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Abstract: The security of a computer system can be harmed by specific applications, such as malware.
Malware comprises unwanted, dangerous enemies that aim to compromise the security and generate
significant loss. Consequently, Malware Detection (MD) and Malware Classification (MC) has
emerged as a key issue for the cybersecurity society. MD only involves locating malware without
determining what kind of malware it is, but MC comprises assigning a class of malware to a particular
sample. Recently, a few techniques for analyzing malware quickly have been put out. However,
there remain numerous difficulties, such as the low classification accuracy of samples from related
malware families, the computational complexity, and consumption of resources. These difficulties
make detecting and classifying malware very challenging. Therefore, in this paper, we proposed an
efficient malware detection and classification technique that combines Segmentation-based Fractal
Texture Analysis (SFTA) and Gaussian Discriminant Analysis (GDA). The outcomes of the experiment
demonstrate that the SFTA-GDA produces a high classification rate. There are three main steps
involved in our malware analysis, namely: (i) malware conversion; (ii) feature extraction; and
(iii) classification. We initially convert the RGB malware images into grayscale malware images for
effective malware analysis. The SFTA and Gabor features are then extracted from gray-scale images
in the feature extraction step. Finally, the classification is carried out by GDA and Naive Bayes (NB).
The proposed method is evaluated on a common MaleVis dataset. The proposed SFTA-GDA is the
effective choice since it produces the highest accuracy rate across all families of the MaleVis Database.
Experimental findings indicate that the accuracy rate was 98%, which is higher than the overall
accuracy from the existing state-of-the-art methods.

Keywords: malware detection; malware classification; SFTA; Gabor; GDA; energy security

1. Introduction

The Internet has grown in importance in our day-to-day lives. We utilize it for a variety
of business and non-business purposes, including banking, communication, entertainment,
and shopping. Malicious programs and applications (often known as malware) are one of
the biggest security risks the internet currently confronts. Malicious software, also known
as malware, is created with the intention of causing harm or engaging in any type of
undesirable activity on a computer system, including obstructing computer operations,
gathering private information, getting around security measures, and displaying offensive
advertisements. Every day, enormous volumes of malware are intentionally manufactured.
The cost of harmful software has increased, and its market is always growing depending
on how it functions, there are numerous types of malware, including adware, spyware,
bot, virus, trojan, ransom wares, worm, and backdoor, among others [1], [2,3]. Therefore,
Malware detection and classification has emerged as one of the most pressing issues in
the security field. To fully comprehend the aim and components of the malware, a further
classification can be created to identify the types and family classes of malware [4,5].

Malware analysis entails both the detection and classification of malware. Malicious or
benign malware can be distinguished through detection. In contrast, classification entails
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determining the specific malware family for a particular type of malware. There are two
basic categories of malware analysis: static and dynamic. Figure 1 displays a regularly
employed malware analysis taxonomy. Both manual and automated analysis is possible.
Manual analysis necessitates subject expertise. On other hand, automatic analysis needs
highly developed data science programming skills [6]. The primary mechanism of static
analysis is to find binary files without running any software. It operates by taking malware
binary’s style signatures. Static analysis is one of the finest methods for identifying typical
malware because it is quick and secure [7]. In contrast, during a dynamic analysis, a
software’s behavior is investigated, and from these findings, the software’s intentions or
purposes are inferred. Although it can detect sophisticated malware, it is time-consuming
and prone to security threats [8]. In comparison to static analysis, dynamic analysis is a
superior method, but it uses more time and memory and has scaling problems. The focus
of our work is on static analysis.
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Recently, numerous studies have been conducted to identify malware utilizing image
processing techniques including texture analysis, entropy, and image matrix. It has been
noted that textural analysis continues to be used actively in malware detection via imaging
techniques. An essential component of computer vision is texture analysis. Most surfaces
have some roughness to them. Malware images from the same family tend to have fairly
similar patterns and textures throughout most malware databases. It is clear that while the
malware photos do not technically have repeating patterns, they do have a lot of “texture,”
which can be used for automatic classification. There are striking visual similarities across
malware images from the same family in terms of image texture [9]. Nataraj et al. [10] was
the first work to propose malware classification based on textural features. In order to
compute texture features, they employ GIST [11,12] which utilizes a wavelet decomposition
of an image. Additionally, they demonstrated that texture analysis approaches using image
processing may categorize malware faster than other malware classification approaches.

