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Abstract: Person re-identification (Re-ID) is a key technology used in the field of intelligent surveil-
lance. The existing Re-ID methods are mainly realized by using convolutional neural networks
(CNNs), but the feature information is easily lost in the operation process due to the down-sampling
structure design in CNNs. Moreover, CNNs can only process one local neighbourhood at a time,
which makes the global perception of the network poor. To overcome these shortcomings, in this
study, we apply a pure transformer to a video-based Re-ID task by proposing an adaptive partitioning
and multi-granularity (APMG) network framework. To enable the pure transformer structure better
at adapting to the Re-ID task, we propose a new correlation-adaptive partitioning (CAP) of feature
embedding modules that can adaptively partition person images according to structural correlations
and thus retain the structure and semantics of local feature information in the images. To improve
the Re-ID performance of the network, we also propose a multi-granularity (MG) module to better
capture people feature information at different levels of granularity. We performed validation trials
on three video-based benchmark datasets. The results show that the network structure based on
the pure transformer can adapt to Re-ID tasks well, and our APMG network outperforms other
state-of-the-art methods.

Keywords: machine vision; deep learning; video-based Re-ID; transformer

1. Introduction

The rapid increase in urbanisation in recent years has resulted in increasing numbers
of people migrating to cities. The dense populations in cities are thus a major challenge for
urban security management, which is addressed by the continuous deployment in cities
of security camera monitoring equipment. This equipment enables cities to be searched
for targets or the movements of suspects to be tracked by manually reviewing surveillance
images. However, the continuous increase in the extent of camera monitoring means that
massive amounts of monitoring data are generated every day, which are difficult to process
manually. Re-ID technology, which was developed in the field of intelligent monitoring,
is designed to perform such processing tasks, consisting of image-based Re-ID tasks and
video-based Re-ID tasks. Compared with image-based tasks, video-based tasks have a
higher research value as they produce greater continuity between frames before and after
an image, they can provide dynamic information on a person, and they are more similar
to a real scene. Therefore, the network framework proposed in this paper is designed for
video-based Re-ID tasks.

Most of the existing approaches to video-based Re-ID tasks use a CNN as a backbone
network. However, with the continuous application and development of transformer
network structures in image classification [1,2], object detection [3,4], and other computer
vision fields, experiments have shown that a transformer is as effective as a CNN in
extracting feature information from images [2,5]. A transformer network structure was
originally proposed for natural language processing (NLP) tasks [6], where each word
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is converted into a word vector and used as input for parallel computation. In the field
of computer vision, the network with a transformer structure partitions the image and
converts it into multiple feature embeddings that serve as input. A transformer differs
from a CNN by having no down-sampling structure and thus effectively preserves the
original feature information in an image. Moreover, a CNN increases the receptive field of
a network by superposition convolution, whereas the structural design of a transformer
has the characteristics of the global receptive field, and its self-attention mechanism has
a better representation ability for managing the extracted feature information through
high-order correlation modelling. Considering these significant advantages, we apply a
pure transformer as the backbone for our APMG network framework.

In networks using a transformer as a backbone structure [2,7–9], the image is usually
partitioned by a fixed-size sliding window to generate the input feature embeddings. There
are two problems with the use of such transformer networks for image feature extraction.
First, the rigid partitioning approach may destroy the structure of local features of human
images in the instance-level image Re-ID task. The key to improving re-identification
accuracy is to let the network learn the various feature information of people, as changes
in the local structure of people inevitably affect the ability of a network to extract feature
information. Furthermore, in each frame of a video sequence, a change in the shooting
angle or the displacement of people may cause the fixed segmentation method to change
the content captured in the sliding window, resulting in inconsistent semantic information
on feature embedding [10]. Second, the self-attention structure in a transformer has strong
global awareness, so a network usually takes the class token learning of the global feature
information as the final output [5]. This may ignore some fine-grained feature information
in an image, thereby limiting the re-identification performance of a network. Therefore, we
think that the transformer needs to be improved to better adapt to the image Re-ID task.

To solve the first problem, this paper proposes a simple and effective CAP module to
partition the feature embedding modules, which performs the partitioning, as shown in
Figure 1. In the CAP module, the closely correlated parts in the window are partitioned
together, which preserves the structural integrity of the local feature information in the
person image and maintains the consistency of the semantic information before and after
the local feature segmentation. We also use two sets of parameters to learn the correlation
of calculations in the window, such that the partitioning of feature embeddings in different
windows is adaptive. To solve the second problem, this paper proposes an MG module,
in which the feature embeddings are cut horizontally into groups and the class tokens
are embedded in different groups to learn the feature information at different levels of
granularity. We also design an aggregation method that is incorporated into the MG
module, which aggregates the same levels of granularity in the video sequence that are
present in the final feature representation. Thus, overall, this paper makes the following
four main contributions:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 16 
 

