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Abstract

:

The security of a computer system can be harmed by specific applications, such as malware. Malware comprises unwanted, dangerous enemies that aim to compromise the security and generate significant loss. Consequently, Malware Detection (MD) and Malware Classification (MC) has emerged as a key issue for the cybersecurity society. MD only involves locating malware without determining what kind of malware it is, but MC comprises assigning a class of malware to a particular sample. Recently, a few techniques for analyzing malware quickly have been put out. However, there remain numerous difficulties, such as the low classification accuracy of samples from related malware families, the computational complexity, and consumption of resources. These difficulties make detecting and classifying malware very challenging. Therefore, in this paper, we proposed an efficient malware detection and classification technique that combines Segmentation-based Fractal Texture Analysis (SFTA) and Gaussian Discriminant Analysis (GDA). The outcomes of the experiment demonstrate that the SFTA-GDA produces a high classification rate. There are three main steps involved in our malware analysis, namely: (i) malware conversion; (ii) feature extraction; and (iii) classification. We initially convert the RGB malware images into grayscale malware images for effective malware analysis. The SFTA and Gabor features are then extracted from gray-scale images in the feature extraction step. Finally, the classification is carried out by GDA and Naive Bayes (NB). The proposed method is evaluated on a common MaleVis dataset. The proposed SFTA-GDA is the effective choice since it produces the highest accuracy rate across all families of the MaleVis Database. Experimental findings indicate that the accuracy rate was 98%, which is higher than the overall accuracy from the existing state-of-the-art methods.
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1. Introduction


The Internet has grown in importance in our day-to-day lives. We utilize it for a variety of business and non-business purposes, including banking, communication, entertainment, and shopping. Malicious programs and applications (often known as malware) are one of the biggest security risks the internet currently confronts. Malicious software, also known as malware, is created with the intention of causing harm or engaging in any type of undesirable activity on a computer system, including obstructing computer operations, gathering private information, getting around security measures, and displaying offensive advertisements. Every day, enormous volumes of malware are intentionally manufactured. The cost of harmful software has increased, and its market is always growing depending on how it functions, there are numerous types of malware, including adware, spyware, bot, virus, trojan, ransom wares, worm, and backdoor, among others [1], [2,3]. Therefore, Malware detection and classification has emerged as one of the most pressing issues in the security field. To fully comprehend the aim and components of the malware, a further classification can be created to identify the types and family classes of malware [4,5].



Malware analysis entails both the detection and classification of malware. Malicious or benign malware can be distinguished through detection. In contrast, classification entails determining the specific malware family for a particular type of malware. There are two basic categories of malware analysis: static and dynamic. Figure 1 displays a regularly employed malware analysis taxonomy. Both manual and automated analysis is possible. Manual analysis necessitates subject expertise. On other hand, automatic analysis needs highly developed data science programming skills [6]. The primary mechanism of static analysis is to find binary files without running any software. It operates by taking malware binary’s style signatures. Static analysis is one of the finest methods for identifying typical malware because it is quick and secure [7]. In contrast, during a dynamic analysis, a software’s behavior is investigated, and from these findings, the software’s intentions or purposes are inferred. Although it can detect sophisticated malware, it is time-consuming and prone to security threats [8]. In comparison to static analysis, dynamic analysis is a superior method, but it uses more time and memory and has scaling problems. The focus of our work is on static analysis.



Recently, numerous studies have been conducted to identify malware utilizing image processing techniques including texture analysis, entropy, and image matrix. It has been noted that textural analysis continues to be used actively in malware detection via imaging techniques. An essential component of computer vision is texture analysis. Most surfaces have some roughness to them. Malware images from the same family tend to have fairly similar patterns and textures throughout most malware databases. It is clear that while the malware photos do not technically have repeating patterns, they do have a lot of “texture,” which can be used for automatic classification. There are striking visual similarities across malware images from the same family in terms of image texture [9]. Nataraj et al. [10] was the first work to propose malware classification based on textural features. In order to compute texture features, they employ GIST [11,12] which utilizes a wavelet decomposition of an image. Additionally, they demonstrated that texture analysis approaches using image processing may categorize malware faster than other malware classification approaches.