However, the vast majority of MC approaches, which rely on texture analysis, have
a number of fundamental flaws, including a low classification rate since they classify
malware using inaccurate and onerous features. The huge feature vector dimension results
in a significant computational burden [13] and consumption of resources. The requirement
for discovering precise and practical features for increasing the MC performance following
malware has been detected. Additionally, this is to identify the top malware classification
techniques. Segmentation-based fractal texture analysis (SFTA) and Gabor filters are two
widely used computational techniques for texture analysis that are effective for classifying
and segmenting textures. Therefore, the proposed method would leverage relevant texture
features, namely SFTA and Gabor as well as GDA and NB as Classifiers.

Three steps make up the proposed malware analysis method: (a) malware conversion;
(b) feature extraction; and (c) classification. We initially convert the RGB malware images
into grayscale malware images for effective malware analysis. The SFTA and Gabor features
are extracted from gray-scale images in the feature extraction step. Lastly, the classification
is carried out by GDA and NB.
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The following are the contributions of the proposed method:

1. To present an effective malware detection and classification method, SFTA and Gabor
are extracted as distinctive feature vectors.

2. The usage of a malware visualization method that transforms binary files to 8 bit
vectors for create grayscale graphics.

3. SFTA-GDA minimizes processing times and enhances overall detection/classification
accuracy through texture features.

4. Experiment findings demonstrate that the proposed technique can accurately classify
malware families.

5. Experimental results show that our proposed method can classify malware families
with a low rate of false positives and false negatives.

The remainder of this article is organized as follows. The related works are discussed
in Section 2. The selected features are described in Section 3. The proposed method is
described in Section 4. Results and analyses are discussed in Section 5. Finally, in Section 6
a conclusion is drawn.

2. Related Works

This section provides an overview of earlier studies on malware detection (MD) and
malware classification (MC) techniques. It can be seen that textural analysis is still used
actively to find malware using image techniques.

Makandar et al. [4] presented the MC method as reliant on Gabor Wavelet, GIST and
DWT. Malware is categorized using a Support Vector Machine (SVM) classification tech-
nique. On the Malimg Dataset, the proposed algorithm underwent testing. Verma et al. [5]
presented malware classification as reliant on the first-order and GLCM-based second-
order statistical texture features. The public Malimg malware Dataset was used to test
the presented method. ELM is a classifier that has been used in the classification phase.
Gandotra et al. [14] presented the MC method as dependent on static and dynamic features.
Multiple classification algorithms were used, including IB1, decision tree, and random
forest. Han et al. [15] presented the MC method as reliant on visualized images and entropy
graphs. Determining the similarities of entropy graphs has been used to find and classify
malware. Vinayakumar et al. [16] presented the MC method by using textural features
which consisted of wavelet transform and Gabor transform. The KNN classifier was used
in the classification stage. Fang et al. [17] presented the MC method as reliant on dynamic,
static, and content-oriented features. In the classification scenario, a fuzzy random forest
and an SVM are classifiers that have been applied. Kong et al. [18] presented the MC
method by using structural information. The Assemble classifier was used in the classifica-
tion stage. They employ the call graph method, which collects the features of each malware
sample. Kosmidis and Kalloniatis [19] presented malware detection (MD) based on GIST
feature extraction technique. The model had a detection accuracy of 91.6%. The malware is
categorized using a random forest classification technique. On the MaleVis Dataset, the
proposed algorithm underwent testing. Ban et al. [20] presented malware detection (MD)
based on B2M (Binary mapping to image) algorithm, the SURF algorithm and the Local
sensitive hashing (LSH) algorithm. The method had an 85% classification accuracy rate.
Liu et al. [21] presented the MC method as reliant on GIST and multi-layer LBP features.
The proposed method experimented on the Malimg Database. The RF classifier was used
in the classification stage. Fu et al. [22] presented MC by using the global features and
local features combined. Multiple classification algorithms were used, including support
vector machine, random forest, and K-nearest neighbor. Liu and Wang [23] proposed the
MC method based on local mean method. The ensemble learning classifier was used in
the classification stage. Bozkir et al. [24] presented the MC method as reliant on GIST,
HOG (Histogram of Gradients) descriptors and their combination. Multiple classification
algorithms were used, including j48, RBF kernel-based SMO, Random Forest, XGBoost and
linear SVM.
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The majority of the MC techniques previously discussed are based on texture analysis
techniques. In contrast to these MC techniques, the proposed method would leverage rele-
vant texture features, namely SFTA and Gabor. These approaches’ fundamental drawback
is that they have a low classification rate since they classify malware using unreliable and
cumbersome features. Another factor is a large feature vector dimension. As a result, the
proposed technique lowers the risk of misclassification and increases classification accuracy.
In addition, our method places more emphasis on machine learning classification to cut
down on computing costs.

