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Abstract: This study introduces a method that can evaluate the efficiency of leakage management
practices and devises a formula to set leakage management goals. To develop the evaluation method
for deriving leakage reduction factors, real data from small- and medium-sized cities in South Korea
were collected. With the data collected, four leakage management factors (or activities) that could
improve revenue water ratio or reduce leakage ratio were identified. With the leakage management
factors, correlation analysis was carried out to identify the relationship between independent and
dependent variables and within independent variables. Once the relationships were identified,
standardization of the data using T-score conversion was carried out to scale all data with different
units into similar ranges. Finally, the efficiency of leakage management actions was determined by
the formulation of leakage using various data analysis approaches using multiple linear regression
analysis and deep neural networks. As a result, pipe replacement was determined as an essential
activity to decrease the leakage ratio or increase the revenue water ratio. In addition, annual wa-
ter loss management actions of the small cities were more actively performed. Furthermore, the
performance of data analysis using DNN is more appropriate in data classification, considering the
characteristics of time series rather than independent data analysis. Through comparison of the above
data classification approaches, the increase or decrease in the leakage ratio/revenue water ratio by
the water loss management activity of local water distribution systems can be used to construct a
more effective model for classification considering both local and temporal characteristics.

Keywords: water distribution system; leakage management; correlation analysis; revenue water
ratio; multiple regression analysis; deep neural network

1. Introduction

The water distribution system (WDS) is one of the major infrastructures and supplies
water to customers with sufficient pressure and quality. However, recent climate change has
increased the frequency of drought events, and water availability has dropped significantly.
Therefore, the need for efficient water supply and distribution using WDSs has increased.
In most cases, transmission mains are regularly maintained, but distribution mains and
service pipes are relatively difficult to maintain. Due to this issue, the rate of water loss is
gradually increasing. In addition, as water is recognized as an economic product, water loss
leads to economic loss. Therefore, recently, many studies have investigated the reduction
of water loss, water loss management, and the factors influencing water loss.

The South Korea Water utility uses the revenue water ratio as a performance indicator
for WDSs. If the target of the revenue water ratio in the planning stage is achieved in terms
of operation, it is judged that the target of the project has been achieved. Therefore, the
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revenue water ratio is used as an indicator to evaluate the efficiency of business performance
and operational management.

Since 2004, in small and medium cities in South Korea, 22 cities have begun evaluating
the project planning and operation process to solve the aging problem and improve the
operational efficiency of WDSs. In addition, in this regard, the revenue water ratio was
used to evaluate each project. The revenue water ratio is an indicator used to evaluate the
performance of waterworks projects, and because there are no other quantitative indicators
other than the revenue water ratio, there is no choice but to use the revenue water ratio as a
future project goal.

The revenue water ratio is a factor that evaluates the performance of WDSs, and in
order to improve their performance, the revenue water ratio should be improved. The
representative approach to improve the revenue water ratio is to manage effective water
systems and reduce ineffective ones (i.e., leakage). As mentioned earlier, the revenue water
ratio is the ratio of the total water supply to the effective water quantity; to increase the
revenue water ratio, there are ways to increase the quantity of effective water systems or
decrease the quantity of ineffective ones.

First, one effective water management approach to improve the revenue water ratio
is to accurately manage the amount produced by the water treatment plant’s so-called
supply management. For efficient supply management, it is necessary to determine the
exact production water volume through regular inspection and replacement of the flow
meter, and there is also a method to efficiently increase the supply amount by improving
the supply system.

Second, as an effective water management method, an accurate fee should be charged
through an accurate meter reading. This method involves regularly checking and replacing
old water meters in order to obtain more accurate meter readings, and to reduce reading
errors through accurate meter reading by meter-reading personnel. Such accurate meter
reading is a way to reduce the amount of water loss by preventing the illegal use of water.

The third approach to improve the revenue water ratio is to manage ineffective water
quantity, that is, to reduce water loss. To reduce water loss, leakage reduction activities such
as pipe replacement, meter replacement, repair, leak detection, and pressure reduction valve
installation are required. However, because the quantitative efficiency of the improvement
of the revenue water ratio for each leakage reduction activity cannot be evaluated, it is
insufficient as a basis for calculating the project cost for various waterworks projects. In
addition, it is difficult to reflect on reality when establishing a strategy to improve the
revenue water ratio for the project or when calculating a leak management goal [1–3].

For these reasons, recently, studies have been conducted related to the leakage reduc-
tion framework, evaluation of the water loss reduction approach, and evaluation of the
factors influencing water loss. Zyoud et al. [4] showed the application of multi-criteria
decision analysis (MCDA) based on participatory interaction approaches to select the most
appropriate solutions to reduce and manage water losses in water supply systems and
make the best consensus decisions in a complex environment. Ndunguru and Hoko [5]
evaluated the non-revenue water situation in Harare water in some areas of Zimbabwe
and assessed the contribution of water leakages to the water losses based on the moni-
toring data and SANFLOW model to determine average real losses. According to these
studies, evaluating the effect of water loss reduction and the process of evaluating and
determining the amount of leakage in the WDS is performed with four different methods:
the top-down approach (water balancing), water and wastewater balancing, component
analysis of leakage (the background and bursts estimates method), and the bottom-up
approach (the minimum night flow method) [6–8]. Moreover, related to the evaluation of
leakage reduction, data envelopment analysis (DEA) was performed to assess the effect of
water loss reduction activity (e.g., pipe replacement, meter replacement, water loss repair,
leakage detection, etc.) [9].