structure was originally proposed for natural language processing (NLP) tasks [6], where 
each word is converted into a word vector and used as input for parallel computation. In 
the field of computer vision, the network with a transformer structure partitions the 
image and converts it into multiple feature embeddings that serve as input. A 
transformer differs from a CNN by having no down-sampling structure and thus 
effectively preserves the original feature information in an image. Moreover, a CNN 
increases the receptive field of a network by superposition convolution, whereas the 
structural design of a transformer has the characteristics of the global receptive field, and 
its self-attention mechanism has a better representation ability for managing the 
extracted feature information through high-order correlation modelling. Considering 
these significant advantages, we apply a pure transformer as the backbone for our APMG 
network framework. 

In networks using a transformer as a backbone structure [2,7–9], the image is usually 
partitioned by a fixed-size sliding window to generate the input feature embeddings. 
There are two problems with the use of such transformer networks for image feature 
extraction. First, the rigid partitioning approach may destroy the structure of local 
features of human images in the instance-level image Re-ID task. The key to improving 
re-identification accuracy is to let the network learn the various feature information of 
people, as changes in the local structure of people inevitably affect the ability of a 
network to extract feature information. Furthermore, in each frame of a video sequence, a 
change in the shooting angle or the displacement of people may cause the fixed 
segmentation method to change the content captured in the sliding window, resulting in 
inconsistent semantic information on feature embedding [10]. Second, the self-attention 
structure in a transformer has strong global awareness, so a network usually takes the 
class token learning of the global feature information as the final output [5]. This may 
ignore some fine-grained feature information in an image, thereby limiting the 
re-identification performance of a network. Therefore, we think that the transformer 
needs to be improved to better adapt to the image Re-ID task. 

To solve the first problem, this paper proposes a simple and effective CAP module 
to partition the feature embedding modules, which performs the partitioning, as shown 
in Figure 1. In the CAP module, the closely correlated parts in the window are 
partitioned together, which preserves the structural integrity of the local feature 
information in the person image and maintains the consistency of the semantic 
information before and after the local feature segmentation. We also use two sets of 
parameters to learn the correlation of calculations in the window, such that the 
partitioning of feature embeddings in different windows is adaptive. To solve the second 
problem, this paper proposes an MG module, in which the feature embeddings are cut 
horizontally into groups and the class tokens are embedded in different groups to learn 
the feature information at different levels of granularity. We also design an aggregation 
method that is incorporated into the MG module, which aggregates the same levels of 
granularity in the video sequence that are present in the final feature representation. 
Thus, overall, this paper makes the following four main contributions: 

 
Figure 1. Correlation-adaptive partitioning of feature embeddings. Figure 1. Correlation-adaptive partitioning of feature embeddings.



Appl. Sci. 2022, 12, 12503 3 of 15

1. We propose a pure transformer-based APMG network for video Re-ID tasks;
2. We propose a CAP module to adapt the partitioning of feature embeddings according

to the correlation, which maintains the consistency of the overall structure and the
semantic information of feature embeddings;

3. We propose an MG module that can capture feature information at different levels of
granularity, thereby improving the re-identification performance of the network.

4. We perform experiments on three widely used video Re-ID datasets, which demon-
strated that our APMG network achieves a better performance than other state-of-the-
art models.

The rest of this paper is arranged as follows: In Section 2, we review the related work
on Re-ID and transformer. In Section 3, we propose an APMG network based on the pure
transformer structure, and introduce two brand-new modules, CAP and MG, in detail. In
Section 4, we introduce three datasets for experimental testing and make comprehensive
analyses of the experimental results. In Section 5, we summarize the work content of this
paper and look forward to future work.

2. Related Work

The key to network design for Re-ID tasks, involving an image dataset, is to enable the
extraction of the distinguishing feature information of people [11–13]. However, in a video
sequence dataset, people have multiple and continuous image data, which constitutes
additional information about people in time and space. Therefore, in recent years, new
methods have been developed for video-based Re-ID tasks to alleviate the negative impact
on Re-ID performance of realistic problems, such as person occlusion and person pose
change, by focusing on extracting the spatial or temporal features of people from video
sequences. For example, the graph convolution network (GCN) structure is used to establish
connections between an image in each frame [14–17]. The spatial-temporal GCN network
(STGCN) [18] divides person-feature information into multiple feature points horizontally
and then uses the GCN structure to construct the feature points of multiple person images
in the video sequence into spatial and temporal branches. Subsequently, the STGCN
extracts the spatiotemporal information that complements the appearance information
of a person, which greatly improves the performance, relative to that of a GCN. Another
mainstream method, to enhance the ability of a network to extract spatiotemporal person
information, is the attention mechanism [19–22]. In the salient-to-broad module designed
in the scale-insensitive convolutional neural network (SINet) [23], for example, differential
amplification is used to enhance the difference between each image in each frame and
thereby improve the ability of the network to extract the feature information from image
sequences. Three-dimensional convolution is also used to capture and fuse temporal
person-feature information [24–27]. However, a network using a 3D convolution structure
has high computational demands, and it is easy to overfit and difficult to train. Other
approaches, such as extracting person-attribute information [28,29] and extracting fine-
grained person information [30,31], have also been developed for enhancing a network’s
ability to collect different feature information and thus achieve an enhanced performance.