3. Multiple Features

Numerous image processing applications have had exceptional success with texture
analysis methods. Malware images from the same family tend to have fairly similar patterns
and textures throughout most malware databases. It is clear that the malware photos do
not technically have repeating patterns, they do have a lot of “texture,” which can be used
for automatic classification. There are striking visual similarities across malware images
from the same family in terms of image texture [9]. Therefore, the texture analysis plays a
distinct role in the field of the malware classification.

The requirement to finding accurate and convenient features to increase the malware
classification performance following malware has been detected. Because of their reliability
and low computational cost, the texture feature descriptors SFTA and Gabor feature are
utilized for texture feature extraction. The next subsection provides an explanation for each
texture descriptor.

3.1. Segmentation-Based Fractal Texture Analysis (SFTA)

Segmentation-based fractal texture analysis (SFTA) is one of the popular texture
approaches [25]. The most notable aspect of an image that is used to recognize and classify
malware images and find similarities across images from different virus families is its
texture. SFTA is used for texture feature extraction due to its dependability and affordable
computation.

The SFTA extraction method can depend on two steps. Firstly, the set of binary images
was created by applying the input grayscale image decomposition. The data were divided
using the Two-Threshold Binary Decomposition (TTBD) technique [26].

Secondly, SFTA feature vectors are calculated as the average gray level, fractal dimen-
sion size, and additional SFTA feature vector. The complexity of malware image structures
that are fractured in the input image are depicted using fractal estimations, as seen in
Figure 2. For more details, see [25]. In order to extract the SFTA features, the following
mathematical expression (Equation (1)) is employed.

∅s f ta(U) =


1 i f ∃(i′, j′) ∈ N8[(i, j)] :

∅e(i′, j′) = 0ˆ
∅e(i, j) = 1
0 Otherwise

(1)

where N8 [(i, j)] represents the number of connected pixels initialized as 8 in this work. ∅e(i, j)
is Binary image.

The size of the characteristics vector depends on how many thresholds are selected.
For instance, seven binary images will be generated when we were considered them equal
to three. Therefore, for each image, 21 features were created using the SFTA method.

As we already discussed, the majority of MD/MC methods suffer from limitations
including a huge number of feature vectors and a high time complexity. However, due
to their sturdiness and inexpensive processing, SFTA are preferred among texture image
analysis techniques. Therefore, using SFTA features extraction in MD/MC is intriguing.
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3.2. Gabor Features

In image processing, Gabor filters [27] have indeed been widely employed for feature
extraction. A coefficient matrix provided by Gabor filters allows for multi-resolution
analysis. Thus, a 2D Gabor filter has been applied in order to extract features. A 2D Gabor
can be generated in the time and frequency domain [28]. In the time domain, Gaussian
function and a sinusoidal wave are produced. In the frequency domain, it is a convolution
of the transformations of the Gaussian and sinusoid. In order to extract the 2D Gabor
features, the following mathematical expression (Equation (2)) is employed.

