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Abstract: The safety and reliability of a ventilation system relies on an accurate friction resistance
coefficient (α), but obtaining α requires a great deal of tedious measurement work in order to
determine the result, and many erroneous data are obtained. Therefore, it is vital that α be obtained
quickly and accurately for the ventilation system design. In this study, a passive and active support
indicator system was constructed for the prediction of α. An RF model, GSCV-RF model and BP
model were constructed using the RF algorithm, GSCV algorithm and BP neural network, respectively,
for α prediction. In the GSCV-RF and BP models, 160 samples complied with the prediction indicator
system and were used to construct a prediction dataset and, this dataset was divided into a training
set and a test set. The prediction results were based on the quantitative evaluation models of MAE,
RMSE and R2. The results show that, among the three models, the GSCV-RF model’s prediction
result for α was the best, the RF model performed well and the BP model performed worst. In the
prediction for all the datasets obtained by GSCV-RF model, all the values of MAE and RMSE were
less than 0.5, the values of R2 were more than 0.85 and the value of R2 of the passive and active
support test sets were 0.8845 and 0.9294, respectively. This proved that the GSCV-RF model can offer
a more accurate α and aid in the reasonable design and the safe operation of a ventilation system.

Keywords: safety engineering; mine friction resistance coefficient; random forest; GSCV-RF; road-
way support

1. Introduction

The coefficient of frictional resistance (α) is an essential parameter for the calculating
mine ventilation resistance, solving the ventilation network and optimizing the ventilation
systems. The main method of obtaining this parameter is field measurement, but this
method incurs a heavy workload that is also detailed and complicated and is easily affected
by the operator, the equipment or the measurement method, leading to measurement
result errors [1–4]. In addition, with the advancement of ore body mining, the mining sites
gradually become deeper, so that it is impossible to carry out survey work on the tunnels
that are in the planning stage and not constructed, something which can also result in
missing data. All these problems may affect the study of ventilation systems and reduce
the safety and reliability of the system. Therefore, obtaining α more quickly, accurately,
and easily is a valuable research objective within ventilation system studies.

To solve this problem, some scientific researchers began with data mining. Shao [3]
collected all the historical α, constructed an α database, and matched the satisfied α through
a fuzzy query for the ventilation system design of roadways without resistance measure-
ment work. Liang et al. [5] introduced more detailed measurement indicators during the
construction of their α database, which can match the corresponding α more accurately
and precisely with the roadway and further improve the security of the ventilation system.
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However, the data mining method requires a large amount of detailed measurement data
with rich measurement indicators in order to ensure the accuracy of the matched data.
Therefore, collecting enough data for this method is a great challenge.

Considering the data mining defects, scientific researchers have adopted machine
learning, as it has a lower cost and requires less time to solve the detailed measurement
problems and obtain reliable data quickly and easily [6]. Zhang et al. [7] started with
the use of a back-propagation (BP) neural network to predict the α of log-supported
roadways, which provided a new method for obtaining an accurate and reliable α. Wang [8]
then followed the BP neural network. They started with a type of roadway support
mode and constructed an α prediction model for a variety of roadway support modes.
This ensured that the α prediction of the BP neural network was no longer limited to a
certain type of roadway. Wei [9] introduced the parameter of the cross-section shape of a
roadway, optimizing the α prediction model through the BP neural network and making
more accurate α predictions through the model. Most machine learning models used for
predicting α have been developed based on BP neural networks, but BP neural networks
have disadvantages. These include the tendency of falling into a local minimum value,
which leads to training failure and overfitting. Therefore, it is necessary to spend time
adjusting the prediction model so as to ensure the prediction result accuracy [10,11].

In addition to BP neural networks, there are many other machine learning methods
with different characteristics. Breiman [12] proposed the random forest (RF) algorithm,
which is superior in handling regression problems through the examination of detailed
examples. The algorithm has the advantages of requiring fewer tuning parameters, having
a higher training efficiency and requiring less overfitting than the BP neural network [13,14].
For the prediction of the α regression problem, the RF is also a solution method. Li et al. [15]
followed the variety roadway prediction indicator system of [8] and constructed a variety
of RF prediction models of α and achieved better prediction results. However, there is still
room for improvement.