Although the above studies were conducted based on various approaches to reduce
leakages, these methods are not practical approaches for several reasons: (a) lack of con-
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sideration for the leakage characteristics of real-world systems, (b) insufficient evaluation
of leakage reduction methods, and (c) absence of an accurate and systemized method
evaluating economic feasibility.

Therefore, in this study, the revenue water ratio improvement factors (investment
and output indexes) were determined using real water leakage reduction data. Data were
obtained from waterworks projects performed at small- and medium-sized cities in South
Korea from 2004 to 2018. This study used statistical methods (i.e., multiple regression
analysis; MRA) that have been widely applied to analyze water performance efficiency,
along with artificial intelligence techniques (i.e., deep neural network; DNN). The revenue
water ratio improvement factor derived through this study is an empirical methodology
for evaluating the efficiency of leakage management and can be used to estimate leakage
management goals in the future.

2. Materials and Methodology

In this study, evaluation of the efficiency of leakage management and the leakage
management model formulation were derived using data related to revenue water ratio
improvements according to the leakage of small- and medium-sized WDSs. The evaluation
was performed by MRA analysis and DNN, which followed the procedure shown in
Figure 1. There are three steps in developing the approach for the evaluation of the water
loss reduction factors, which are (1) data collection, (2) pre-processing of data, and (3)
evaluation of water loss management efficiency and determination of the formulation of
water loss.

Figure 1. Procedure of this study.

2.1. Collection Data in Study Area

In the first step, field data from the study area were collected, and data mining was
performed based on the information characteristic (e.g., revenue water ratio, leakage man-
agement activity, variation of the revenue water ratio according to the leakage management
activity, leakage status, and the spatiotemporal characteristics of leakage). This study
considered the variation of the revenue water ratio according to the leakage management
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activity as a data-mining standard and then, among the various leakage management
activities, the factors that can improve the revenue water ratio were selected.

Leakage can be categorized into burst or background leakage, according to characteris-
tics such as actual quantity of leakage and type of leakage generation. Background leakage
is leakage that occurs at the pipe connection or joint, and the amount of leakage is too small
to be recognized. Burst leakage is divided into reported and unreported burst leakage. Gen-
erally, the reported burst leakage is a case in which leakage can be confirmed by exposure
to the surface or by a significant amount greater than normal conditions in terms of supply,
whereas unreported burst leakage is leakage that is difficult to detect [10,11].

The International Water Association (IWA) Water Losses Task Force is divided into
seven categories, using the concepts of unavoidable annual real loss, current annual real
losses, and potentially recoverable real losses, to analyze the change in the amount of water
leakage according to the leakage management methods (i.e., pipe replacement, meter re-
placement, pressure reduction valve installation, sensor installation for leakage monitoring,
leakage repair, leakage detection, and block system establishment). Among these, pressure
reduction valve installation, block system establishment, and sensor installation for leakage
monitoring were excluded in this study because it is difficult to quantify their effects, and
these operations are irregular.

Therefore, considering the leakage management factors suggested by the IWA, pipe
replacement (PR), meter replacement (MR), leakage repair (LR), and leakage detection (LD)
were selected as the water loss management factors to estimate revenue water ratio increase
(or reduction of leakage ratio) following those activities. This study applied six raw data
elements: four leakage management factors (PR, MR, LR, LD), the revenue water ratio,
and the leakage ratio reduction. The variance of the revenue water ratio and the leakage
ratio reduction according to the four leakage management factors were then calculated
according to those six raw data elements. The data were collected every year for 10 years,
comparing the maintenance effect with the leakage management activity. Therefore, based
on the characteristics of the applied data, this study performed two types of data mining
based on the revenue water ratio or the leakage ratio and time-series characteristics.

2.2. Pre-Processing for Data Analysis

In step 2, the collected data were pre-processed to evaluate the efficiency of leakage
management and to determine the water loss formula. First, four leakage management
factors (PR, MR, LR, LD) were classified into independent and dependent variables based
on the revenue water ratio increase and the leakage ratio reduction. The correlations of
variables (i.e., independent and dependent variables) were then evaluated. Finally, the
collected data were standardized using standardization scores (e.g., T-score converting) to
alleviate the unit and scale differences between factors.

2.2.1. Determination of Independent and Dependent Variables

The first part of step 2 is the categorization of leakage management factors, revenue
water ratio, and leakage ratio into independent and dependent variables. The four leakage
management factors (PR, MR, LR, LD) determined from step 1 will directly or indirectly
affect changes in the revenue water ratio or the leakage ratio. Therefore, the leakage
management factors were determined as independent variables, and the revenue water
ratio increase and the leakage ratio reduction were determined as dependent variables.

2.2.2. Correlation Analysis between Independent Variables

The correlations were analyzed to prevent multicollinearity between the four influ-
encing factors selected to derive dependent and independent variables. The higher the
covariance, the higher the correlation, and when the covariance is completely identical,
the correlation becomes 1. The correlation coefficient indicates the degree of such correla-
tion. The Pearson correlation coefficient [12] is used for normally distributed quantitative
variables, and Kendall’s tau correlation [13] is used to measure the relationship between



Appl. Sci. 2022, 12, 12530 5 of 16

sequences when they are not normally distributed, or when the order of categories is not
specified. The correlation coefficient ranges from −1 (completely negative relationship) to
1 (completely positive relationship); 0 indicates a non-linear relationship, and the correla-
tion between independent variables that does not cause a problem of multicollinearity is
conservatively 0.7, as judged below.

