structural damage detection and evaluation have always been a research concern in
the field of SHM and are also a significant part. The traditional visual structural crack
detection method is time-consuming and laborious. Additionally, most of the SHM methods
based on image processing are only for a single image, a process which is non-automatic
and inefficient. To address these issues, a detector based on YOLOX is utilized to detect
different degrees of crack in this study. This method can detect and assess the structural
state quickly, accurately, and automatically. An image dataset with different extents of
crack is constructed in this paper. The dataset is mainly marked according to the width of
cracks, which are divided into five types: super wide cracks, wide cracks, normal cracks,
thin cracks, and spalling, respectively. It is a bold attempt to combine crack detection and
assessment. This work can directly identify and evaluate different degrees of defect, rather
than recognize crack first and then assess the characteristics of the detected crack. Moreover,
some advanced deep learning models were systematically compared to illustrate the
superiority of using YOLOX as the detector. From the training and testing, the mAP values
of YOLOX exceed 88.5% on a whole, and the maximum mAP value is 91.05% in YOLOXx,
whereas the mAP values of YOLOv5 and DSSD network are relatively stable at about 86%
and the mAP value of the Faster R-CNN model is only 69.77%. Compared with other
algorithms, the FPS and reference time of the proposed model are relatively shorter, which
can meet the needs of real-time detection. Furthermore, thin crack detection is a challenge
in object detection. The proposed method is especially strong at detecting thin cracks. For
example, the AP values of thin cracks from YOLOX are at least 74%. Comprehensively,
the proposed model demonstrates the most balanced detection performance and detection
speed. Finally, the feasibility of the proposed method is proved by the crack degree
transformation test.

This study is groundbreaking in that it combines damage detection and assessment.
However, one common limitation of almost all deep learning approaches is that they require
numerous training data to obtain excellent results. Therefore, a long-term data collection
plan is inevitable and will be pursued.
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