Therefore, considering the influences of the values of the hyperparameters on the RF
prediction results, in this paper, we optimize an RF algorithm with a GSCV algorithm to
construct a GSCV-RF α prediction model. This can obtain a more accurate α prediction
and solve problems such as the detailed and complicated measurement work, large mea-
surement errors and frequent missing data, problems that frequently affect the accuracy of
ventilation system studies. The detailed workflow can be seen in Figure 1.
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2. Predictive Model Construction
2.1. RF Prediction Models

RF offers a new solution for the indirect resolution of classification and regression
parameters [16]. This method has the advantages of requiring fewer tuning parameters,
a high training efficiency and less susceptibility to overfitting. The regression problem is
handled by building multiple unrelated CART decision trees with decreasing computational
accuracy, and the output values of all the trees are averaged as the output of RF [17–19]. The
algorithm used for handling regression problems of the prediction of α is as follows [20,21]:
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1. Input conditions for forest growth: RF prediction results are heavily influenced by
three hyperparameters: the number of decisions, the maximum number of features
and the maximum depth of the decision tree, which are, respectively, defined as x1, x2
and x3 and used as the input growth conditions (x1, x2, x3).

2. The dataset containing N samples with O input features is sampled N times using
put-back sampling, and o features are selected randomly to serve as the input features.
This process is repeated N times to generate N training datasets including N samples
with o input features (o ≤ O):

D1 = x11, y11, (x12, y12), · · · , (x1N , y1N)
D2 = x21, y21, (x22, y22), · · · , (x2N , y2N)

· · ·
DN = xN1, yN1, (xN2, yN2), · · · , (xNN , yNN)

(1)

where DN is the Nth dataset of training numbers; xNN is the input data under the Nth
sample of the Nth training dataset; and yNN is the output data under the Nth sample
of the Nth training dataset.

Among them:
xNN =

(
xNN1, xNN2, · · · , xNNj

)
(2)

where XNNj is the jth input data under the Nth sample in the Nth training dataset.

3. Choose one of the datasets, select the appropriate cut variable j and cut point s, and
ensure the segmentation effect using Equation (3).

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (3)

where yi is the output data for the ith sample in the dataset; c1 is the mean of all yi
under the partitioned region R1; and c2 is the mean of all yi under the partitioned
region R2.

4. The optimal (j, s) is partitioned into regions to obtain R1 and R2, and the output value
of the corresponding region ĉm is determined:

R1(j, s) =
{

x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) > s

}
ĉm = 1

Nm
∑

xi∈Rm(j,s)
yi, x ∈ Rm, m = 1, 2 (4)

where R1 and R2 are the data region according to (j, s); x(j) is the selected optimal
division variable; and Nm is the number of samples in the delimited region Rm.

5. Until the requirements for the decision tree’s growth are satisfied, repeat steps 2 and 3
for the divided subregions.

6. To construct a decision tree, divide the input space into M regions, R1, R2, · · · , RM.

f (x) =
M

∑
m=1

ĉm I(x ∈ Rm) (5)

where f (x) is the resulting decision tree.
7. Repeat steps 2, 3, 4 and 5 until the forest’s growth requirements are satisfied and an

equal number of decision trees are formed so as to form a random forest.

Figure 2 depicts a flowchart of the RF algorithm based on the preceding algorithm.
Following these steps, a prediction model is formed by applying this to the prediction.
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1. Select the appropriate input and output properties to build a prediction indicator
system.

2. Use numerical and clustering methods to process the data such that it satisfies the RF
model’s requirements.

3. Adopting a given percentage, divide the dataset into a training set for training the
model and a test set for testing the prediction.

4. Input the model parameters (growth conditions), such as the number of decisions,
maximum number of features and maximum depth of the decision tree.

5. Train the training set’s α prediction model.
6. Predict the α of the test set.
7. According to the predictions to evaluation the constructed RF forecasting model. The

evaluation indicators include mean absolute error (MAE), root mean square error
(RMSE) and model goodness of fit (R2):

MAE =
1
n

n

∑
i=1
|ŷi − yi| (6)

RMSE =

√
1
n

n

∑
i=1
|ŷi − yi|2 (7)
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R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (8)

where n is the test set sample size; ŷi is the predicted value of the ith test set sample;
yi is the true value of the ith test set sample; and yi is the mean of the sample true
values.

2.2. GSCV Optimization Algorithm

GSCV (grid search cross-validation) is an algorithm comprised of a grid search and
cross-validation that enables automatic parameter tuning in order to identify the ideal
combination of parameters, which frequently optimizes the process, in conjunction with
other algorithms [22]. As the prediction results of RF are significantly affected by the
values of the hyperparameters, the GSCV algorithm is introduced and combined with RF to
circumvent this drawback. GSCV is then used to optimize RF by determining the optimal
input parameters so as to build a GSCV-RF prediction model for predicting α. The GSCV
optimization algorithm is as follows:

1. Set the range of each hyperparameter and set range of RF’s hyperparameter (growth
condition) as an example:

x1 ∈ [1, n]
x2 ∈ [1, m]
x3 ∈ [1, z]

(9)

where n is the upper limit of the value of the hyperparameter x1; m is the upper limit
of the value of the hyperparameter x2; and z is the upper limit of the value of the
hyperparameter x3.