However, the vast majority of MC approaches, which rely on texture analysis, have a number of fundamental flaws, including a low classification rate since they classify malware using inaccurate and onerous features. The huge feature vector dimension results in a significant computational burden [13] and consumption of resources. The requirement for discovering precise and practical features for increasing the MC performance following malware has been detected. Additionally, this is to identify the top malware classification techniques. Segmentation-based fractal texture analysis (SFTA) and Gabor filters are two widely used computational techniques for texture analysis that are effective for classifying and segmenting textures. Therefore, the proposed method would leverage relevant texture features, namely SFTA and Gabor as well as GDA and NB as Classifiers.



Three steps make up the proposed malware analysis method: (a) malware conversion; (b) feature extraction; and (c) classification. We initially convert the RGB malware images into grayscale malware images for effective malware analysis. The SFTA and Gabor features are extracted from gray-scale images in the feature extraction step. Lastly, the classification is carried out by GDA and NB.



The following are the contributions of the proposed method:




	
To present an effective malware detection and classification method, SFTA and Gabor are extracted as distinctive feature vectors.



	
The usage of a malware visualization method that transforms binary files to 8 bit vectors for create grayscale graphics.



	
SFTA-GDA minimizes processing times and enhances overall detection/classification accuracy through texture features.



	
Experiment findings demonstrate that the proposed technique can accurately classify malware families.



	
Experimental results show that our proposed method can classify malware families with a low rate of false positives and false negatives.








The remainder of this article is organized as follows. The related works are discussed in Section 2. The selected features are described in Section 3. The proposed method is described in Section 4. Results and analyses are discussed in Section 5. Finally, in Section 6 a conclusion is drawn.




2. Related Works


This section provides an overview of earlier studies on malware detection (MD) and malware classification (MC) techniques. It can be seen that textural analysis is still used actively to find malware using image techniques.



Makandar et al. [4] presented the MC method as reliant on Gabor Wavelet, GIST and DWT. Malware is categorized using a Support Vector Machine (SVM) classification technique. On the Malimg Dataset, the proposed algorithm underwent testing. Verma et al. [5] presented malware classification as reliant on the first-order and GLCM-based second-order statistical texture features. The public Malimg malware Dataset was used to test the presented method. ELM is a classifier that has been used in the classification phase. Gandotra et al. [14] presented the MC method as dependent on static and dynamic features. Multiple classification algorithms were used, including IB1, decision tree, and random forest. Han et al. [15] presented the MC method as reliant on visualized images and entropy graphs. Determining the similarities of entropy graphs has been used to find and classify malware. Vinayakumar et al. [16] presented the MC method by using textural features which consisted of wavelet transform and Gabor transform. The KNN classifier was used in the classification stage. Fang et al. [17] presented the MC method as reliant on dynamic, static, and content-oriented features. In the classification scenario, a fuzzy random forest and an SVM are classifiers that have been applied. Kong et al. [18] presented the MC method by using structural information. The Assemble classifier was used in the classification stage. They employ the call graph method, which collects the features of each malware sample. Kosmidis and Kalloniatis [19] presented malware detection (MD) based on GIST feature extraction technique. The model had a detection accuracy of 91.6%. The malware is categorized using a random forest classification technique. On the MaleVis Dataset, the proposed algorithm underwent testing. Ban et al. [20] presented malware detection (MD) based on B2M (Binary mapping to image) algorithm, the SURF algorithm and the Local sensitive hashing (LSH) algorithm. The method had an 85% classification accuracy rate. Liu et al. [21] presented the MC method as reliant on GIST and multi-layer LBP features. The proposed method experimented on the Malimg Database. The RF classifier was used in the classification stage. Fu et al. [22] presented MC by using the global features and local features combined. Multiple classification algorithms were used, including support vector machine, random forest, and K-nearest neighbor. Liu and Wang [23] proposed the MC method based on local mean method. The ensemble learning classifier was used in the classification stage. Bozkir et al. [24] presented the MC method as reliant on GIST, HOG (Histogram of Gradients) descriptors and their combination. Multiple classification algorithms were used, including j48, RBF kernel-based SMO, Random Forest, XGBoost and linear SVM.



The majority of the MC techniques previously discussed are based on texture analysis techniques. In contrast to these MC techniques, the proposed method would leverage relevant texture features, namely SFTA and Gabor. These approaches’ fundamental drawback is that they have a low classification rate since they classify malware using unreliable and cumbersome features. Another factor is a large feature vector dimension. As a result, the proposed technique lowers the risk of misclassification and increases classification accuracy. In addition, our method places more emphasis on machine learning classification to cut down on computing costs.