Gθ, f ,σ1,σ2(x, y) = exp
[
−1
2

(
x′2
σ2

1
+ y′2

σ2
2

)]
cos(2π f x′ + ϕ)

x′ = x sin θ + y cos θ
y′ = x cos θ + y sin θ

(2)

where:
f = the spatial frequency of the wave at an angle θ with the x axis,
σ1 and σ2 = the standard deviations of the 2D Gaussian envelope,
ϕ = the phase.
In a number of image analysis and classification applications, Gabor filters are of-

ten used. Two frequent Gabor features [29], namely Mean Squared Energy and Mean
Amplitude, are recovered across a range of orientations and sizes.

At different scales and orientations, Gabor features can be retrieved. Figure 3 shows
the 2D Gabor filters in a variety of eight orientations and five scales [30].
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Finally, feature vector [32] is obtained by extracting Mean Squared Energy and Mean
Amplitude as feature vectors from the Response Matrices. Mean Squared Energy is calcu-
lated by adding the squared values of each matrix value in a response matrix. The mean
amplitude of a response matrix is calculated as the sum of the absolute values of each matrix
value. If you want to understand further about Gabor Features, I suggest reading [32].

4. The Proposed Methods

Three main processes make up the suggested technique for malware analysis: (a)
malware conversion; (b) feature extraction; and (c) classification. For proper malware
analysis, we first transform the RGB malware images into grayscale malware images. In the
feature extraction step, the SFTA and Gabor features are extracted from grayscale images.
Lastly, the classification is carried out by GDA and NB. Figure 4 depicts the proposed
method’s flowchart. Additionally, the Algorithm 1 was developed. In the subsections
below, each step’s full details are presented.

Step 1: Malware Conversion

The PE binary files (malware or Non-Malware) are often visualized and provided as
input for malware analysis (detection and classification task). In the majority of malware
detection and classification task, each PE binary file is converted into a 2D array and
visualized as a grayscale image. While there is a significant variance between distinct
families, the image textures of the same families are very similar [10]. However, the PE
binary files in MaleVis dataset are visualized as RGB byte images that belong to 26 malware
classes, including 25 malware and 1 Non-Malware. Therefore, it is necessary to convert
these RGB images into grayscale images. Figure 5 demonstrates the conversion of RGB
malware images into grayscale malware images.
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Algorithm 1: Proposed MC_based GDA and NB Classifier.

Input: RGB Malware Image.
Output: Non-Malware/Malware Image.
Begin
For

1: Use the “Imread ()” function to read each image;
2: Convert the RGB image to the gray-scale image using Matlab function such as “rgb2gray ( )”;
3: Then, the SFTA features {Sftaf1, Sftaf2, Sftaf3, Sftaf4, . . . Sftaf21} are extracted to obtain 1 ×

21-dimension feature vector;
4: Extract the Gabor features vector:

A. Apply 2D Gabor filters to each image that has been converted.
B. Extract the mean squared energy and mean amplitude as the Gabor features {Gaborf1,

Gaborf2, Gaborf3, Gaborf4 . . . Gaborf12} to obtain a 12-dimension feature vector.

5: Training:

A. Employ the above feature vectors to train the GDA classifier;
B. Employ the above feature vectors to train the NB classifier;

6: Testing:

A. The trained GDA model are tested to identify whether the image is non-Malware or Malware;
B. The trained NB model are tested to identify whether the image is non-Malware or

Malware.

End for
End
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Following malware visualization, features are extracted for malware analysis. Both
the machine learning (ML) and computer security (CS) communities have looked into
feature extraction for malware analysis. As can be observed, malware classification (MC)
frequently employs the same set of features as malware detection (MD).

There are typically two ways to extract image features: the first type includes extracting
the global features from the entire image; in the second type, local feature points are
extracted and then described using pertinent features.

The image’s primary global features are texture, color, shape, and space of the image.
We came to the conclusion that textural features were much more suitable and adequate
as the global characteristics of malware after studying the traits and contained data of
malware images.

SFTA and Gabor are two commonly used texture feature extraction methods. Due to
its resilience and lower computational complexity compared to other methods, SFTA is the
greatest fit for our purposes. Since Gabor is the best choice to reduce feature dimension
when compared to the various texture methods, it was chosen to extract mean squared
energy and mean amplitude features.