2. To obtain a hyperparameter combination, set each hyperparameter individually. As-
suming that each hyperparameter step is 1, n × m × z hyperparameter combinations
(xn, xm, xz) are created. Hence, each hyperparameter combination represents one of
the growth conditions of RF.

3. To avoid the chance of outcomes owing to dataset partitioning, the dataset is divided
into K mutually exclusive subsets of the same size, d1, d2, · · · , dk, and each subset is
utilized as a separate validation set once, and the remaining K-1 subsets are used to
produce K new datasets.

4. Each hyperparameter combination (xn, xm, xz) is trained once on each of the K new
datasets, the goodness-of-fit R2

1, R2
2, · · · , R2

k under each dataset is produced, and
the output of the hyperparameter combination is the mean value R2

(xn,xm,xz)
of the

corresponding goodness-of-fit for each dataset.

R2
(xn ,xm ,xz)

=
1
k

k

∑
i=1

R2
i (10)

5. Repeat step 4 for each combination of hyperparameters in order to identify the optimal
output as an input parameter for the algorithm combined with GSCV. The following
is an expression of the optimal output:

max
xn ,xm ,xz

[R2
(xn ,xm ,xz)

] (11)

2.3. GSCV-RF Prediction Model

The GSCV algorithm is used to optimize the RF algorithm to produce the GSCV-RF
algorithm, and the algorithm flow is depicted in Figure 3. The method was used to predict
α and develop the GSCV-RF prediction model. The model’s implementation phases are
depicted in Figure 4. In the GSCV-RF model’s optimization of the RF model, the inability
to determine the input hyperparameters is addressed in five steps:
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1. The range and step size of the three hyperparameters, including the number of
decision trees, the maximum number of features and the maximum decision tree
depth, are established.

2. Combining the values of each hyperparameter to individually yields all the possible
hyperparameter combinations.

3. The α dataset is divided into K equal parts, with K-1 parts serving as the training
set and the remaining 1 part serving as the test set. After K repetitions, each sample
serves as one test set, resulting in K new datasets.

4. Using the new dataset, each combination of hyperparameters is subjected to K-fold
cross-validation.

5. The results produced for each hyperparameter combination are scored, and the
combination with the highest score is used as the model’s input parameter.

Appl. Sci. 2022, 12, 12487 6 of 19 
 

2.3. GSCV-RF Prediction Model 

The GSCV algorithm is used to optimize the RF algorithm to produce the GSCV-RF 

algorithm, and the algorithm flow is depicted in Figure 3. The method was used to predict 

α and develop the GSCV-RF prediction model. The model’s implementation phases are 

depicted in Figure 4. In the GSCV-RF model’s optimization of the RF model, the inability 

to determine the input hyperparameters is addressed in five steps: 

1. The range and step size of the three hyperparameters, including the number of deci-

sion trees, the maximum number of features and the maximum decision tree depth, 

are established. 

2. Combining the values of each hyperparameter to individually yields all the possible 

hyperparameter combinations. 

3. The α dataset is divided into K equal parts, with K-1 parts serving as the training set 

and the remaining 1 part serving as the test set. After K repetitions, each sample 

serves as one test set, resulting in K new datasets. 

4. Using the new dataset, each combination of hyperparameters is subjected to K-fold 

cross-validation. 

5. The results produced for each hyperparameter combination are scored, and the com-

bination with the highest score is used as the model’s input parameter. 

No

No

The data set is divided equally into K 

divisions

Set the range and step size of xn, xm and xz 

to obtain n×m×z forest growth conditions

Take K-1 divisions as training set and the 

remaining one division as test set

Whether each data set was 

used as a test set

Get K new datasets

Take one forest growing condition

Training on K new data sets

Calculate R2 of each data set

Whether each forest growing

condition was taken

Start

Construction of N training 

data sets D1, D2,  , DN

Finding optimal cut variables and 

optimal cut point combinations （j, s）

For optimal（j, s）divided regions 

R1 and R2

Calculating the output values of 

R1 and R2

Whether the conditions of 

tree growth are fulfilled

No playback to extract one of the data 

sets

Generate decision tree f(x)

Whether the conditions of forest 

growing are fulfilled

Generate a random forest

End

Enter forest growth conditions

（xn，xm，xz）

Set R1 and R2 as study 

subjects

Yes

                         Find

                        Find
, ,

, ,

2

max
n m z

n m z

x x x
x x x

R
 
  （ ）

Corresponding xn, xm and xz as input 

parameters

, ,

2

n m zx x xR（ ）

Yes

Yes

Yes

No

No

 

Figure 3. GSCV-RF algorithm flow chart. 
Figure 3. GSCV-RF algorithm flow chart.