3. Multiple Features


Numerous image processing applications have had exceptional success with texture analysis methods. Malware images from the same family tend to have fairly similar patterns and textures throughout most malware databases. It is clear that the malware photos do not technically have repeating patterns, they do have a lot of “texture,” which can be used for automatic classification. There are striking visual similarities across malware images from the same family in terms of image texture [9]. Therefore, the texture analysis plays a distinct role in the field of the malware classification.



The requirement to finding accurate and convenient features to increase the malware classification performance following malware has been detected. Because of their reliability and low computational cost, the texture feature descriptors SFTA and Gabor feature are utilized for texture feature extraction. The next subsection provides an explanation for each texture descriptor.



3.1. Segmentation-Based Fractal Texture Analysis (SFTA)


Segmentation-based fractal texture analysis (SFTA) is one of the popular texture approaches [25]. The most notable aspect of an image that is used to recognize and classify malware images and find similarities across images from different virus families is its texture. SFTA is used for texture feature extraction due to its dependability and affordable computation.



The SFTA extraction method can depend on two steps. Firstly, the set of binary images was created by applying the input grayscale image decomposition. The data were divided using the Two-Threshold Binary Decomposition (TTBD) technique [26].



Secondly, SFTA feature vectors are calculated as the average gray level, fractal dimension size, and additional SFTA feature vector. The complexity of malware image structures that are fractured in the input image are depicted using fractal estimations, as seen in Figure 2. For more details, see [25]. In order to extract the SFTA features, the following mathematical expression (Equation (1)) is employed.


   ∅  s f t a    ( U )  =  {      1     i f   ∃  (   i ′  ,  j ′   )  ∈  N 8   [   (  i ,   j  )   ]  :          ∅ e   (   i ′  ,  j ′   )  = 0 ^        ∅ e   (  i ,   j  )  = 1         0   O t h e r w i s e        



(1)




where N8 [(i, j)] represents the number of connected pixels initialized as 8 in this work.     ∅ e   (  i ,   j  )    is Binary image.



The size of the characteristics vector depends on how many thresholds are selected. For instance, seven binary images will be generated when we were considered them equal to three. Therefore, for each image, 21 features were created using the SFTA method.



As we already discussed, the majority of MD/MC methods suffer from limitations including a huge number of feature vectors and a high time complexity. However, due to their sturdiness and inexpensive processing, SFTA are preferred among texture image analysis techniques. Therefore, using SFTA features extraction in MD/MC is intriguing.




3.2. Gabor Features


In image processing, Gabor filters [27] have indeed been widely employed for feature extraction. A coefficient matrix provided by Gabor filters allows for multi-resolution analysis. Thus, a 2D Gabor filter has been applied in order to extract features. A 2D Gabor can be generated in the time and frequency domain [28]. In the time domain, Gaussian function and a sinusoidal wave are produced. In the frequency domain, it is a convolution of the transformations of the Gaussian and sinusoid. In order to extract the 2D Gabor features, the following mathematical expression (Equation (2)) is employed.


    G  θ , f , σ 1 , σ 2    (  x , y  )  = e x p  [    − 1  2   (     x    ′  2      σ 1 2    +    y    ′  2      σ 2 2     )   ]    cos  (  2 π f  x   ′   + φ  )      x   ′   = x   sin θ + y   cos θ     y   ′   = x   cos θ + y   sin θ   



(2)




where:



 f  = the spatial frequency of the wave at an angle  θ  with the  x  axis,



  σ 1   and   σ 2   = the standard deviations of the 2D Gaussian envelope,



 φ  = the phase.



In a number of image analysis and classification applications, Gabor filters are often used. Two frequent Gabor features [29], namely Mean Squared Energy and Mean Amplitude, are recovered across a range of orientations and sizes.



At different scales and orientations, Gabor features can be retrieved. Figure 3 shows the 2D Gabor filters in a variety of eight orientations and five scales [30].



Finally, feature vector [32] is obtained by extracting Mean Squared Energy and Mean Amplitude as feature vectors from the Response Matrices. Mean Squared Energy is calculated by adding the squared values of each matrix value in a response matrix. The mean amplitude of a response matrix is calculated as the sum of the absolute values of each matrix value. If you want to understand further about Gabor Features, I suggest reading [32].