2.2.3. Correlation Analysis between Independent and Dependent Variables

In order to minimize the problem of collinearity between independent variables, there
should be no correlation between independent variables. However, typically, the correla-
tion between dependent and independent variables should be high. For this reason, it is
necessary to select variables that include significant independent variables and remove
independent variables without statistical significance through correlation analysis of each
dependent–independent variable combination to evaluate the leakage management effec-
tiveness and determination of formulation. Therefore, according to each data classification
group, it is excluded from the independent variable, and the target calculation formula is
derived.

2.2.4. Data Standardization through T-Score Conversion

Data standardization is a technique for determining the relative position of each
variable when it is difficult to evaluate in the same standard because the units and ranges
of the acquired data are different. In this study, T-score conversion was applied, taking into
account the characteristics of the data. In order to compare the effects on the increase in
the flowrate and the decrease in the leakage rate, it was converted into a T-score that was
converted into an average of 50 and a standard deviation of 10 and applied. This can be
calculated as in Equation (1).

Tscore = 10
(

X − µ

σ

)
+ 50 (1)

where X: variables, µ: average of variable X1, X2, · · · XN , σ: standard deviation of variable
X1, X2, · · · XN .

2.3. Evaluation of Leakage Management Efficiency and Determination of Formulation of Leakage

In this study, the efficiency of leakage management actions was evaluated, and the
formulation of leakage was determined using various data analysis approaches, such as
MRA analysis and DNN model.

2.3.1. Multiple Regression Analysis

Multiple Regression Analysis is a type of regression analysis that estimates the rela-
tionship between variables using a statistical method. In regression analysis, there is an
independent variable that is a cause and a dependent variable that is an effect. In this case,
multiple regression analysis is a method of performing analysis on a regression model in
which there is one dependent variable and two or more independent variables [14].

In this study, the increase in the flow rate and the decrease in the leakage rate according
to the data classification criteria were classified according to four input indicators (PR, MR,
LR, LD), and the target formulation was derived according to the increase in the flow rate
and the decrease in the leakage rate for the derived input indicators.

2.3.2. Deep Neural Network

Another technique applied in this study to evaluate the efficiency of leakage manage-
ment is DNN [15] (Figure 2). DNN is a technique composed of two or more hidden layers
of an Artificial Neural Network (ANN) [16], and DNN have the advantage of learning com-
plex data with fewer neurons compared to ANN. In addition, it is suitable for predicting
non-linear data, and the performance can be adjusted by adjusting the number of neurons
and the number of hidden layers, which are parameters of the technique. However, DNN
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has a high possibility of overfitting, and because this problem is directly related to the
performance of the model, it is necessary to adjust parameters and select an activation
function to prevent overfitting.

Figure 2. Configuration of Deep Neural Network Model.

In each hidden layer, a function is applied to the value that enters the neuron and is
then transmitted. The function used at this time is called the activation function, and the
Rectified Linear Unit (Relu) function is applied to each neuron as the activation function.
Equation (2) is the expression defining the Relu function.

f (x) = max(0, x) (2)

Figure 3 is the graph form of the Relu function. If the input value is less than 0,
it is output as 0, and if it is greater than 0, the input value is output as it is. The Relu
function learns faster than other sigmoid and tanh functions and does not have a gradient
loss problem. For the above reasons, the Relu function was applied in each layer when
constructing the model.

Figure 3. Formulation of Relu function.

When training the model, an error function that calculates the error between the
output value and the target value of the model is specified. The Mean Squared Error (MSE)
function was used as the error function when constructing the learning model. The MSE
function is the mean square error between the predicted value and the actual value. In
addition, an optimization function is essential when training a model. The optimization
function is a function that finds the parameter that minimizes the value of the loss function.
The Adaptive Moment Estimation (Adam) function was applied to the per-rate model.
Adam is an algorithm that combines the strengths of RMSProp and Momentum, which
are used as optimization functions. Like Momentum, it stores the exponential average of
the slope, and similarly to RMSProp, it stores the exponential average of the square of the
device. In this study, when constructing a learning model, one input layer, five hidden
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layers, and one output layer were stacked, and the number of neurons in each hidden layer
was composed of 64, 128, 256, and 512.

3. Application and Results
3.1. Study Area and Data

In this study, data on the statistics of waterworks between 2005 and 2018 were used to
initially select the study areas. Among the 163 local small and medium cities across South
Korea, 22 study areas were selected to ensure there were no missing data or errors in terms
of collecting data and that the leakage reduction effect was clear according to the activity of
leakage management.

To be defined as small and medium cities, cities had to be of typical type, not too big
or too small. In Korea, city size is generally defined by population. The population of
local small and medium cities is at least 50,000, and the maximum range of population
is 1 million. The selected cities’ data were accumulated for up to 14 years. For leakage
management factors, PR, LR, and LD were divided by the total pipe length, and MR was
used as the value divided by the water supply population in order to offset the difference
depending on the size of WDS. In addition, only leakage management factors with either
a revenue water ratio less than 80% or a leakage ratio higher than 10% were applied.
Examples of data are shown in Table 1.

Table 1. Example of data from the application area.