One of the mainstream methods in the field of NLP uses a transformer structure [6],
which captures the global dependency of sequences. Vision Transformer [5] was the
first network to apply transformer backbone structures to image tasks. The transformer
structure retains the original feature information better than a CNN, which has led to
transformers being applied in the field of computer vision [32,33]. To keep the semantic
information before and after the image split Zhiyang et al. [10] proposed variable-size
windows to split patches. At present, the main improvement method involves combining a
CNN and a transformer by adding convolution structures to a self-attention mechanism to
improve the feature re-identification ability of a network [34,35]. Shuting et al. [7] applied
the transformer structure to the Re-ID task for the first time and introduced a variable
to learn and compensate for the image differences caused by different cameras. A few
studies have applied transformers in video-based Re-ID tasks. Tianyu et al. [36] introduced
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a global attention learning branch to learn the relationship between patches in an image in
each frame, and Xianghao et al. [37] extracted feature information at different scales and
different at levels of granularity by partitioning feature embedding from different direc-
tions. However, these studies have used a fixed-sized sliding window to segment person
images for generating input feature embeddings, which ignores the consistency of semantic
information before and after an overall structure and the local feature segmentation of
people. To the best of our knowledge, our APMG network is the first to partition feature
embeddings according to correlations in Re-ID tasks.

3. Model and Methods
3.1. Model Frame Structure

Our backbone network for video-based Re-ID tasks follows the structural design of
a pure transformer used in the Vision Transformer [5] and has the overall framework as
shown in Figure 2. Based on the characteristics of a strong overall structure of images, we
design a new method to partition image-feature embedding according to their correlations.
Then, to improve the re-identification accuracy and robustness of a network, we design a
simple and practical multi-grained method.
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The model is shown in Figure 2. Given a person video sequence v, which contains
t frames of images v = {v1, v2, . . . , vt}, for any one image frame, the CAP module is first
partitioned into N feature embeddings {F1, F2, . . . , FN}, where the size of each feature
embedding is 1 × c. A learnable random variable Φc ∈ R1×c is introduced as the final
feature expression of the whole image. The Φc and N feature embeddings are succes-
sively expanded and spliced horizontally to form the sequence F = [Φc, F1, F2, . . . , FN],
F ∈ R(1+N)×c. Where Φc is placed at the top of the sequence. To compensate for the problem
of the position information in the image being lost after feature embeddings are flattened,
a learnable random variable Φloc ∈ R(N+1)×c is introduced into the image to supplement
the position information of the feature embeddings. Moreover, we follow the design in
TransReID [7] to introduce a variable Φcam’ ∈ R1×c to save the camera information. To
match the sequence size of Φc and N feature embeddings, Φcam’ is copied N+1 times and
changed to Φcam ∈ R(N+1)×c. For the person image, the first layer input of the network z0

can be expressed as follows:
z0 = F + Φloc + Φcam (1)

We then use the l−1 transformer structure to calculate the input z0. Each transformer
layer is composed of a multi-head self-attention (MSA) with a residual structure and a
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multi-layer perception (MLP) with a residual structure. For layer i of the network, the
output zi can be expressed as follows:

zi ′ = zi−1 + MSA(zi−1) (2)

zi = zi ′ + MLP(zi ′) (3)

After l−1 transformer operations, the class token learns the feature information of the
whole image and is finally divided by the MG module into eight class tokens with different
levels of granularity.

3.2. Correlation-Adaptive Partitioning of Feature Embeddings Module

Considering the continuity of video sequences and to improve the structural integrity
of patches, we propose a CAP module. The specific implementation process is as follows:
For the input t-frame video sequence v = {v1, v2, . . . , vt}, we first use the a × a sliding
window to preprocess each video image to generate patches without superimposed pixels
va = {va1, va2, . . . , vat}, van ∈ Rh×w×c. We then use the b × b sliding window to partition the
patches of each frame, p feature embeddings are partitioned from each sliding window and
arranged horizontally in turn. As the structure of the two-layer sliding window enlarges
the receptive field to a certain extent, we do not set the superposition region in the process
of partitioning patches. For any one frame in a video sequence v, N feature embeddings are
generated by the CAP module:

N =
h
b
× w

b
× p = H ×W × p (4)