Appl. Sci. 2022, 12, 12487 7 of 20
Appl. Sci. 2022, 12, 12487 7 of 19 
 

                                                                                                                             

                                                                                                                             

Building alpha 

forecasting
Data set division

Prediction data 

processing

Input model 

parameters
Training models

Test set 

prediction
Model evaluation

GSCV 

Algorithm

Random

Forest

Algorithm

Set parameter range and step
Obtain the hyperparameter 

combination
Equal division of K data sets

K-fold cross validation for all 

parameter combinations

The highest scoring combination 

of parameters is used as the 

model input parameters

                                                                                                                             

Average the predictions 

of each decision tree
Output model 

results
Random

Forest

Generation

Generate the

random forest
              

Generate 

decision 

trees

Repeat above the steps to

reach growth arrest conditions

Find  (j, s) for R1 and R2, 

divide R11, R12, R21, R22 and

calculate the output values

Divide regions

R1 and R2 and calculate 

regional output values

Find the optimal (j, s)

Construction of 

training data sets

D1， ，DN

Input

growth 

conditions

(x1，x2，x3)

 

Figure 4. GSCV-RF model prediction process. 

3. Example Analysis 

3.1. Constructing a Forecasting Indicator System 

The α has a close relationship with the roughness of the shaft wall, which is affected 

by the various support mode types. The passive support mode, characterized by bracket 

support, and active support mode, characterized by bolt support, are the two most prev-

alent support modes utilized underground [23]. Currently, two support modes are in reg-

ular usage. The type of roadway support chosen is dictated by the lithology of the subsur-

face strata, the depth of the mining and other factors. Consequently, the samples used to 

predict α are separated into passive support and active support samples according to the 

support mode employed for the roadway. Combining the findings on α prediction found 

in the literature [8,24], the passive and active support indicator systems for predicting α 

are correspondingly created (see Figure 5). 

3.2. Data Selection and Processing 

The authors of [8,24,25] each conducted a study investigating how to determine α, 

but there were too many data listed, which was not compatible with the α prediction in-

dicator system constructed in Section 3.1. Consequently, we must select the appropriate 

data as the research sample for the paper. Two types of dataset in the literature [8] were 

related to the paper’s passive support α prediction indicator system. We selected 50 sets 

of data from each of the two types of data training sets and their test data sets for a total 

of 124 sets of data used to construct the passive support prediction dataset. Some research 

data in the literature [24] were related to the active support α prediction indicator system 

Figure 4. GSCV-RF model prediction process.

3. Example Analysis
3.1. Constructing a Forecasting Indicator System

The α has a close relationship with the roughness of the shaft wall, which is affected
by the various support mode types. The passive support mode, characterized by bracket
support, and active support mode, characterized by bolt support, are the two most prevalent
support modes utilized underground [23]. Currently, two support modes are in regular
usage. The type of roadway support chosen is dictated by the lithology of the subsurface
strata, the depth of the mining and other factors. Consequently, the samples used to predict
α are separated into passive support and active support samples according to the support
mode employed for the roadway. Combining the findings on α prediction found in the
literature [8,24], the passive and active support indicator systems for predicting α are
correspondingly created (see Figure 5).

3.2. Data Selection and Processing

The authors of [8,24,25] each conducted a study investigating how to determine α, but
there were too many data listed, which was not compatible with the α prediction indicator
system constructed in Section 3.1. Consequently, we must select the appropriate data as the
research sample for the paper. Two types of dataset in the literature [8] were related to the
paper’s passive support α prediction indicator system. We selected 50 sets of data from
each of the two types of data training sets and their test data sets for a total of 124 sets of
data used to construct the passive support prediction dataset. Some research data in the
literature [24] were related to the active support α prediction indicator system of this paper,
and we incorporated all of them into our research. However, there were only 22 sets of
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data in total. Thus, we needed to add more related data from the literature [25] to construct
an active support prediction dataset with a total of 36 sets of data. In the end, 160 sets of
research samples were included in the publication.

According to data type classification, the data type of each dataset indicator can be
categorized as the numeric or character type, as shown in Table 1. The RF prediction model
and the GSCV-RF prediction model require the data of the samples to be of the numeric
type. Thus, the character-based data of the “Support Type” and “Cross-section Profile” are
numbered with the numbers 1, 2, . . . , n to represent the various support types and section
shapes, respectively. This procedure is used to process the data.