Study Area

Revenue
Water Ratio

Increase
Revenue

Water Ratio

Leakage
Ratio

Decrease
Leakage

Ratio

Pipe
Replacement

(PR)

Meter
Replacement

(MR)

Leakage Repair
(LR)

Leakage
Detection

(LD)

% % % % km/km × Million No./Per. × 1000 No./km × 1000 No./km × 1000

TY 2011 47.1 6.7 40.5 −5.7 28.776 40.958 1.771 1.261

HP 2011 49.3 −0.9 28.5 0.1 0.000 30.599 0.359 0.186

HP 2010 50.2 5.4 28.6 −0.2 19.158 141.390 0.645 0.250

BH 2014 52.2 −15.2 43.1 −15.5 0.229 37.663 0.107 0.000

NS 2005 54.1 −2.6 36.3 0.2 11.594 35.942 2.839 0.516

JD 2014 54.8 9.0 40.7 9.7 22.270 89.247 0.489 0.249

BH 2015 57.6 5.4 31.6 11.5 9.971 114.219 0.455 0.213

SC 2007 58.0 10.9 36.0 −0.4 24.310 24.889 0.920 0.456

GS 2011 58.3 10.6 36.6 3.2 14.601 59.704 0.464 0.630

WD 2015 59.3 8.7 40.7 8.7 7.408 14.482 0.298 0.160

TY 2012 59.6 12.5 35.9 4.6 35.705 27.696 1.934 0.756

HP 2012 59.8 10.5 35.7 −7.2 0.000 30.473 0.346 0.147

CS 2018 59.8 0.1 37.0 3.3 0.000 227.128 0.644 0.319

GR 2008 60.6 9.2 35.0 8.4 8.053 32.365 1.137 0.272

HP 2013 62.5 2.7 28.6 7.1 10.347 1.468 0.457 0.269

JE 2006 62.7 9.7 32.0 8.0 16.094 19.853 0.842 0.072

DY 2009 64.1 2.5 14.1 0.4 13.584 67.877 0.762 0.593

YC 2007 64.2 7.1 27.9 −4.2 40.304 55.074 2.100 0.100

NS 2006 64.5 10.4 29.4 6.9 45.217 10.604 4.322 0.180

BH 2016 64.9 7.3 25.9 5.7 29.730 52.147 0.505 0.207

SC 2008 65.2 7.2 28.9 7.1 15.390 21.729 0.802 0.318

GS 2012 66.2 7.9 29.0 7.6 41.112 36.274 0.659 0.342

GJ 2009 66.4 7.6 27.4 9.4 18.491 5.685 2.846 1.097

JD 2015 66.7 11.9 28.5 12.2 30.748 31.010 0.315 0.293

JE 2007 67.7 5.0 15.1 16.9 32.885 8.071 0.951 0.292

GJ 2010 67.8 1.4 26.9 0.5 19.846 7.281 1.717 0.763

WD 2016 67.9 8.6 27.2 13.5 40.430 30.411 0.336 0.258
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Table 1. Cont.

Study Area

Revenue
Water Ratio

Increase
Revenue

Water Ratio

Leakage
Ratio

Decrease
Leakage

Ratio

Pipe
Replacement

(PR)

Meter
Replacement

(MR)

Leakage Repair
(LR)

Leakage
Detection

(LD)

% % % % km/km × Million No./Per. × 1000 No./km × 1000 No./km × 1000

GeS 2009 69.5 −1.1 25.1 −1.0 32.920 23.754 0.905 0.237

NS 2007 69.8 5.3 27.5 1.9 125.818 10.432 2.604 0.074

3.2. Pre-Processing for Data Analysis

The collected data show the change in the revenue water ratio and the leakage ratio
according to the activity of leakage management (PR, LR, LD, MR). To evaluate the leakage
reduction factors, these data were pre-processed. Table 2 shows the correlation between
independent variables. Because the correlation depends on the data categorization, in this
study, to compare the correlation by data classification criteria, revenue water ratio increase
has been divided into four sections: (1) less than 60%, (2) 60–70%, (3) 70–80%, (4) higher
than 80%, and four sections of leakage ratio: (1) less than 10%, (2) 10–20%, (3) 20–30%,
(4) higher than 30%.

Table 2. Results of correlation analysis between independent variables.

Standard of
Categorization PR MR LR LD

All data

Leakage ratio of higher
than 20%

PR 1 - - -

MR −0.103 1 - -

LR 0.401 −0.145 1 -

LD 0.006 −0.044 0.360 1

Revenue water ratio of
less than 70%

PR 1 - - -

MR −0.268 1 - -

LR 0.455 −0.273 1 -

LD −0.079 −0.086 0.318 1

The leakage ratio

Less than 10%

PR 1 - - -

MR 0.461 1 - -

LR 0.832 0.422 1 -

LD 0.854 0.457 0.866 1

10–20%

PR 1 - - -

MR 0.021 1 - -

LR 0.416 −0.002 1 -

LD 0.272 0.064 0.649 1

20–30%

PR 1 - - -

MR 0.025 1 - -

LR 0.420 −0.168 1 -

LD −0.118 −0.176 0.243 1

Higher than 30%

PR 1 - - -

MR −0.316 1 - -

LR 0.497 −0.213 1 -

LD 0.690 −0.071 0.616 1
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Table 2. Cont.

Standard of
Categorization PR MR LR LD

The revenue
water ratio

Less than 60%

PR 1 - - -

MR −0.191 1 - -

LR 0.525 −0.195 1 -

LD 0.710 −0.157 0.664 1

60–70%

PR 1 - - -

MR −0.136 1 - -

LR 0.386 −0.337 1 -

LD −0.373 −0.165 0.151 1

70–80%

PR 1 - - -

MR 0.026 1 - -

LR 0.399 −0.021 1 -

LD 0.113 0.023 0.431 1

Higher than 80%

PR 1 - - -

MR 0.106 1 - -

LR 0.186 0.003 1 -

LD 0.240 −0.065 0.671 1

As a result, PR–LR (0.832), PR–LD (0.854), and LD–LR (0.866) of leakage ratio less than
10% showed a high correlation of more than 0.7. Therefore, the leakage ratio of less than
10% data was excluded when generating the prediction equation. In addition, the data
with a revenue water ratio of less than 60% showed a high correlation for LD–PR (0.71), but
in other data show correlation of less than 0.7.