There are s = b × b patches in the b × b sliding window. To determine the integrity
of the feature embedding within the sliding window for a patch xm ∈ Rc×1, we take the
correlation among patches as the basis for inference. We consider that the strong continuity
of the feature information between frames in video sequences can be used to help partition
the feature embeddings in the sliding window if all the patches in the sliding window at the
same position in the video sequence are taken into account. Therefore, for any one patch xm
in the sliding window of van, the number of patches for which the correlation is calculated is
b× b× t. However, the influence of changes in light intensity and viewing angle, occlusion,
and other factors means that there may be a large amount of information redundancy
in the video sequence, which will affect the partitioning of feature embedding in the
sliding window. Furthermore, the large number of patches distributed along the video
sequence increases the computational burden of a network. We solve these two problems by
adopting the method of mean operation in the direction of the video sequence. The patch
sequence va = {va1, va2, . . . , vat} is pooled into a reference patche matrix Va ∈ Rh×w×c. Thus,
when calculating the correlation, patches in xm only successively operate with patches
in the sliding window at the same position in Va. This method preserves the feature
information of edge and texture structure and reduces the information redundancy in the
video sequence. Moreover, the number of patches for computing correlations in the sliding
window is reduced from b × b × t to b × b, which greatly reduces the computational cost
of the network.

For any patches xm from the sliding window b × b in van, the correlation is calculated
as follows:

Xm =
s

∑
n=1

[ReLU (Wxxm)]
T · [ReLU(Wyyn)] (5)

where yn is a patch in the sliding window at the same position in Va; Wx ∈ R(c/e)×c and Wy

∈ R(c/e)×c are two adaptive correlation learning matrices, where e is the positive integer
coefficient of the compressed computation. ReLU is the linear rectification activation
function. For any one b × b sliding window in van, we successively calculate the score
of the correlation between patches xm and s reference patches as the output result in
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an accumulative manner. Thus, the correlation calculation result sequence of s patches
is X = {X1, X2, . . . , Xs}, Xm ∈ R1×s. The patch xm and correlation calculation results Xm
correspond (x1 
 X1). Considering the integrity of the feature embeddings within a
sliding window, we regard the patches with a similar correlation score as having a stronger
integrity among patches, such that they can be partitioned into one feature embedding.
To achieve this, we order the correlation scores in sequence X in size, from largest to
smallest, to generate the sequence X’={X’1, X’2, . . . , X’s}, X’n ∈ R1×s. At the same time,
we arrange s corresponding patches in the b×b sliding window according to the order
in X’, and the matrix h ∈ R1×s×c is obtained by splicing along the transverse direction.
Finally, the 1 × (s/p) sliding window with a step size of s/p is used to divide h into p feature
embeddings. The size of each feature embedding is F ∈ R1×c.

The implementation process is shown in Figure 3, which illustrates the first sliding
window result in van. For easy understanding and presentation, b = 2, p = 2 in the figure.
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3.3. Multi-Granularity Module

Due to the environmental conditions of video image acquisition, many challenges for
feature extraction arise in practice, such as occlusion and dislocation. Thus, the effective fea-
ture extraction area may be a very small part of a whole image. To improve re-identification
accuracy, we explore the feature information in image and video sequences at different
levels of granularity and propose an MG module. Given that the overall structure of people
can be divided horizontally, we use a horizontal strategy to restructure the token sequence.
The rearranged tokens zn’ are divided into global-grained tokens, medium-grained tokens,
and fine-grained tokens, according to the size of a window. These tokens share class
token Φc.

For the n-th frame image in a video sequence v, the input token sequence of the last
layer (layer l) is set to zn

l−1 = [Φc
n

l−1, Fn1
l−1, Fn2

l−1, . . . , FnN
l−1]. We extract N feature

embeddings zn = {Fn1
l−1, Fn2

l−1, . . . , FnN
l−1} and rearrange them according to the original

corresponding positions in the image to obtain zn’ ∈ RH×(W×p):

zn = {Fn1
l−1, Fn2

l−1, · · ·, FnN
l−1} Rearrange→ zn

′ =


Fn1

l−1 Fn2
l−1 · · · Fn(W×p)

l−1

Fn(W×p+1)
l−1 Fn(W×p+2)

l−1 · · · Fn(2×W×p)
l−1

...
...

. . .
...