4. The Proposed Methods


Three main processes make up the suggested technique for malware analysis: (a) malware conversion; (b) feature extraction; and (c) classification. For proper malware analysis, we first transform the RGB malware images into grayscale malware images. In the feature extraction step, the SFTA and Gabor features are extracted from grayscale images. Lastly, the classification is carried out by GDA and NB. Figure 4 depicts the proposed method’s flowchart. Additionally, the Algorithm 1 was developed. In the subsections below, each step’s full details are presented.






	Algorithm 1: Proposed MC_based GDA and NB Classifier.



	Input: RGB Malware Image.

Output: Non-Malware/Malware Image.

Begin

For

     1: Use the “Imread ()” function to read each image;

     2: Convert the RGB image to the gray-scale image using Matlab function such as “rgb2gray ( )”;

     3: Then, the SFTA features {Sftaf1, Sftaf2, Sftaf3, Sftaf4,… Sftaf21} are extracted to obtain 1 × 21-dimension feature vector;

     4: Extract the Gabor features vector:

	   A.

	
Apply 2D Gabor filters to each image that has been converted.




	   B.

	
Extract the mean squared energy and mean amplitude as the Gabor features {Gaborf1, Gaborf2, Gaborf3, Gaborf4… Gaborf12} to obtain a 12-dimension feature vector.






     5: Training:

	   A.

	
Employ the above feature vectors to train the GDA classifier;




	   B.

	
Employ the above feature vectors to train the NB classifier;






     6: Testing:

	   A.

	
The trained GDA model are tested to identify whether the image is non-Malware or Malware;




	   B.

	
The trained NB model are tested to identify whether the image is non-Malware or Malware.






End for

End








	
Step 1: Malware Conversion






The PE binary files (malware or Non-Malware) are often visualized and provided as input for malware analysis (detection and classification task). In the majority of malware detection and classification task, each PE binary file is converted into a 2D array and visualized as a grayscale image. While there is a significant variance between distinct families, the image textures of the same families are very similar [10]. However, the PE binary files in MaleVis dataset are visualized as RGB byte images that belong to 26 malware classes, including 25 malware and 1 Non-Malware. Therefore, it is necessary to convert these RGB images into grayscale images. Figure 5 demonstrates the conversion of RGB malware images into grayscale malware images.



	
Step 2: Feature Extraction






Following malware visualization, features are extracted for malware analysis. Both the machine learning (ML) and computer security (CS) communities have looked into feature extraction for malware analysis. As can be observed, malware classification (MC) frequently employs the same set of features as malware detection (MD).



There are typically two ways to extract image features: the first type includes extracting the global features from the entire image; in the second type, local feature points are extracted and then described using pertinent features.



The image’s primary global features are texture, color, shape, and space of the image. We came to the conclusion that textural features were much more suitable and adequate as the global characteristics of malware after studying the traits and contained data of malware images.



SFTA and Gabor are two commonly used texture feature extraction methods. Due to its resilience and lower computational complexity compared to other methods, SFTA is the greatest fit for our purposes. Since Gabor is the best choice to reduce feature dimension when compared to the various texture methods, it was chosen to extract mean squared energy and mean amplitude features.



	
Step 2.1: SFTA Features Extraction






The malware may be easily recognized due to a texture-based feature that was generated from malware that could be seen. As shown in Algorithm 2, SFTA Texture features are extracted by hand-engineering methods. The SFTA feature vector that was obtained has a 1 × 21 dimension.






	Algorithm 2: Compute SFTA textures features.



	Input: Visualized Malware Image.

Output: 1 × 21 features vector dimension.

	  1.

	
Open the malware image that was visualized.




	  2.

	
Compute the SFTA using the Equation (1).




	  3.

	
Twenty One features vector are produced.














	
Step 2.2: Gabor Features Extraction






Algorithm 3 illustrates the application of a 2D Gabor filter to extract features. Equation (2) is used to obtain the mean squared energy and mean amplitude Gabor features. The feature vectors’ dimensions are 1 × 12.






	Algorithm 3: Compute Gabor textures features.



	Input: Visualized Malware Image.

Output: 1 × 12 features vector dimension.

	  1.

	
Open the malware image that was visualized.




	  2.

	
Apply 2D Gabor filters to each image that has been converted.




	  3.

	
Calculate the mean squared energy and mean amplitude Gabor features using the Equation (2).




	  4.

	
Twelve features vector are produced.