Moreover, in order to minimize the problem of collinearity between independent
variables, there should be no correlation between independent variables. However, the
correlation between the dependent and independent variables should be high. Therefore,
this study performed an analysis of correlation between the independent and the dependent
variable, and Table 3 shows the results.

Table 3 shows the results of analysis of correlation components between dependent–
independent variables according to various classification criteria. Only data of the leakage
ratio of less than 10% showed high correlation between dependent–independent variables,
and low correlation in other cases. In other words, it was confirmed that, even if old pipes
and meters were replaced and leakage detection and repair were performed in some areas,
the tendency of a large increase in the revenue water ratio or a decrease in the leakage ratio
was small. For this reason, in order to derive a leakage management formulation according
to the data analysis group, it is necessary to include significant independent variables
and remove statistically insignificant independent variables. Therefore, the significance of
independent variables was considered when deriving the leakage management formulation
according to the data analysis group.

In this study, because the dependent and independent variables used different units,
data standardization should be performed for correlation analysis and data analysis. There-
fore, in this study, T-score was used, which was converted to an average of 50 and a
standard deviation of 10.
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Table 3. Results of correlation analysis between independent and dependent variables.

Standard of
Categorization

Pipe Replacement
(PR)

Meter
Replacement

(MR)

Leakage Repair
(LR)

Leakage
Detection

(LD)

km/km × Million No./Per. × 1000 No./km × 1000 No./km × 1000

All data

Leakage ratio of
higher than 20% 0.112 −0.013 0.064 0.059

Revenue water ratio
of less than 70% 0.131 −0.074 −0.026 −0.034

The leakage ratio

Less than 10% 0.776 0.595 0.688 0.695

10–20% 0.582 −0.060 0.284 0.166

20–30% 0.097 −0.213 0.094 0.225

Higher than 30% 0.216 0.199 0.003 −0.119

The revenue
water ratio

Less than 60% 0.569 −0.111 0.071 0.374

60–70% 0.023 0.082 0.136 −0.227

70–80% 0.463 −0.190 0.287 0.197

Higher than 80% 0.507 −0.103 0.107 0.248

Table 4 shows the results of converting factors that have a correlation of 0.5 or more
to a T-score in the correlation analysis between the dependent and independent variables
to obtain the formulation of revenue water ratio of the leakage ratio of less than 10% data.
According to the decrease in the leakage ratio, the variable values of PR converted to
T-scores were 42.28–91.54, MR, 37.56–86.53; LR, 37.62–91.85; and LD, 40.16–89.58. T-score
values of the independent variables were converted to a relatively similar range.

Table 4. Results of converting to T-scores.

Study Area Leakage Ratio
Reduction (%)

Pipe
Replacement

(PR)

Meter
Replacement

(MR)

Leakage
Repair

(LR)

Leakage
Detection

(LD)

T-Score
for PR

T-Score
for MR

T-Score
for LR

T-Score
for LD

NS 2012 0.50 6.45 15.96 0.40 0.12 61.74 51.38 59.54 57.62

GJ 2013 −1.20 0.00 21.01 0.19 0.01 42.28 56.61 46.61 41.32

GJ2017 0.80 0.28 3.63 0.16 0.02 43.14 38.65 44.61 42.20

PJ 2012 0.60 3.20 9.87 0.38 0.12 51.94 45.10 57.83 56.98

DDC 2015 −2.70 2.66 13.01 0.17 0.06 50.32 48.33 45.12 47.41

GJ 2018 0.50 0.33 28.02 0.16 0.04 43.27 63.84 44.93 45.69

YJ 2010 −1.60 1.26 10.88 0.32 0.11 46.07 46.14 54.73 54.95

PJ 2013 0.40 2.45 9.39 0.33 0.04 49.68 44.60 54.85 45.05

YJ 2011 0.20 0.92 15.67 0.28 0.03 45.07 51.09 52.07 44.09

PJ 2014 0.40 2.19 8.99 0.34 0.12 48.90 44.18 55.67 56.45

GJ 2012 1.90 0.28 18.49 0.18 0.02 43.12 54.00 45.65 42.77

PJ 2015 0.40 7.35 10.22 0.42 0.12 64.45 45.45 60.67 57.07

DDC 2017 −0.40 3.36 24.76 0.12 0.05 52.43 60.48 42.43 46.31

YJ 2013 0.00 0.00 15.11 0.17 0.01 42.28 50.51 45.40 40.16

YJ 2012 1.30 0.00 3.26 0.21 0.01 42.28 38.26 47.98 40.18

DDC 2016 1.80 1.15 32.23 0.04 0.02 45.75 68.19 37.62 41.57

YJ 2009 −0.90 1.47 9.03 0.25 0.10 46.72 44.23 49.97 54.14

NJ 2016 2.70 0.18 22.49 0.09 0.09 42.83 58.13 40.73 53.12

PJ 2017 −0.50 4.11 8.80 0.22 0.13 54.69 43.99 48.54 58.75

EC 2008 20.40 16.33 49.98 0.94 0.34 91.54 86.53 91.86 89.58
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Table 4. Cont.