Fn((H−1)×W×p+1)
l−1 Fn((H−1)×W×p+2)

l−1 · · · FnN
l−1

 (6)
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For global-grained tokens, we use a window of size H × (W × p) to partition zn’ into
a whole. Φc

n
l−1 and zn’ are flattened together along the horizontal direction and then

spliced to form the global-grained token sequence zglo,n
l−1 = [Φc

n
l−1, Fn1

l−1, Fn2
l−1, . . . ,

FnN
l−1], zglo,n

l−1 ∈ R(1+N)×c. After lglo layers of backbone transformer operations, the final
output global-grained token sequence is obtained: zglo,n

l = [Φc
n

l, Fn1
l, Fn2

l, . . . , FnN
l], zglo,n

l

∈ R(1+N)×c. Following previous studies, we use the class token as feature representations of
the token sequence. For the video sequence v, the set of global-grained tokens from t-frame
images can be obtained as follows:

zglo =
{

Φc
glo,1

l , Φc
glo,2

l , · · · , Φc
glo,t

l
}

(7)

For medium-grained tokens, we use a window of size (H/2) × (W × p) to divide
zn’ into two parts. Φc

n
l−1 is combined with each of the two parts and, after expansion,

two groups of medium-grained token sequences, zmed1,n
l−1 and zmed2,n

l−1, are obtained.
The first medium-grained token sequence is zmed1,n

l−1 = [Φc
n

l−1, Fn,1
l−1, Fn,2

l−1, . . . ,
Fn,(N/2)

l−1]. Through the lmed layer operation of the backbone transformer, class tokens
learn the relationship and feature information between medium-grained tokens. Finally,
two groups of medium-grained token sequences, zmed1,n

l and zmed2,n
l, are outputs. We use

a class token as the feature representation of the token sequence. For the video sequence v,
the set of granular tokens zmed1 and zmed2 in the two groups that obtain t frames of images
can be expressed as follows:

zmed x =
{

Φc
med x ,1

l , Φc
med x ,2

l , · · · , Φc
med x ,t

l
}

, x = 1, 2 (8)

For fine-grained tokens, we use a window of size (H/4) × (W × p) to divide zn’ into
four parts. As with the operations for medium-grained tokens, four sets of fine-grained
tokens (zfin1, zfin2, zfin3, and zfin4) are finally obtained after the lfin layer operation in the
backbone transformer, which can be expressed as:

zfin x =
{

Φc
fin x ,1

l , Φc
fin x ,2

l , · · · , Φc
fin x ,t

l
}

, x = 1, 2, 3, 4 (9)

For the n-th frame image in video sequence v, the extraction process of three different
kinds of granularity tokens is shown in Figure 4.
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When compared with tokens with a global level of granularity, tokens with a finer level
of granularity can extract and learn more detailed features locally in an image, meaning that
they have better local feature awareness and can obtain multi-granular feature information.
Thus, after learning a whole video sequence, such tokens can also distinguish people. In a
video sequence, an image is affected by changes in illumination, shooting angle, occlusion,
and other factors. Thus, each image in a frame provides different information on an overall
feature. Nonetheless, when people observe a video sequence of person recognition, they can
determine the integrity and importance of a feature in each image according to the image
and information in each successive frame. This inspires us to design a way of aggregating
granular tokens of the same category along a video sequence in terms of ‘importance’. We
measure importance by the cosine similarity between the same category of granular tokens
and aggregate them as a weighted sum. Finally, we combine the three granularity tokens
horizontally to form a set of multi-granular tokens Z, which represents the overall feature
of video sequence v. The calculations involved are as follows:

ρ′
glo ,n

=
t

∑
m=1,m 6=n

cos(Φc
glo,n

l , Φc
glo,m

l) ρglo ,n
=

exp(ρ′
glo ,n

)

t
∑

n=1
exp(ρ′

glo ,n
)

n, m ∈ t (10)

ρ′
med x ,n

=
t

∑
m=1,m 6=n

cos(Φc
med x ,n

l , Φc
med x ,m

l) ρmed x ,n =
exp(ρ′

med x ,n
)

t
∑

n=1
exp(ρ′

med x ,n
)

x = 1, 2 n, m ∈ t (11)

ρ′
fin x ,n

=
t

∑
m=1,m 6=n

cos(Φc
fin x,n

l , Φc
fin x ,m

l) ρfin x ,n =
exp(ρ′

fin x ,n
)

t
∑

n=1
exp(ρ′

fin x ,n
)

x = 1, 2, 3, 4 n, m ∈ t (12)

Z1 =
t

∑
n=1

(Φc
glo,n

l × ρglo ,n
) (13)

Z1+x =
t

∑
n=1

(Φc
med x ,n

l × ρmed x ,n) x = 1, 2 (14)

Z3+x =
t

∑
n=1

(Φc
fin x ,n

l × ρfin x ,n) x = 1, 2, 3, 4 (15)

Z = [Z1, Z2, Z3, Z4, Z5, Z6, Z7] (16)

In the training process, we use cross-entropy loss Lcls without label smoothing and
ternary loss Ltri with soft edges to train the global and six local-grained tokens. The total
loss L is calculated as follows:

L = Lcls(Z1) + Ltri(Z1) +
1
8
×

7

∑
x=2

(Lcls(Zx) + Ltri(Zx)) (17)

During inference, we use the set of multi-granular tokens Z as the overall feature
representation of the video sequence v.