The prediction dataset is then divided into a training set for the training model and a
test set for the prediction of the effect of the test model. In our study, there were 124 samples
of passive support prediction datasets, of which 80% were training sets and 20% were test
sets, and there were 36 samples of active support prediction datasets. As the quantity was
too small, to improve the accuracy of the prediction model, we increased the training sets
ratio so that 85% of the samples were training sets and 20% were test sets. In addition, we
corrected the division of the datasets, so that the data used in the training set and test set
were identical in the subsequent model.
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Table 1. Data categories of the study sample.

No. Indicator Data Type

1 Support Type Character type
2 Cross-Section Profile Character type
3 Bracket Size Numerical type
4 Roadway Cross-Sectional Area Numerical type
5 Lane Circumference Numerical type
6 Perimeter of Unsupported Section Numerical type
7 Bracket Longitudinal Bore Numerical type
8 Cross-Bore of Bracket Numerical type
9 Equivalent Radius Numerical type
10 Effective Ventilation Area Factor Numerical type
11 Coefficient of frictional resistance Numerical type
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3.3. Data Statistics

Figures 6 and 7 depict violin plots, which represent the statistics of the paper’s research
samples. In Tables 2 and 3, showing the statistical indicators of all the training set and test
set calculations, the statistical indicators are provided.

Table 2. Table of the parameter statistics of the passive support dataset.

Indicators Min. Max. Avg. St. D. Med. S. Var. St. E. Kurt. Skew. Range Mode

Training Datasets

Support Type 1 2 1.5 0.503 1.5 0.253 0.05 −2.041 0 1
Bracket Size 10 26 15.68 4.126 15 17.028 0.413 0.002 0.592 16 10

Roadway
Cross-Sectional

Area
4 10 6.94 2.247 6 5.047 0.225 −1.366 0.033 6 4

Lane
Circumference 8.32 13.16 10.812 1.816 10.19 3.297 0.182 −1.358 −0.13 4.84 8.32

Perimeter of
Unsupported

Section
2.13 3.37 2.712 0.509 2.61 0.259 0.051 −1.668 0.021 1.24 2.13

Bracket
Longitudinal Bore 3 8 4.97 1.85 5 3.423 0.185 −1.218 0.416 5 3

Cross-Bore of
Bracket 0.033 0.135 0.065 0.021 0.062 0 0.002 0.69 0.816 0.102 0.059

α 0.071 0.261 0.121 0.042 0.106 0.002 0.004 1.049 1.291 0.19 0.137

Testing Datasets

Support Type 1 2 1.667 0.482 2 0.232 0.098 −1.568 −0.755 1 2
Bracket Size 10 24 15.708 4.059 16 16.476 0.829 −0.294 0.32 14 16, 18

Roadway
Cross-Sectional

Area
4 10 6.542 1.865 6 3.476 0.381 −0.927 0.39 6 5

Lane
Circumference 8.32 13.16 10.538 1.51 10.19 2.281 0.308 −1.058 0.196 4.84 9.30

Perimeter of
Unsupported

Section
2.13 3.37 2.702 0.386 2.61 0.149 0.079 −1.052 0.188 1.24 2.39

Bracket
Longitudinal Bore 3 8 4.75 1.622 4 2.63 0.331 −0.049 0.976 5 4

Cross-Bore of
Bracket 0.035 0.094 0.066 0.018 0.066 0 0.004 −1.347 −0.164 0.059 0.084

α 0.092 0.273 0.134 0.047 0.118 0.002 0.01 1.735 1.407 0.181
0.916
0.118
0.143
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Table 3. Table of the parameter statistics of the active support dataset.

Indicators Min. Max. Avg. St. D. Med. S. Var. St. E. Kurt. Skew. Range Mode

Training Datasets

Support Type 1 2 1.367 0.49 1 0.24 0.089 −1.784 0.583 1 1
Cross-Section

Profile 1 2 1.433 0.504 1 0.254 0.092 −2.062 0.283 1 1

Equivalent Radius 0.828 2.3 1.389 0.505 1.158 0.255 0.092 −1.372 0.539 1.472 0.835
2.000

Effective
Ventilation Area

Factor
0.84 1 0.954 0.044 0.96 0.002 0.008 0.927 −1.122 0.16 1.00

α 0.01 0.045 0.021 0.01 0.017 0 0.002 −0.139 0.91 0.035 0.029

Testing Datasets

Support Type 1 2 1.333 0.516 1 0.267 0.211 −1.875 0.968 1 1
Cross-Section

Profile 1 2 1.5 0.548 1.5 0.3 0.224 −3.333 0 1

Equivalent Radius 0.884 2.05 1.283 0.482 1.048 0.232 0.197 −0.697 1.064 1.166
Effective

Ventilation Area
Factor

0.87 1 0.962 0.047 0.975 0.002 0.019 4.225 −1.967 0.13

α 0.01 0.042 0.023 0.012 0.02 0 0.005 −0.089 0.802 0.032

3.4. RF Model Prediction

Using the passive and active support α prediction indicator system and Python, the
passive and active support RF prediction models were developed. The input parameters of
the models were default parameters (see Table 4 for details). After the training, the passive
and active support training set models were used to predict α for the associated test sets,
and the results are depicted in Figures 8 and 9.