Study Area Leakage Ratio
Reduction (%)

Pipe
Replacement

(PR)

Meter
Replacement

(MR)

Leakage
Repair

(LR)

Leakage
Detection

(LD)

T-Score
for PR

T-Score
for MR

T-Score
for LR

T-Score
for LD

YJ 2015 −0.30 0.15 6.21 0.14 0.03 42.73 41.32 43.34 43.38

YJ 2014 0.70 0.14 8.25 0.14 0.01 42.71 43.42 43.32 41.22

PJ 2016 1.30 3.87 15.03 0.31 0.15 53.94 50.42 53.65 61.41

DDC 2014 6.00 6.98 2.57 0.17 0.07 63.32 37.56 45.52 49.15

DDC 2018 2.10 2.17 10.66 0.21 0.10 48.83 45.91 47.79 53.94

PJ 2018 1.80 3.23 14.54 0.41 0.11 52.03 49.92 59.78 55.95

YJ 2018 −0.50 1.54 15.93 0.17 0.02 46.92 51.35 45.46 42.69

YJ 2017 −0.20 0.76 11.52 0.11 0.01 44.56 46.80 41.79 40.84

YJ 2016 3.40 1.38 8.42 0.12 0.05 46.46 43.60 42.53 46.02

3.3. Evaluation of Water Loss Management Efficiency and Determination of Formulation of
Water Loss

In this study, the increase in the flow rate and the decrease in the leakage rate according
to the data classification criteria (higher than 10% of leakage ratio, less than 80% of the
revenue water ratio) were analyzed according to four input indices (PR, MR, LR, LM).
Through this, a leakage management model formulation was derived according to the
increase in the revenue water ratio and the decrease in the leakage ratio for input indicators.
In order to derive a reliable leakage management model formulation, MRA and DNN were
used, and Table 5 shows the result of deriving the leakage management model formulation
according to the data classification criteria.

Table 5. Results of deriving leakage management model formulation.

Standard of
Categorization

MRA DNN

Leakage Management Model
Formulation

Used Variables
R

X1 X2 X3 X4

Leakage
ratio

Less than 10%
(Group 1) YG1 = 0.22X1 + 0.12X2 + 0.04X3 − 3.17 O O O 0.82 0.78

10–20% (Group 2) YG2 = 0.14X1 + 1.06X3 + 0.24 O O 0.59 0.56

20–30% (Group 3) YG3 = 0.03X1 + 7.01X4 + 1.71 O O 0.32 0.57

Higher than 30%
(Group 4) YG4 = 0.52X1 + 0.06X2 + 1.47X3 − 3.41 O O O 0.58 0.66

Revenue
water ratio

Less than 60%
(Group 5) YG5 = 0.42X1 + 3.75X4 + 1.14 O O 0.64 0.71

60–70% (Group 6) YG6 = 0.02X2 + 0.94X3 + 6.99 O O 0.34 0.45

70–80% (Group 7) YG7 = 0.08X1 + 0.85X3 + 4.34X4 + 1.53 O O O 0.53 0.55

Higher than 80%
(Group 8) YG8 = 0.1X1 + 4.35X4 − 0.47 O O 0.55 0.58

As a result of the leakage management model formulation, the coefficient of deter-
mination (R) of the eight classification criteria was distributed from 0.32 to 0.82, and an
average value of 0.55 for MRA and 0.61 for DNN. Among the eight groups, the highest
coefficient of determination in both analysis through MRA and DNN is Group 1, with a
leakage ratio of less than 10%. In the case of Group 1, it depends on PR, MR, LD, etc., to
reduce the leakage ratio, and it is confirmed that PR has the greatest influence on reducing
the leakage ratio. In addition, if the leakage ratio is less than 10%, the revenue water ratio
is high. In addition, it was confirmed that PR among the four leakage reduction activities
was essential for reducing the leakage ratio and increasing the revenue water ratio in
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all classification criteria, except for Group 6, where the revenue water ratio was 60–70%.
According to Group 8 in contrast to Group 1, LD was shown to be the most significant
factor to increase the revenue water ratio. In the case of Group 8, the revenue water ratio
is already high, and because PR, MR, and LR are judged to be in progress, the revenue
water ratio is expected to decrease if no leakage reduction activities are carried out. This
is because the model formula was derived as a negative number (−0.47), as in Group 1.
The average value for the coefficient of determination on each data classification criteria
of MRA and DNN were 0.55 and 0.61. In all groups, except for Groups 1 and 2, the DNN
model of the coefficient of determination was high. Through the above results, it can be
judged that DNN is a suitable model for the formulation of water loss management.

However, the conditions required for performing each model are different, and the
results can also be derived differently depending on data processing, such as model
parameters and training data mining. As a result of comparison of the models applied in
this study, it was found that the application of an artificial intelligence algorithm similar to
DNN rather than MRA is more appropriate when there is a large variance, such as water
loss management data, among various artificial intelligence algorithms. Therefore, in order
to derive better results, the analysis result can be improved through sensitivity analysis of
the algorithm parameters and various training data classifications.

The multiple correlation coefficient of MRA analysis is the Pearson correlation coeffi-
cient for the relationship between the dependent variable according to the independent
variable and the predicted value through the regression model. The average value for the
coefficient of determination is 0.55, which is not a high correlation, and it would not be the
best data classification for reflecting the characteristics of the data. This result means that it
cannot be evaluated that the observed values of the sample are well clustered around the
regression line, and that there is a difference between the predicted values and the observed
values. Moreover, because the data classification was based on the leakage ratio and the
revenue water ratio, it can meet the goal to improve the efficiency of leakage management
in the future, but the model formulation predicts the increase in the revenue water ratio
and the decrease in the leakage ratio It shows some error with the predicted value.