Step 2.1: SFTA Features Extraction

The malware may be easily recognized due to a texture-based feature that was gener-
ated from malware that could be seen. As shown in Algorithm 2, SFTA Texture features are
extracted by hand-engineering methods. The SFTA feature vector that was obtained has a
1 × 21 dimension.

Algorithm 2: Compute SFTA textures features.

Input: Visualized Malware Image.
Output: 1 × 21 features vector dimension.

1. Open the malware image that was visualized.
2. Compute the SFTA using the Equation (1).
3. Twenty One features vector are produced.

Step 2.2: Gabor Features Extraction

Algorithm 3 illustrates the application of a 2D Gabor filter to extract features. Equation
(2) is used to obtain the mean squared energy and mean amplitude Gabor features. The
feature vectors’ dimensions are 1 × 12.

Algorithm 3: Compute Gabor textures features.

Input: Visualized Malware Image.
Output: 1 × 12 features vector dimension.

1. Open the malware image that was visualized.
2. Apply 2D Gabor filters to each image that has been converted.
3. Calculate the mean squared energy and mean amplitude Gabor features using the

Equation (2).
4. Twelve features vector are produced.

Step 3: Classification

It is usually worthwhile to assess how good the chosen features are and how good the
model is before we get started with the classification step. In general, features and models
are regarded as being a decent representation when we are able to correctly categorize the
malware families using the chosen features and classifiers.

A review of the literature revealed that several studies using KNN, RF, NB, ELM,
GDA, NN, and SVM showed improved accuracy findings. In this paper, we employed NB
and GDA as useful methodologies for malware analysis.

Step 3.1: Naive Bayes (NB) Classifier
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A probability-based classification technique called the Naive Bayes Algorithm counts
the frequencies and permutations of values found in a dataset to create a set of likelihood.
The top rated sample in the applicable class is included in Naive Bayes Classifier’s system
learning, which is based on test data [33].

Step 3.2: Gaussian discriminant analysis (GDA) Classifier

A specific generative learning method called GDA [34] attempts to separately fit a
Gaussian distribution to every class of data in order to produce the distribution of several
classes [26].

5. Results and Discussion

We take the presented methods to the test using a number of indications and then
analyze the outcomes. Datasets, performance assessment measures, assessment outcomes,
and comparing with certain other approaches are the four subsections that make up this
section. The experiment was performed on a select few properties; for more details, view
Table 1.

Table 1. Experimentation Properties Description.

Hardware Properties

PC HP laptop

Operating system Microsoft Windows 10 64-bit (OS)

RAM 8 GB

Processor Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz 2.60 GHz

Software MATLAB version R2020a

Graphics Card Intel® HD Graphics 520 (NVIDIA GTX 950M)

5.1. Datasets

MaleVis (Malware Evaluation with Vision) dataset [35] was utilized to gauge the
effectiveness of the proposed method. The MaleVis dataset consists of 14,226 RGB byte
images belonging to 26 malware classes which include 25 malware and 1 cleanware as
shown in Table 2. These 14,226 RGB byte images were divided into 9100 samples for
training and 5126 samples for testing. There are 350 images total throughout all classes,
which are evenly distributed. The Malware classes included Adposhel, Agent-fyi, Allaple.
A, Amonetize, Androm, AutoRun-PU, BrowseFox, Dinwod! rfn, Elex, Expiro-H, Fasong,
HackKMS. A, Hlux! IK, Injector, InstallCore. C, MultiPlug, Neorekla-mi, Neshta, Regrun.
A, Sality, Snarasite. D!tr, Stantinko, VBA/Hilium. A, VBKrypt, and Vilsel. The distribution
of samples among the different malware classes contained in the datasets is shown in
Figure 6. The images resolutions range between 224 × 224 and 300 × 300 pixels. The
various malware classes in the MaleVis dataset are displayed in Figure 7.
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Table 2. Explanation of the MaleVis Dataset Categories.

Class ID Family
Details

Malware Category Sample No.