As demonstrated in Figures 8a and 9a, the majority of the samples were positioned
near y = x. Hence, the actual measurement value of the passive and active support training
sets and test sets was more closely aligned with the prediction value. In the passive support
training sets, the values of MAE, RMSE and R2 were 0.0019, 0.0029 and 0.9952, respectively,
and in the passive support test sets, the values were 0.0112, 0.0159 and 0.8814, respectively.
In the active support training sets, the values were 0.0010, 0.0015 and 0.9775, respectively,
and in the active support test sets, the values were 0.0027, 0.0031 and 0.9165, respectively.
All the values of the MAE and RMSE of the datasets were less than 0.05, and the value of
R2 was more than 0.85.

As observed in Figures 8b,c and 9b,c, the sample numbers of the passive support test
sets were 1, 2, 6, 11, 14, 15, 18, 21 and 24. The deviation of the prediction from the field-
measured value was slightly large, accounting for 37.5% of all the sample numbers. The
sample numbers of the active support training sets were 1, 8, 11, 23 and 30. The deviation
of the prediction value from the field-measured value was slightly large, accounting for
16.67% of all the sample numbers. The sample numbers of the active support test sets were
1, 2, 5 and 6. The deviation of the prediction from the field-measured value was slightly
large, accounting for 66% of all the sample numbers. In addition, the predicted values of
the remaining samples were close to the actual value.

In Figures 8d and 9d, the frequency distribution of the samples’ relative error is
depicted. Thus, we can conclude that the majority of the sample relative errors were closer
to 0.

In conclusion, the RF model achieved superior prediction results for both the passive
and active support datasets. Furthermore, the trained RF model was applied to the test set
prediction, and the prediction result for the active support test sets was superior to that of
the passive support test sets.
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Figure 6. Violin plots showing the distribution of the passive support dataset. (a) Violin plot of
the support-type data; (b) violin plot of the bracket size data; (c) violin plot of the roadway cross-
sectional area data; (d) violin plot of the lane circumference data; (e) violin plot of the perimeter of the
unsupported section data; (f) violin plot of the bracket longitudinal bore data; (g) violin plot of the
cross-bore of bracket data; (h) violin plot of the friction resistance coefficient (passive support) data.

Table 4. Input parameters of the RF model.

No. Parameter Name Value (Passive
Support)

Value (Active
Support)

1 n_estimators 100 100
2 max_features Auto Auto
3 max_depth None None
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and predicted values of α; (b) curves of the measured and predicted values of the samples; (c) sample
prediction error curve; (d) sample error frequency distribution.
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Figure 9. The active support RF model prediction results. (a) Correlation evaluation of the measured
and predicted values of α; (b) curves of the measured and predicted values of the samples; (c) sample
prediction error curve; (d) sample error frequency distribution.

3.5. GSCV-RF Model Predictions
3.5.1. Searching for the Optimal Input Parameters

The passive and active support α prediction indicator systems and Python were
utilized to build the passive and active support GSCV-RF prediction models. We set the
value range and step size for each input parameter, as shown in Table 5, and set CV = 5
in order to identify the optimal parameter combination. The passive and active support
prediction datasets were used for the parameter optimization samples, and the results of
the optimization are shown in Table 6.

Table 5. GSCV-RF Model Parameter Optimization Settings.

No. Parameter Name Parameter Range Step Length

1 n_estimators [10, 150] 1
2 max_features [0.1, 1.0] 0.1
3 max_depth [3, 50] 1

Table 6. GSCV-RF Model Parameter Optimization Results.

No. Parameter Name Optimum Value
(Passive Support)

Optimum Value
(Active Support)

1 n_estimators 67 110
2 max_features 0.9 1.0
3 max_depth 9 3

3.5.2. Model Training and Prediction

The parameters shown in Table 6 were used as the input parameters, and training
models for the passive and active support training sets were employed. Figures 10 and 11
depict the α of the corresponding test set prediction result after the training.
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As demonstrated in Figures 10a and 11a, the majority of samples were positioned
near y = x. Hence, we know that the actual measurement value of the passive and active
support training sets and test sets was more closely comparable to the predicted value. In
the passive support training sets, the values of MAE, RMSE and R2 were 0.0018, 0.0025 and
0.9965, respectively, and in the passive support test sets, the values were 0.0112, 0.01597
and 0.8845, respectively. In the active support training sets, the values were 0.0014, 0.0019
and 0.9641, respectively, and in the active support test sets, the values were 0.0024, 0.0028
and 0.9294, respectively. All the values of the MAE and RMSE of datasets were less than
0.05, and the value of R2 was more than 0.85.