The prediction values of the model formulation show differences in accuracy depend-
ing on the classification of the data, even if the same data are used [17]. In this study,
the leakage ratio and the revenue water ratio were classified according to the water loss
management activity, which means that each variable is independent of each other in the
data classification process. However, because the water loss management activities such as
pipe and meter replacement reflect the time-sequential characteristics of the revenue water
ratio and the leakage ratio after recovery, it is necessary to consider the spatiotemporal
characteristics when classifying the data.

Therefore, in this study, when classifying the data, the increase in the revenue water
ratio and the decrease in the leakage ratio affect the water loss management activity of the
immediately preceding year. In this study, the time series and regional characteristics were
considered, and a formulation was derived. Table 6 shows the data classified based on
spatial and temporal characteristics.

As shown in Table 6, there are a total of 22 target areas classified based on spatial and
temporal characteristics, and the model formulation was derived for a total of 11 target
areas, except for small- and medium-sized cities with less than four datasets. The results
are shown in Table 7.

The multiple correlation coefficient of the model formulation considering spatiotem-
poral characteristics is 0.87 on average (maximum: 0.99, minimum: 0.75), which shows a
higher correlation than the data classified based on the revenue water ratio and the leakage
ratio in both analysis approaches (i.e., MRA, DNN). This means that the observations of the
sample are well clustered around the regression line, and the regression model predicts the
dependent variable well. In particular, BH and JE showed a coefficient of determination
of almost 1.00. This means that there are no missing values in the data; these two cities
are smaller cities relatively, and the annual water loss management actions were more
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actively performed than in other areas. Accordingly, it is judged that the improvement of
the revenue water ratio and the leakage ratio is larger than others. Moreover, in the case
of NJ, the gap in the coefficient of determination presented the largest between MRA and
DNN. This is because NJ has a distinct time-series characteristic compared to other cities.
Therefore, it is thought that in the case of NJ, data analysis considering the characteristics
of time series is more appropriate than independent data analysis.

Table 6. Example of data classifying based on spatial and temporal characteristics.

Study Area

Revenue
Water
Ration

Increase
Revenue

Water
Ration

Leakage
Ratio

Decrease
Leakage

Ratio

Pipe
Replacement

(PR)

Meter
Replacement

(MR)

Leakage
Repair

(LR)

Leakage
Detection

(LD)

% % % % km/km × Million No./Per. × 1000 No./km × 1000 No./km × 1000

GeJ 2009 66.4 7.6 27.4 9.4 18.49 5.68 2.85 1.10

GeJ 2010 67.8 1.4 26.9 0.5 19.85 7.28 1.72 0.76

GeJ 2011 72.5 4.7 22.1 4.8 4.57 10.23 0.55 0.42

GeJ 2012 75.6 3.1 19.4 2.7 32.32 12.44 0.78 0.51

GeJ 2013 74.8 −0.8 19.2 0.2 20.30 8.91 0.88 0.40

GeJ 2014 80.4 5.6 14.7 4.5 26.43 5.80 0.65 0.33

GeJ 2015 80.5 0.1 14.7 0.0 14.04 9.16 0.68 0.37

GeJ 2016 80.0 −0.5 14.8 −0.1 6.47 11.03 0.54 0.18

GeJ 2017 80.3 0.3 15.1 −0.3 1.43 6.86 0.67 0.17

GeJ 2018 75.9 −4.4 19.5 −4.4 1.73 7.52 0.71 0.21

GR 2008 60.6 9.2 35.0 8.4 8.05 32.37 1.14 0.27

GR 2009 72.1 11.5 12.4 22.6 64.17 26.88 0.83 0.21

GR 2010 72.3 0.2 21.2 −8.8 2.45 15.60 0.60 0.06

GR 2011 76.7 4.4 18.7 2.5 2.62 34.67 0.74 0.15

GR 2012 78.6 1.9 16.6 2.1 3.25 33.51 0.86 0.22

GR 2013 80.0 1.4 15.0 1.6 3.44 10.95 0.80 0.46

GR 2014 80.0 0.0 15.5 −0.5 7.70 14.62 0.68 0.39

GR 2015 80.3 0.3 15.2 0.3 2.34 49.38 0.46 0.28

GR 2016 80.7 0.4 14.8 0.4 2.31 28.57 0.54 0.19

GR 2017 78.2 −2.5 14.9 −0.1 1.05 50.59 0.37 0.14

GR 2018 75.6 −2.6 14.9 0.0 1.48 51.91 0.26 0.13

···

GS 2011 58.3 10.6 36.6 3.2 14.60 59.70 0.46 0.63

GS 2012 66.2 7.9 29.0 7.6 41.11 36.27 0.66 0.34

GS 2013 73.0 6.8 22.5 6.5 21.53 35.11 0.46 0.25

GS 2014 80.0 7.0 15.0 7.5 50.51 11.34 0.33 0.18

GS 2015 78.1 −1.9 17.2 −2.2 14.23 18.69 0.32 0.20

GS 2016 80.5 2.4 14.9 2.3 6.99 22.07 0.28 0.18

GS 2017 80.3 −0.2 15.0 −0.1 0.77 24.29 0.29 0.16

GS 2018 79.3 −1.0 15.9 −0.9 2.88 25.73 0.22 0.12

Through the comparison of the above data classification methods, the increase or
decrease in the leakage ratio/revenue water ratio by the water loss management activity
of local water distribution systems can construct a more effective model for classification,
considering both local and temporal characteristics.