4. Experiments
4.1. Datasets and Evaluation Protocols

To verify the effectiveness of the model, we conducted experiments on three widely
used benchmark datasets: the Motion Analysis and Re-identification Set (MARS) [38], the
Imagery Library for Intelligent Detection Systems-VID (iLIDS-VID) [39], and the Person
Re-ID Dataset 2011 (PRID-2011) [40].
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The MARS dataset is a video extension of the Market-1501 dataset and contains more
than one million frames of people images, making it the largest publicly available video-
based dataset. The data were collected by six cameras on the campus of Tsinghua University.
The dataset contains 20,478 video sequences of 1261 identities: 625 identities for training
and 636 identities for testing. The video sequence of each identity was captured by at least
two cameras. The large amount of image information was processed by the deformable
parts model detector and generalised maximum multi-clique problem tracker, and there
are errors and poor execution in the figure cutting.

The iLIDS-VID dataset was collected in an aviation terminal hall, with the video
sequence collected by two cameras with non-overlapping shooting fields. The dataset con-
tains 300 identities and each of the two cameras captured a video sequence of 23–192 frames
for each identity. Each video sequence has an average of 100 image frames. Although
iLIDS-VID is a small dataset, with only 300 independent identities, the video sequence
contains a large number of people wearing similar clothes and with overlapping occlusion,
background clutter, and obvious lighting changes; these features make it a highly realistic
and challenging dataset for Re-ID tasks.

The PRID-2011 dataset was collected and collated by the Austrian Institute of Technol-
ogy University, Austria. The video sequences were collected at crosswalks and sidewalks
by two surveillance cameras with non-overlapping shooting fields. Each video sequence
contains 5–675 frames of images, with an average of 100 frames. The dataset contains
385 identity video images taken by camera A and 749 identity video images taken by cam-
era B; only 200 identities were captured by both cameras. As the acquisition environment
of PRID-2011 was a relatively spacious outdoor street scene, the background of its person
images is simple and clean and there is less person occlusion than in the other two datasets.

To evaluate the re-identification performance of APMG network, we use the cumula-
tive matching characteristic (CMC) curve and mean average precision (mAP) evaluation
indicators. When using the MARS dataset, we followed the default training and testing
groupings of the dataset and used the CMC curve and mAP to evaluate the model perfor-
mance. When using iLIDS-VID and PRID-2011 datasets, we randomly divided the dataset
into two subsets for training and testing groups. The experiment was repeated 10 times,
and the CMC curve (representing the average result of 10 experiments and for which we
took Rank-1 and Rank-5) was used to evaluate the model performance.

4.2. Implementation Details

Our network was written in Python 3.7. The module and training environment in
the network architecture was PyTorch 1.8.0. The main hardware was an NVIDIA GeForce
RTX 3090 with 24 GB of memory. The backbone network used ViT-B16 [5], which was
pre-trained on ImageNet to improve the performance and accuracy of the network. In the
preprocessing of the dataset, we divided the video into eight segments, randomly took
one frame from each segment, and used these eight frames to form a new video sequence
to represent the video. The image size in the video sequence was uniformly adjusted to
256 × 128 pixels, and random erasure, random cropping, and horizontal flipping were used
for data enhancement. The batch size was set to 64 and contained eight video sequences.
The overall structure of APMG network is shown in Figure 2. In the CAP module, the
sliding window for preprocessing each frame of the video image was 4 × 4 (a = 4) and the
number of generated patches van ∈ Rh×w×c without overlapping pixels was 64 × 32 × 768.
The sliding window for splitting patches was 4 × 4 (b = 4) and the quantity of feature
embeddings partitioned in the window was p = 2. After the CAP module had completed its
task, the number of feature embeddings generated for each frame image was N = 256. The
number of network layers was l = 12. For network training, the learning rate was initially
set to 0.09, and the cosine algorithm was used to adjust the learning rate. The optimiser
used stochastic gradient descent.
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4.3. Comparison with State-of-the-Art Methods

To verify the performance, we selected 14 recently developed models to apply to the
MARS, iLIDS-VID, and PRID-2011 datasets for the experimental comparison. The selected
models are the attribute-driven feature disentangling (ADFD) [28] and appearance and
motion enhancement (AMEM) [29], which uses person-attribute information; the multi-
granular hypergraphs (MGH) [16], STGCN [18], and correlation and topology learning
(CTL) [17], which use a GCN; the appearance-preserving 3D convolution (AP3D) [25],
spatiotemporal representation factorisation (STRF) [26], and self-separated network to align
parts for 3D convolution (SSN3D) [27] models, which use a three-dimensional convolution
module; dense interaction learning (DenseIL) [21], spatiotemporal transformer (STT) [36],
and SINet [23] models, which use an attention mechanism to enhance the extraction of
time- or person-feature information; and the multi-granularity reference-aided attentive
feature aggregation (MG-RAFA) [30], global-guided reciprocal learning (GRL) [31], and
pyramid in transformer (PiT) [37] models, which consider feature information at different
levels of granularity. The re-identification accuracy of each model is shown in Table 1. Our
APMG network achieved the best performance in each of the three benchmark datasets. In
the MARS dataset, its mAP scores are more than 1.4% higher than those of the next best
model, and on the iLIDS-VID and PRID-2011 datasets, its Rank-5 scores are close to 100%.