#1 Adposhel Adware 350

#2 Agent Trojan 350

#3 Allaple Worm 350

#4 Amonetize Adware 350

#5 Androm Backdoor 350

#6 Autorun Worm 350

#7 BrowseFox Adware 350

#8 Dinwod Trojan 350

#9 Elex Trojan 350

#10 Expiro Virus 350

#11 Fasong Trojan 350

#12 HackKMS Riskware 350

#13 Hlux Worm 350

#14 Injector Trojan 350

#15 InstallCore Adware 350

#16 MultiPlug Adware 350

#17 Neoreklami Adware 350

#18 Neshta Virus 350

#19 Other - 350

#20 Regrun Trojan 350

#21 Sality Virus 350

#22 Snarasite Trojan 350

#23 Stantinko Trojan 350

#24 VBA Macro Malwares 350

#25 VBKrypt Trojan 350

#26 Vilsel Trojan 350

Total - 9100

5.2. Performance Evaluation Metric

In order to evaluate the proposed method, Classification accuracy is the percentage of
samples that are correctly classified to all categories. The accuracy rate is less effective when
classes are not balanced. It does give crucial information when the classes are balanced. In
order to calculate Classification Accuracy, the following equation has been used [37]:

Accuracy =
(TP + TN )

(TP + TN + FP + FN)
× 100 % (3)

The terms of TP, TN, FP and FN can be calculated by the following formulas [38]:

1. The term “TP” (True Positive) refers to the variety of malware types that may be
considered to be positive.

2. The term “TN” (True Negative) refers to the variety of malware types that may be
considered to be negative.
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3. The term “FP” (False Positive) refers to the variety of malware types that may be
considered to be negative and positive.

4. The term “FN” (False Negative) refers to the variety of malware types that may be
considered to be negative and positive.

5.3. Evaluation Results

This research employs a 10-fold cross-validation procedure to guarantee the preci-
sion and dependability of the experimental outcomes [39]. This paper used k-fold cross-
validation (k-fold CV). This technique enables performance assessment using numerous
distinct dataset combinations to reduce bias [40]. The dataset can be separated into ten
sections. In each testing procedure, nine sections are chosen for the training set, and one
section is utilized for the test set. Ten tests in total are carried out, and the method is
ultimately evaluated by combining the outcomes of all the experiments.

The outcomes are divided into two category levels: (a) binary classification, and (b)
multiclass classification. We extract vector features based on the two features SFTA and Ga-
bor for both binary classification and multiclass classification outcomes. The performance
of various machine learning classifiers that have been trained using Naive Bayesian (NB)
and GDA is then evaluated through experiments. Tables 3 and 4 display the proposed
method’s accuracy rate using two classifiers on the MaleVis dataset.

Table 3. Detection Accuracy Rate of two classifiers on two features across MaleVis dataset.

Classifier
Detection Accuracy (%)

SFTA Feature Gabor Feature

NB 84 83
GDA 97 93

5.3.1. Binary Malware Classification Results

For Binary Classification Results, we employ binary classification of malware against
Non-malware (benign), where the malware class is easily generated by combining all
MaleVis families into a single malware set. Whereas, another class is configured to be
benign (non-malware).

After using the two texture descriptors SFTA and Gabor features on the MaleVis
datasets for feature extraction, the NB and GDA classifiers are used in this instance for
binary classification. In other words, the experiments were carried out for binary classifica-
tion (malware or Non-malware (benign)) under the MaleVis dataset. The Detection Rate
results of the proposed SFTA-GDA, SFTA-NB, Gabor-GDA, and Gabor-NB are shown in
Table 3.

All classifiers use the exact same feature vector, however they all produce different
results. This is so because every classifier has a distinct set of characteristics. The accuracy
findings on MaleVis dataset in Table 3 indicate that the performance of the SFTA-GDA
attained a high accuracy rate of 97%. Whereas, the accuracy rate of Gabor-GDA was 93%.
Furthermore, it is evident that the SFTA-NB performed much better on the MaleVis dataset,
achieving a high classification accuracy of 84% compared to Gabor-NB which was 83%.
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Table 4. Classification Accuracy rate of two classifiers on two features across MaleVis Dataset.