As observed in Figure 10b,c and Figure 11b,c, the sample numbers of the passive
support test sets were 1, 2, 6, 11, 14, 15, 18, 21 and 24. The deviation of the prediction from
the field-measured value was slightly large, accounting for 37.5% of all the sample numbers.
The sample numbers of the active support training sets were 1, 8, 11, 14, 22, 23, 26, 29
and 30. The deviation of the prediction from the field-measured value was slightly large,
accounting for 30% of all the sample numbers. The sample numbers of the active support
test sets were 1, 2, 5 and 6. The deviation of the prediction from the field-measured value
was slightly large, which was 66% of all the sample numbers. In addition, the prediction
values of the remaining samples were close to the actual value.

In Figures 10d and 11d, the frequency distribution of the samples’ relative error is
depicted. Thus, we can conclude that the majority of the samples’ relative error was closer
to 0.

As stated previously, the GSCV-RF model can achieve superior prediction results for
both passive and active support datasets. Additionally, the trained GSCV-RF model was
used for the test set prediction, and the prediction result of the active support test sets was
superior to that of the passive support test sets.

Appl. Sci. 2022, 12, 12487 14 of 19 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10. The passive support GSCV-RF model prediction results. (a) Correlation evaluation of 

the measured and predicted values of α; (b) curves of the measured and predicted values of the 

samples; (c) sample prediction error curve; (d) sample error frequency distribution. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11. The active support GSCV-RF model prediction results. (a) Correlation evaluation of the 

measured and predicted values of α; (b) curves of the measured and predicted values of the sam-

ples; (c) sample prediction error curve; (d) sample error frequency distribution. 

Figure 10. The passive support GSCV-RF model prediction results. (a) Correlation evaluation of the
measured and predicted values of α; (b) curves of the measured and predicted values of the samples;
(c) sample prediction error curve; (d) sample error frequency distribution.



Appl. Sci. 2022, 12, 12487 15 of 20

Appl. Sci. 2022, 12, 12487 14 of 19 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10. The passive support GSCV-RF model prediction results. (a) Correlation evaluation of 

the measured and predicted values of α; (b) curves of the measured and predicted values of the 

samples; (c) sample prediction error curve; (d) sample error frequency distribution. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11. The active support GSCV-RF model prediction results. (a) Correlation evaluation of the 

measured and predicted values of α; (b) curves of the measured and predicted values of the sam-

ples; (c) sample prediction error curve; (d) sample error frequency distribution. 

Figure 11. The active support GSCV-RF model prediction results. (a) Correlation evaluation of the
measured and predicted values of α; (b) curves of the measured and predicted values of the samples;
(c) sample prediction error curve; (d) sample error frequency distribution.

3.6. BP Model Prediction

To determine whether the α predictions of the RF and GSCV-RF models were superior,
the passive support and active support BP models for α prediction were constructed using
an α prediction indicator system. Using Equation (12), the number of nodes in the hidden
layer is determined [26]:

nh = 2I + 1 (12)

where nh is the number of hidden layer nodes, and I is the number of hidden layer nodes.
Table 7 displays the input parameters of the two BP prediction models. After the

training, the passive and active support training sets were utilized to predict the α of the
corresponding test sets, and the results are depicted in Figures 12 and 13.

As seen in Figures 12a and 13a, a number of samples were clustered near y = x,
indicating that the actual measurement value of the passive and active support training sets
and test sets had less correlation with the prediction value. In the passive support training
sets, the values of MAE, RMSE and R2 were 0.0111, 0.0136 and 0.8945, respectively, and in
the passive support test sets, the values were 0.0127, 0.0182 and 0.8455, respectively. In the
active support training sets, the values were 0.0038, 0.0050 and 0.7533, respectively, and in
the active support test sets, the values were 0.0041, 0.0056 and 0.7235, respectively. All the
values of the MAE and RMSE of datasets was less than 0.05. Besides, except for the passive
support training sets, the value of R2 for the remaining three datasets was less than 0.85.