Table 1. The re-identification accuracy of each model.

Methods
MARS iLIDS-VID PRID-2011

mAP Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

Attribute
ADFD 78.2 87.0 95.4 86.3 97.4 93.9 99.5
AMEM 79.3 86.7 94.0 87.2 97.7 93.3 98.7

Graph
MGH 85.8 90.0 96.7 85.6 97.1 94.8 99.3

STGCN 83.7 89.9 96.4 - - - -
CTL 86.7 91.4 96.8 89.2 97.0 - -

3D convolution
AP3D 85.6 90.7 - 88.7 - - -
STRF 86.1 90.3 - 89.3 - - -

SSN3D 86.2 90.1 96.6 88.9 97.3 - -

Attention
DenseIL 87.0 90.8 97.1 92.0 98.0 - -

STT 86.3 88.7 - - - - -
SINet 86.2 91.0 - 92.5 - 96.5 -

Grained
MG-RAFA 85.9 88.8 97.0 88.6 98.0 95.9 99.7

GRL 84.8 91.0 96.7 90.4 98.3 96.2 99.7
PiT 86.8 90.2 97.2 92.1 98.9 - -

APMG networks 88.4 92.1 97.8 93.6 98.7 97.1 99.8

In Table 1, STT, PiT, and our APMG network are all based on a transformer structure.
When compared with other CNN-based networks, the experimental results show that these
three networks had the best performance, which proves the feasibility and effectiveness of
a transformer structure for Re-ID tasks. When compared with the PiT network, our method
is similar, as it attaches importance to the granularity of feature information; however,
our method adds the aggregation of feature information according to ‘importance’, which
enhances the feature representation at each level of granularity for a person video sequence.
Moreover, we use the CAP module to generate feature embeddings instead of a fixed
sliding window in the Pit network, which effectively improves the overall structure and
semantic information consistency of feature embeddings and makes the network capture
more detailed with comprehensive information between feature embeddings. The overall
performance of the APMG network is therefore superior to that of PiT. Networks based
on a GCN structure can effectively capture the dependencies of people in space and time,
but these models adopt a CNN-based structure for feature extraction. Moreover, as the
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points in a GCN structure are represented by coarsely grained features, a GCN network
does not make full use of the detailed distinguishable feature information in an image.
In contrast, our APMG network makes use of various features with different levels of
granularity and also pays attention to the importance of features in time. Furthermore, the
APMG network’s transformer structure and CAP module allows the network to learn the
global features of an image without losing the original information. For these reasons, the
architecture and performance of the APMG network are superior to that of GCN-based
networks. When compared with attention-based methods, the transformer in the APMG
network has the structural characteristics of the global receptive field, which can extract
enough feature information from each frame. It is not necessary to expand the attention
area in the current image through the previous frames as SINet does. When compared with
attribute-based methods, the APMG network’s mAP score in the MARS dataset increased
by 9.1%. The available attribute information in person images mainly depends on the
extraction of the network, it may have a large error due to the change in visual angle.
However, the APMG network mainly extracts the multi-granularity information of people,
and through the multi-granularity information fusion between frames, it can effectively
reduce the influence of the visual angle on the network performance. In summary, the
APMG network has achieved the most advanced performance.

To verify the effectiveness of the APMG network, we randomly select three video
sequences from the MARS dataset and examine the activation visualisation results for these
sequences, as shown in Figure 5. The first group of images in the figure shows that the
APMG network effectively extracts distinguishable feature information of people, such as
a ponytail, a schoolbag, an arm, and other feature information. Figure 5 also shows that
the APMG network can extract person-feature information from an image with a cluttered
background (such as in the third image in the first group) or when the person is blocked
(such as in the second image in the second group).
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4.4. Ablation Study

We performed ablation experiments on the CAP and MG modules in the APMG
network, again using the MARS, iLIDS-VID, and PRID-2011 datasets.

For the ablation experiment on the CAP module, we set up five experimental settings.
In setting 1, we cancelled the two-layer sliding window structure and instead used a
16×16 sliding window. In settings 2 and 3, we used two different sizes of two-layer sliding
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window structures. In setting 4, we removed the correlation-adaptive partitioning of the
feature embedding. In setting 5, we used all patches on the sequence corresponding to the
position of the sliding window to calculate the correlation. To ensure the accuracy of the
experiments, we kept the number of feature embeddings consistent across the five settings.
The results are shown in Table 2.