	
Step 3: Classification






It is usually worthwhile to assess how good the chosen features are and how good the model is before we get started with the classification step. In general, features and models are regarded as being a decent representation when we are able to correctly categorize the malware families using the chosen features and classifiers.



A review of the literature revealed that several studies using KNN, RF, NB, ELM, GDA, NN, and SVM showed improved accuracy findings. In this paper, we employed NB and GDA as useful methodologies for malware analysis.



	
Step 3.1: Naive Bayes (NB) Classifier






A probability-based classification technique called the Naive Bayes Algorithm counts the frequencies and permutations of values found in a dataset to create a set of likelihood. The top rated sample in the applicable class is included in Naive Bayes Classifier’s system learning, which is based on test data [33].



	
Step 3.2: Gaussian discriminant analysis (GDA) Classifier






A specific generative learning method called GDA [34] attempts to separately fit a Gaussian distribution to every class of data in order to produce the distribution of several classes [26].




5. Results and Discussion


We take the presented methods to the test using a number of indications and then analyze the outcomes. Datasets, performance assessment measures, assessment outcomes, and comparing with certain other approaches are the four subsections that make up this section. The experiment was performed on a select few properties; for more details, view Table 1.



5.1. Datasets


MaleVis (Malware Evaluation with Vision) dataset [35] was utilized to gauge the effectiveness of the proposed method. The MaleVis dataset consists of 14,226 RGB byte images belonging to 26 malware classes which include 25 malware and 1 cleanware as shown in Table 2. These 14,226 RGB byte images were divided into 9100 samples for training and 5126 samples for testing. There are 350 images total throughout all classes, which are evenly distributed. The Malware classes included Adposhel, Agent-fyi, Allaple. A, Amonetize, Androm, AutoRun-PU, BrowseFox, Dinwod! rfn, Elex, Expiro-H, Fasong, HackKMS. A, Hlux! IK, Injector, InstallCore. C, MultiPlug, Neorekla-mi, Neshta, Regrun. A, Sality, Snarasite. D!tr, Stantinko, VBA/Hilium. A, VBKrypt, and Vilsel. The distribution of samples among the different malware classes contained in the datasets is shown in Figure 6. The images resolutions range between 224 × 224 and 300 × 300 pixels. The various malware classes in the MaleVis dataset are displayed in Figure 7.




5.2. Performance Evaluation Metric


In order to evaluate the proposed method, Classification accuracy is the percentage of samples that are correctly classified to all categories. The accuracy rate is less effective when classes are not balanced. It does give crucial information when the classes are balanced. In order to calculate Classification Accuracy, the following equation has been used [37]:


  Accuracy =    (   TP    +    TN     )     (  TP + TN + FP + FN  )    × 100    %   



(3)







The terms of TP, TN, FP and FN can be calculated by the following formulas [38]:




	
The term “TP” (True Positive) refers to the variety of malware types that may be considered to be positive.



	
The term “TN” (True Negative) refers to the variety of malware types that may be considered to be negative.



	
The term “FP” (False Positive) refers to the variety of malware types that may be considered to be negative and positive.



	
The term “FN” (False Negative) refers to the variety of malware types that may be considered to be negative and positive.









5.3. Evaluation Results


This research employs a 10-fold cross-validation procedure to guarantee the precision and dependability of the experimental outcomes [39]. This paper used k-fold cross-validation (k-fold CV). This technique enables performance assessment using numerous distinct dataset combinations to reduce bias [40]. The dataset can be separated into ten sections. In each testing procedure, nine sections are chosen for the training set, and one section is utilized for the test set. Ten tests in total are carried out, and the method is ultimately evaluated by combining the outcomes of all the experiments.



The outcomes are divided into two category levels: (a) binary classification, and (b) multiclass classification. We extract vector features based on the two features SFTA and Gabor for both binary classification and multiclass classification outcomes. The performance of various machine learning classifiers that have been trained using Naive Bayesian (NB) and GDA is then evaluated through experiments. Table 3 and Table 4 display the proposed method’s accuracy rate using two classifiers on the MaleVis dataset.



5.3.1. Binary Malware Classification Results


For Binary Classification Results, we employ binary classification of malware against Non-malware (benign), where the malware class is easily generated by combining all MaleVis families into a single malware set. Whereas, another class is configured to be benign (non-malware).