Class ID Family
Name

Classification Accuracy (%)

Naive Classifier GDA Classifier

SFTA
Feature

Gabor
Feature

SFTA
Feature

Gabor
Feature

#1 Adposhel 97 90 99 94

#2 Agent 89 52 99 96

#3 Allaple 76 78 98 97

#4 Amonetize 89 62 99 96

#5 Androm 84 52 97 95

#6 Autorun 84 94 98 96

#7 BrowseFox 61 95 99 95

#8 Dinwod 89 55 97 96

#9 Elex 95 80 98 95

#10 Expiro 66 58 99 95

#11 Fasong 98 94 96 95

#12 HackKMS 97 99 99 98

#13 Hlux 99 98 99 99

#14 Injector 73 88 99 95

#15 InstallCore 99 99 96 96

#16 MultiPlug 88 66 97 96

#17 Neoreklami 87 70 99 96

#18 Neshta 95 95 99 97

#19 Regrun 94 91 99 95

#20 Sality 95 80 99 95

#21 Snarasite 99 99 99 95

#22 Stantinko 83 85 99 93

#23 VBA 85 95 99 98

#24 VBKrypt 62 96 97 95

#25 Vilsel 99 99 99 99

Average 87 82% 98% 95%

For both of classifiers, SFTA-GDA and SFTA-NB had the highest detection accuracy.
However, the performance of the SFTA-GDA attained a high accuracy rate of 97%. In
contrast, the accuracy rate of SFTA-NB was 84 percent as shown in Figure 8. For this reason,
we considered the suggested technique based on SFTA and GDA classifier in the initial
findings section of this work. The above results are presented for the Binary Classification,
while the findings from the multiclass classification are presented in the next section.
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5.3.2. Multi-Class Malware Classification Results

We make an effort to group the malware samples into the appropriate families in order
to produce multiclass classification findings. The MaleVis dataset contains 25 malware
families, thus we have 25 classes to use for this classification issue. Table 4 shows the
collected results for each malware family, as well as the overall average of accuracy metric
that was determined after applying each classifier. The multi-class malware classification
results using the SFTA-GDA, SFTA-NB, Gabor-GDA, and Gabor-NB are shown in Table 4.

According to the average accuracy results on the MaleVis dataset, the performance of
the SFTA-GDA attained a high average accuracy rate of 98%. Meanwhile, the average accu-
racy rate for Gabor-GDA was 95%. Additionally, it is clear that the SFTA-NB outperformed
Gabor-NB on the MaleVis dataset by reaching a high classification average accuracy of 87%
as opposed to 82%. The maximum classification accuracy was achieved by SFTA-GDA and
SFTA-NB for both classifiers. However, the performance of the SFTA-GDA attained a high
accuracy rate of 98%. Meanwhile, the accuracy rate of SFTA-NB was 87 percent as shown
in Figures 9 and 10.

As can be seen, when the NB classifier is employed with SFTA and Gabor texture
descriptors, its performance suffers when classifying malware images. For ten different
families in the MaleVis Dataset, the accuracy ranges from 52% to 73%. However, when the
GDA classifier was employed with SFTA and Gabor texture descriptors, its performance
significantly improved when classifying malware images. For all families in the MaleVis
Dataset, the accuracy ranges from 94% to 99%.

As can be observed, the performance of SFTA-NB ranges from 61% to 73% for the
four different families (BrowseFox, Expiro, VBKrypt, and Injector). Additionally, the per-
formance of Gabor-NB for seven different families (Agent, Amonetize, Androm, Dinwod,
Expiro, MultiPlug, and Neoreklami) ranges from 52% to 70%. However, the performance
of SFTA-GDA has greatly increased and currently varies from 96% to 99% for all families.
Moreover, the performance of Gabor-GDA has greatly improved and now ranges from 94%
to 99% for all families as demonstrated in Table 4.
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In the majority of recent works such [36], the Neshta class, which is a member of the
virus family, had the lowest accuracy. However, the SFTA-NB, Gabor-NB, SFTA-GDA, and
Gabor-GDA methods achieved better classification accuracy, specifically for the Neshta
class, at 87%, 82%, 98%, and 95%, respectively.