Table 2. Ablation experiment results for CAP module.

Settings Parameter Quantity
MARS iLIDS-VID PRID-2011

mAP Rank-1 Rank-1

4 × 4 and 4 × 4 CAP 126 M 88.4 93.6 97.1
1. 16 × 16 125 M 84.1 90.7 95.4

2. 2 × 2 and 8 × 8 148 M 88.2 94.0 97.0
3. 8 × 8 and 2 × 2 131 M 86.7 92.4 96.3

4. 4× 4 and 4× 2 no partition 123 M 86.2 89.1 93.2
5. use all patches to calculate

the correlation 154 M 88.5 91.9 97.5

The re-identification accuracy results for settings 1, 2, and 3 show that our two-layer
sliding window structure is effective. Under setting 2, the re-identification accuracy in
iLIDS-VID was improved by 0.4% because the first layer adopted a 2 × 2 sliding window,
which made the generated patches more detailed. However, the 8 × 8 sliding window
greatly increased the number of network parameters needed for partitioning the feature
embedding. Considering the overall performance and the number of network parame-
ters in the three datasets, the scheme in setting 2 was discarded. Under setting 4, the
re-identification accuracy decreased by as much as 4.5% in iLIDS-VID, which demonstrates
the benefits of our correlation-adaptive partitioning of feature embeddings. Under setting 5,
the re-identification accuracy was slightly improved for the MARS and PRID-2011 datasets
because taking all patches into account when calculating the correlation increases the detail
of the reference used for defining feature embeddings. However, this increased the number
of network parameters and thus increased the computation effort, which introduced a large
amount of information redundancy into the time series and thus decreased the robust-
ness of the network. In iLIDS-VID, which is characterised by more complex background
information, the re-identification accuracy decreased by 1.7%. In terms of the overall
performance of the network on the three datasets and the number of network parameters,
our CAP module was the best performer. We randomly selected two images in the MARS
dataset for the visualisation of activations, as shown in Figure 6. The figure shows that the
CAP module effectively partitioned the feature embeddings and improved the network’s
extraction of the distinguishable feature information.
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For the ablation experiment on the MG module, we set up four groups of experiments
with varying partition granularities in window size. Setting 1 used a single size 16 × 16
window (global-granularity token). Setting 2 was setting 1 plus two size 8 × 16 windows
(medium-grained tokens). Setting 3 was setting 2 plus four size 4 × 16 windows (fine-
grained tokens) and eight size 2 × 16 windows. Setting 4 lacked the weighted sum
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aggregation operation designed in the MG module and used a simple mean method
instead. The experimental results are shown in Table 3.

Table 3. The ablation experiment results of MG module.

Settings
Parameter
Quantity

MARS iLIDS-VID PRID-2011

mAP Rank-1 Rank-1

16 × 16, 8 × 16, 4 × 16 MG 126 M 88.4 93.6 97.1
1. 16 × 16 114 M 86.6 90.0 94.9

2. 16 × 16, 8 × 16 119 M 87.5 92.7 95.8
3. 16 × 16, 8 × 16, 4 × 16, 2 × 16 135 M 88.2 92.9 97.2

4. MG without weighted sum 121 M 87.0 90.8 95.3

The results in Table 3 show that as the granularity was continuously refined, the
number of network parameters increased rapidly, and the re-identification performance
gradually increased. A bottleneck was reached in setting 3, where the re-identification
performance only slightly improved in the PRID-2011 dataset. When the granularity was
too fine, the extracted feature information could lose its overall structure and the granular
feature information could become trivial, which increased the redundant information in
the image. Considering the re-identification performance improvement and the number
of network parameters, we abandoned the size 2 window. When compared with Setting
4, our aggregation operation achieved an improvement of more than 1.4% on all three
datasets. This demonstrated that the MG module enhances the final feature representation
of video sequences.

5. Conclusions and Prospect

In this study, we propose a network framework named APMG for video Re-ID tasks.
The APMG network comprises two modules: a CAP module, which partitions feature
embeddings, and an MG module, which extracts feature information at different levels
of granularity. To verify the re-identification performance of the APMG network, we
conducted experiments on the MARS, iLIDS-VID, and PRID-2011 datasets. The results
show that the performance of the APMG network is superior to other state-of-the-art
methods, which also proves the feasibility of applying transformer structures in the Re-ID
task. The application of transformer structures in Re-ID is at the initial stage. We believe
that a more effective transformer-based network structure can be designed and improved
by absorbing a lot of mature experience based on CNN methods, which can be further
explored. In future work, we will introduce sliding windows with variable sizes into the
ACP module to generate feature embeddings, and to make the network adapt to image
tasks more effectively.
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