After using the two texture descriptors SFTA and Gabor features on the MaleVis datasets for feature extraction, the NB and GDA classifiers are used in this instance for binary classification. In other words, the experiments were carried out for binary classification (malware or Non-malware (benign)) under the MaleVis dataset. The Detection Rate results of the proposed SFTA-GDA, SFTA-NB, Gabor-GDA, and Gabor-NB are shown in Table 3.



All classifiers use the exact same feature vector, however they all produce different results. This is so because every classifier has a distinct set of characteristics. The accuracy findings on MaleVis dataset in Table 3 indicate that the performance of the SFTA-GDA attained a high accuracy rate of 97%. Whereas, the accuracy rate of Gabor-GDA was 93%. Furthermore, it is evident that the SFTA-NB performed much better on the MaleVis dataset, achieving a high classification accuracy of 84% compared to Gabor-NB which was 83%.



For both of classifiers, SFTA-GDA and SFTA-NB had the highest detection accuracy. However, the performance of the SFTA-GDA attained a high accuracy rate of 97%. In contrast, the accuracy rate of SFTA-NB was 84 percent as shown in Figure 8. For this reason, we considered the suggested technique based on SFTA and GDA classifier in the initial findings section of this work. The above results are presented for the Binary Classification, while the findings from the multiclass classification are presented in the next section.




5.3.2. Multi-Class Malware Classification Results


We make an effort to group the malware samples into the appropriate families in order to produce multiclass classification findings. The MaleVis dataset contains 25 malware families, thus we have 25 classes to use for this classification issue. Table 4 shows the collected results for each malware family, as well as the overall average of accuracy metric that was determined after applying each classifier. The multi-class malware classification results using the SFTA-GDA, SFTA-NB, Gabor-GDA, and Gabor-NB are shown in Table 4.



According to the average accuracy results on the MaleVis dataset, the performance of the SFTA-GDA attained a high average accuracy rate of 98%. Meanwhile, the average accuracy rate for Gabor-GDA was 95%. Additionally, it is clear that the SFTA-NB outperformed Gabor-NB on the MaleVis dataset by reaching a high classification average accuracy of 87% as opposed to 82%. The maximum classification accuracy was achieved by SFTA-GDA and SFTA-NB for both classifiers. However, the performance of the SFTA-GDA attained a high accuracy rate of 98%. Meanwhile, the accuracy rate of SFTA-NB was 87 percent as shown in Figure 9 and Figure 10.



As can be seen, when the NB classifier is employed with SFTA and Gabor texture descriptors, its performance suffers when classifying malware images. For ten different families in the MaleVis Dataset, the accuracy ranges from 52% to 73%. However, when the GDA classifier was employed with SFTA and Gabor texture descriptors, its performance significantly improved when classifying malware images. For all families in the MaleVis Dataset, the accuracy ranges from 94% to 99%.



As can be observed, the performance of SFTA-NB ranges from 61% to 73% for the four different families (BrowseFox, Expiro, VBKrypt, and Injector). Additionally, the performance of Gabor-NB for seven different families (Agent, Amonetize, Androm, Dinwod, Expiro, MultiPlug, and Neoreklami) ranges from 52% to 70%. However, the performance of SFTA-GDA has greatly increased and currently varies from 96% to 99% for all families. Moreover, the performance of Gabor-GDA has greatly improved and now ranges from 94% to 99% for all families as demonstrated in Table 4.



In the majority of recent works such [36], the Neshta class, which is a member of the virus family, had the lowest accuracy. However, the SFTA-NB, Gabor-NB, SFTA-GDA, and Gabor-GDA methods achieved better classification accuracy, specifically for the Neshta class, at 87%, 82%, 98%, and 95%, respectively.



The findings demonstrate that the GDA classifier, when combined with SFTA features, has an important effect, particularly in some classes, such as (BrowseFox, Expiro, VBKrypt, and Injector), whose overall accuracy increased from 61%, 66%, 73%, 62% to 99%, 99%, 99%, 97%. It is obvious that using a GDA classifier greatly enhances the results.



It can be concluded that employing SFTA-GDA, the accuracy is seen to be greatly enhanced for all families of the MaleVis Dataset.





5.4. Existing Methods Comparison Results


In order to evaluate the effectiveness of our proposal, we compare it to other techniques in this section. The key component of the majority of these algorithms for classifying malware is the extraction of textural features. As shown in Table 5, the proposed technique is compared with a variety of other state-of-the-art malware classification techniques [4,36,41,42,43,44,45] that are based on Hand-crafted Features.