However, this study could not be performed due to the lack of accumulated data,
but when the data are classified considering both the current state of the water distribu-
tion systems (e.g., the revenue water ratio, the leakage ratio) and spatial and temporal
characteristics, it is believed that a more reliable predictive model can be developed.
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Table 7. Results of deriving leakage management model formulation considering spatial and temporal
characteristics.

Standard of
Categorization

MRA DNN

Leakage Management Model Formulation R

GeJ YGeJ = −0.34X2 − 4.59X3 + 19.28X4 + 1.68 0.75 0.76

GR YGR = 0.35X1 + 0.24X2 + 11.05X3 + 14.07X4 − 18.62 0.98 0.82

GS YGS = 0.35X1 + 0.30X2 − 2.22X3 − 20.35X4 − 6.37 0.91 0.92

NJ YNJ = 0.12X1 − 0.11X2 − 7.57X3 + 16.26X4 + 1.53 0.77 0.84

DDC YDDC = −0.06X1 − 0.10X2 − 72.42X3 − 13.54X4 + 5.50 0.85 0.86

BH YBH = −0.14X1 + 0.03X2 − 10.64X3 + 13.99X4 − 15.41 0.99 0.99

SC YSC = −0.40X1 − 0.18X2 + 30.92X3 − 21.09X4 − 2.51 0.76 0.85

SS YSS = 0.22X1 + 0.03X2 − 3.59X3 + 26.57X4 − 1.13 0.9 0.86

JE YJE = −0.19X1 + 0.01X2 + 22.64X3 + 14.56X4 − 6.19 0.99 0.99

TY YTY = 0.22X1 − 0.38X2 + 1.47X3 − 1.90X4 + 5.06 0.82 0.87

HP YHP = 0.50X1 − 0.09X2 + 1.67X3 + 35.71X4 − 6.39 0.87 0.91

4. Summary and Conclusions

This study developed an evaluation method for deriving the leakage reduction factors
of WDSs in the case of Korean small and medium cities. To develop the evaluation method
for deriving leakage reduction factors, water loss management efficiency evaluation and
formulation of water loss were derived based on improving the revenue water ratio data
according to the water loss activity of WDSs in local small and medium cities. For this
goal, this study performed three steps. First, data from the study area were collected,
and the significant factors selected based on the information characteristic (e.g., revenue
water ratio, water loss management activity, variation of the revenue water ratio according
to the leakage management activity, leakage status, spatiotemporal characteristics). Sec-
ondly, the collected data underwent pre-processing for the selected factors. In the data
pre-processing, independent and dependent variables were determined, and correlation
analyses were performed between these independent and dependent variables. Through
T-score conversion, the data were then standardized to be matched up with the units of
various factors. Finally, the efficiency of leakage management actions was determined by
the formulation of leakage using various data analysis approaches using MRA analysis
and DNN. To apply the proposed approach, the revenue water ratio and the leakage ratio
variation data according to the leakage management activity (PR, LR, LD, MR) for 22 local
small and medium cities in South Korea were used.

Among the four leakage reduction activities, PR was highlighted as an essential
activity for decreasing the leakage ratio and increasing the revenue water ratio in most of
the data classifications, excluding Group 6. In addition, in relatively well-managed WDSs
(i.e., the leakage ratio is less than 10% and the revenue water ratio is higher than 80%), the
LD was presented as an effective activity to improve WDS network conditions. However,
the first analysis did not consider the temporal correlation of each water loss management
activity; pipe and meter replacement reflected the time-sequential characteristics of the
revenue water ratio and the leakage ratio after recovery. It is necessary to consider the
spatiotemporal characteristics when classifying the data. Therefore, in the second analysis,
the data were classified by considering the characteristics of time and location, and the
effect of water loss management activity was analyzed.

According to the second analysis results, the annual water loss management action of
small cities (e.g., BH and JE) was more actively performed. It is thought that this is because
a city with a small water supply population is more likely to be more efficient than other
regions in distributing support as it is more likely to improve leakage according to the
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water loss management activity. Lastly, regarding the various analyses in this study, in
most of the classification groups, depending on the revenue water ration and the leakage
ration, the DNN model of the coefficient of determination was higher than MRA. Moreover,
in the second analysis, the performance of data analysis using DNN is more appropriate
in the data classification considering the characteristics of time series compared with
independent data analysis. Therefore, it can be judged that DNN is a suitable model for
the formulation of water loss management. Through the comparison of the above data
classification approaches, the increase or decrease in the leakage ratio/revenue water ratio
by the water loss management activity of local WDSs can be used to construct a more
effective model for classification, considering both local and temporal characteristics.

The results of this study are expected to be highly useful when analyzing leakage
management efficiency and determining the leakage management goals of WDSs with
similar size and characteristics in the future. In particular, it can be used as a basis for
determining project goals and budgets at the planning stage, and it can also be used for
prioritization and evaluation of each leakage reduction activity to achieve project goals. In
addition, it will be possible to derive a water leakage reduction plan with optimal efficiency
by evaluating the current pipeline conditions according to the leakage ratio/revenue water
ratio, selecting the pipeline maintenance target, and reducing the water leakage through
pressure control. Finally, it will be possible to prioritize pipeline maintenance in order to
increase leakage reduction efficiency by calculating the amount of leakage reduction for
each pipeline.
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