The findings demonstrate that the GDA classifier, when combined with SFTA features,
has an important effect, particularly in some classes, such as (BrowseFox, Expiro, VBKrypt,
and Injector), whose overall accuracy increased from 61%, 66%, 73%, 62% to 99%, 99%, 99%,
97%. It is obvious that using a GDA classifier greatly enhances the results.

It can be concluded that employing SFTA-GDA, the accuracy is seen to be greatly
enhanced for all families of the MaleVis Dataset.
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5.4. Existing Methods Comparison Results

In order to evaluate the effectiveness of our proposal, we compare it to other tech-
niques in this section. The key component of the majority of these algorithms for classi-
fying malware is the extraction of textural features. As shown in Table 5, the proposed
technique is compared with a variety of other state-of-the-art malware classification tech-
niques [4,36,41–45] that are based on Hand-crafted Features.

Table 5. Comparative Findings of current MD/MC Methods.

Methods Data
Analysis Feature Kind Classifier

Kind Dataset Accuracy
(%)

Kang et al. [41] Static creator
information SVM Malware 90

Makandar et al. [4] Static
Gabor
GIST
DWT

KNN Malimg 98

Aziz et al. [42] Static DWT SVM Mahenhuer 92

Hashemi et al. [43] Static LBP KNN Malimg 91

Liu et al. [21] Static GIST RF Malimg 91

Nisa et al. [44] Static SFTA SVM Malimg 95

Nisa et al. [44] Static
Fused SFTA
and DNN
features

cubic SVM Malimg 99

Patil et al. [36] Static - Random f MaleVis 93

Mohammed et al. [45] Static DCT CNN MaleVis 96

Proposed (SFTA-GDA) Static SFTA GDA MaleVis 98

Refs. [21,41,43,44] Malware detection methods are based on the spatial domain. The
techniques [21,43,44] are based on LBP, GIST, and SFTA, respectively.

The transform domain is utilized by both [4,42] Malware detection techniques. The [4,42]
approaches are based on the discrete wavelet transform (DWT). The current methods
in [4,42] have the highest levels of accuracy. However, as seen in Table 5, they have the
drawback of requiring a lot of time. The usage of the transform domain is the primary
explanation.

The [44,45] approaches are based on the merging of deep features with handmade
features. The existing techniques in [44,45] provided successful outcomes. However, the
combined feature of handcrafted features and deep features, as shown in Table 5, required
greater time consumption.

Other spatially based malware classification approaches [21,41,43] perform worse
than our proposed method. In terms of classification accuracy rates, the proposed method,
which does not use the transform domain and deep features, beats other existing methods.

The accuracy rate of the proposed method was 98%, which is higher than the overall
accuracy from the existing state-of-the-art methods.

6. Conclusions

The main goal of the proposed method would be to use infected photos to extract a
strong feature that will increase the classification performance. The proposed malware
analysis approach consists of three steps: malware conversion, feature extraction, and
classification. For efficient malware analysis, we first transform the RGB malware images to
grayscale versions. In the feature extraction step, gray-scale images are used to extract the
SFTA and Gabor features. Finally, naïve Bayes (NB) and Gaussian Discriminant Analysis
(GDA) are used as the classifier. A typical MaleVis dataset is used to assess the proposed
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method. Due to its superior accuracy rate when compared to all other families in the
MaleVis Dataset, the proposed SFTA-GDA was the best option. The experiment findings
show that the proposal can accurately and efficiently classify malware samples to their
appropriate families by combining Segmentation-based fractal texture analysis (SFTA) and
Gaussian Discriminant Analysis (GDA). The accuracy rate of the proposed method was
98%, which is higher than the overall accuracy of the currently available state-of-the-art
methods. Even if our method yields the high classification accuracy rate, it is still necessary
to extract more potent malware features. Future work includes using deep learning models
including CNN because of its powerful capability in characterizing features. This will
reduce the amount of manual participation. Additionally, only the Malevis dataset is used
to evaluate the suggested technique. We would then prefer to evaluate our method on
more datasets in the future.
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