Refs. [21,41,43,44] Malware detection methods are based on the spatial domain. The techniques [21,43,44] are based on LBP, GIST, and SFTA, respectively.



The transform domain is utilized by both [4,42] Malware detection techniques. The [4,42] approaches are based on the discrete wavelet transform (DWT). The current methods in [4,42] have the highest levels of accuracy. However, as seen in Table 5, they have the drawback of requiring a lot of time. The usage of the transform domain is the primary explanation.



The [44,45] approaches are based on the merging of deep features with handmade features. The existing techniques in [44,45] provided successful outcomes. However, the combined feature of handcrafted features and deep features, as shown in Table 5, required greater time consumption.



Other spatially based malware classification approaches [21,41,43] perform worse than our proposed method. In terms of classification accuracy rates, the proposed method, which does not use the transform domain and deep features, beats other existing methods.



The accuracy rate of the proposed method was 98%, which is higher than the overall accuracy from the existing state-of-the-art methods.





6. Conclusions


The main goal of the proposed method would be to use infected photos to extract a strong feature that will increase the classification performance. The proposed malware analysis approach consists of three steps: malware conversion, feature extraction, and classification. For efficient malware analysis, we first transform the RGB malware images to grayscale versions. In the feature extraction step, gray-scale images are used to extract the SFTA and Gabor features. Finally, naïve Bayes (NB) and Gaussian Discriminant Analysis (GDA) are used as the classifier. A typical MaleVis dataset is used to assess the proposed method. Due to its superior accuracy rate when compared to all other families in the MaleVis Dataset, the proposed SFTA-GDA was the best option. The experiment findings show that the proposal can accurately and efficiently classify malware samples to their appropriate families by combining Segmentation-based fractal texture analysis (SFTA) and Gaussian Discriminant Analysis (GDA). The accuracy rate of the proposed method was 98%, which is higher than the overall accuracy of the currently available state-of-the-art methods. Even if our method yields the high classification accuracy rate, it is still necessary to extract more potent malware features. Future work includes using deep learning models including CNN because of its powerful capability in characterizing features. This will reduce the amount of manual participation. Additionally, only the Malevis dataset is used to evaluate the suggested technique. We would then prefer to evaluate our method on more datasets in the future.
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Figure 1. Existing Taxonomy of Malware Analysis. 






Figure 1. Existing Taxonomy of Malware Analysis.



[image: Applsci 12 12528 g001]







[image: Applsci 12 12528 g002 550] 





Figure 2. SFTA Extraction process. 
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Figure 3. A two-dimensional Gabor filter with eight orientations and five scales [31]. 
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Figure 4. Proposed method Flowchart. 
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Figure 5. The Conversion Process Diagram. 
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Figure 6. The distribution of MaleVis datasets samples among different malware classes. 
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Figure 7. Various Samples collected from the MaleVis Dataset [36]. 
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Figure 8. Detection Accuracy Rate of Proposed Method. 
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Figure 9. The classification Accuracy-based SFTA and Gabor features across NB Classifier. 
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Figure 10. The classification Accuracy-based SFTA and Gabor features across GDA Classifier. 
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Table 1. Experimentation Properties Description.
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	Hardware
	Properties





	PC
	HP laptop



	Operating system
	Microsoft Windows 10 64-bit (OS)



	RAM
	8 GB



	Processor
	Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz 2.60 GHz



	Software
	MATLAB version R2020a



	Graphics Card
	Intel® HD Graphics 520 (NVIDIA GTX 950M)
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Table 2. Explanation of the MaleVis Dataset Categories.
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Class ID

	
Family

	
Details




	
Malware Category

	
Sample No.






	
#1

	
Adposhel

	
Adware

	
350




	
#2

	
Agent

	
Trojan

	
350




	
#3

	
Allaple

	
Worm

	
350




	
#4

	
Amonetize

	
Adware

	
350




	
#5

	
Androm

	
Backdoor

	
350




	
#6

	
Autorun

	
Worm

	
350




	
#7

	
BrowseFox

	
Adware

	
350




	
#8

	
Dinwod

	
Trojan

	
350




	
#9

	
Elex

	
Trojan

	
350




	
#10

	
Expiro

	
Virus

	
350




	
#11

	
Fasong

	
Trojan

	
350




	
#12

	
HackKMS

	
Riskware

	
350




	
#13

	
Hlux

	
Worm

	
350




	
#14

	
Injector

	
Trojan

	
350




	
#15

	
InstallCore

	
Adware

	
350




	
#16

	
MultiPlug

	
Adware

	
350




	
#17

	
Neoreklami

	
Adware

	
350




	
#18

	
Neshta

	
Virus

	
350




	
#19

	
Other

	
-

	
350




	
#20

	
Regrun

	
Trojan

	
350




	
#21

	
Sality

	
Virus

	
350




	
#22

	
Snarasite

	
Trojan

	
350




	
#23

	
Stantinko

	
Trojan

	
350




	
#24

	
VBA

	
Macro Malwares

	
350




	
#25

	
VBKrypt

	
Trojan

	
350




	
#26

	
Vilsel

	
Trojan

	
350




	

	
Total

	
-

	
9100
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Table 3. Detection Accuracy Rate of two classifiers on two features across MaleVis dataset.
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Classifier

	
Detection Accuracy (%)




	
SFTA Feature

	
Gabor Feature






	
NB

	
84

	
83




	
GDA

	
97

	
93
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Table 4. Classification Accuracy rate of two classifiers on two features across MaleVis Dataset.
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Class ID

	
Family Name

	
Classification Accuracy (%)




	
Naive Classifier

	
GDA Classifier




	
SFTA Feature

	
Gabor Feature

	
SFTA Feature

	
Gabor Feature






	
#1

	
Adposhel

	
97

	
90

	
99

	
94




	
#2

	
Agent

	
89

	
52

	
99

	
96




	
#3

	
Allaple

	
76

	
78

	
98

	
97




	
#4

	
Amonetize

	
89

	
62

	
99

	
96




	
#5

	
Androm

	
84

	
52

	
97

	
95




	
#6

	
Autorun

	
84

	
94

	
98

	
96




	
#7

	
BrowseFox

	
61

	
95

	
99

	
95




	
#8

	
Dinwod

	
89

	
55

	
97

	
96




	
#9

	
Elex

	
95

	
80

	
98

	
95




	
#10

	
Expiro

	
66

	
58

	
99

	
95




	
#11

	
Fasong

	
98

	
94

	
96

	
95




	
#12

	
HackKMS

	
97

	
99

	
99

	
98




	
#13

	
Hlux

	
99

	
98

	
99

	
99




	
#14

	
Injector

	
73

	
88

	
99

	
95




	
#15

	
InstallCore

	
99

	
99

	
96

	
96




	
#16

	
MultiPlug

	
88

	
66

	
97

	
96




	
#17

	
Neoreklami

	
87

	
70

	
99

	
96




	
#18

	
Neshta

	
95

	
95

	
99

	
97




	
#19

	
Regrun

	
94

	
91

	
99

	
95




	
#20

	
Sality

	
95

	
80

	
99

	
95




	
#21

	
Snarasite

	
99

	
99

	
99

	
95




	
#22

	
Stantinko

	
83

	
85

	
99

	
93




	
#23

	
VBA

	
85

	
95

	
99

	
98




	
#24

	
VBKrypt

	
62

	
96

	
97

	
95




	
#25

	
Vilsel

	
99

	
99

	
99

	
99




	
Average

	
87

	
82%

	
98%

	
95%











[image: Table] 





Table 5. Comparative Findings of current MD/MC Methods.
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	Methods
	Data Analysis
	Feature Kind
	Classifier Kind
	Dataset
	Accuracy (%)





	Kang et al. [41]
	Static
	creator information
	SVM
	Malware
	90



	Makandar et al. [4]
	Static
	Gabor

GIST

DWT
	KNN
	Malimg
	98



	Aziz et al. [42]
	Static
	DWT
	SVM
	Mahenhuer
	92



	Hashemi et al. [43]
	Static
	LBP
	KNN
	Malimg
	91



	Liu et al. [21]
	Static
	GIST
	RF
	Malimg
	91



	Nisa et al. [44]
	Static
	SFTA
	SVM
	Malimg
	95



	Nisa et al. [44]
	Static
	Fused SFTA and DNN features
	cubic SVM
	Malimg
	99



	Patil et al. [36]
	Static
	-
	Random f
	MaleVis
	93



	Mohammed et al. [45]
	Static
	DCT
	CNN
	MaleVis
	96



	Proposed (SFTA-GDA)
	Static
	SFTA
	GDA
	MaleVis
	98
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