As observed in Figure 12b,c and Figure 13b,c, the sample numbers of the passive
support training sets were 2, 3, 4, . . . , 100 (42 samples in total). The deviation of the
prediction from the field-measured value was slightly large, accounting for 42% of all the
sample numbers. The sample numbers of the passive support test sets were 5, 6, 7, 8, 11, 12,
17 and 24. The deviation of the prediction from the field-measured value was slightly large,
accounting for 33% of all the sample numbers. The sample numbers of the active support
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training sets were 2, 5, 6, . . . , 30 (22 samples in total). The deviation of the prediction from
the field-measured value was slightly large, accounting for 73.3% of all the sample numbers.
The sample numbers of the active support test sets were 3, 5 and 6. The deviation of the
prediction from the field-measured value was slightly large, accounting for 50% of all the
sample numbers. In addition, the prediction value of the remaining samples was close to
the actual value.

In Figures 12d and 13d, the frequency distribution of the samples’ relative error is
depicted. There were fewer samples near the 0 point and more samples further from it.

As stated previously, the BP model achieved poorer prediction results for the passive
and active support datasets, and its prediction error for the samples was larger, the ratio of
the larger error samples was higher, with the exception of the passive support training sets,
the value of R2 for the remaining sets was too low, indicating that the model’s prediction
accuracy was inferior.

Table 7. Input parameters of the BP model.

No. Parameter Name Value (Passive
Support)

Value (Active
Support)

1 Number of nodes in
the input layer 7 4

2 Number of nodes in
the output layer 15 9

3 Number of nodes in
the implicit layer 1 1
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Figure 12. The passive support BP model prediction results. (a) Correlation evaluation of the
measured and predicted values of α; (b) curves of the measured and predicted values of the samples;
(c) sample prediction error curve; (d) sample error frequency distribution.
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Figure 13. The active support BP model prediction results. (a) Correlation evaluation of the measured
and predicted values of α; (b) curves of the measured and predicted values of the samples; (c) sample
prediction error curve; (d) sample error frequency distribution.

3.7. Prediction Result Comparison

By comparing Figures 8 and 11, we determined that the GSCV-RF model and the RF
model had the same prediction tendency for the datasets. Their main difference was the
accuracy of their prediction results. Table 8 displays the quantitative evaluation results of
the RF and GSCV-RF models. With respect to the prediction results of the passive support
training sets provided by the GSCV-RF model, the value of MAE decreased by 5.26%, the
value of RMSE decreased by 13.79% and the value of R2 increased by 0.13%. With respect
to the prediction results of the passive support test sets provided by the GSCV-RF model,
the value of MAE remained unchanged, the value of RMSE decreased by 1.26% and the
value of R2 increased by 0.35%. With respect to the prediction results of the active support
training sets provided by the GSCV-RF model, the value of MAE increased by 40%, the
value of RMSE increased by 26.67% and the value of R2 decreased by 1.37%. Even though
the rate of the increase in MAE and RMSE was greater, their respective indicator magnitude
order was lower, and the error was still at a lower level. With respect to the prediction
results of the active support test sets provided by the GSCV-RF model, the value of MAE
decreased by 11.11%, the value of RMSE decreased by 9.68% and the value of R2 increased
by 1.41%. Consequently, we realized that, compared to the RF model, the GSCV-RF model
is superior in its prediction ability, yielding more accurate and reliable data.

Comparing the results in Figures 10 and 13 and combining them with the quantitative
evaluation results of the models in Table 8, we determined that the BP model has a larger
prediction error and lower accuracy for the datasets. With respect to the prediction results
of the passive support training sets provided by the BP model, the value of MAE increased
by 516.67%, the value of RMSE increased by 444% and the value of R2 decreased by 10.24%.
With respect to the prediction results of the passive support test sets provided by the BP
model, the value of MAE increased by 13.39%, the value of RMSE increased by 15.92% and
the value of R2 decreased by 4.41%. With respect to the prediction results of the active
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support training sets provided by the BP model, the value of MAE increased by 171.43%,
the value of RMSE increased by 163.16% and the value of R2 decreased by 21.86%. With
respect to the prediction results of the active support test sets provided by the BP model,
the value of MAE increased by 70.83%, the value of RMSE increased by 100% and the value
of R2 decreased by 22.15%.

The RF model and GSCV-RF model offer the best prediction effects among the three
models presented in this research, whereas the GSCV-RF model provides the most accurate
α prediction. While the BP model has more substantial error samples and a lower α

prediction accuracy. For the purpose of α prediction, the GSCV-RF model is the best of the
three models, followed by the RF model and the BP model.

Table 8. Quantitative evaluation of the model results.

Predictive Models MAE RMSE R2

RF Passive Support
Training Set

0.0019 0.0029 0.9952
GSCV-RF 0.0018 0.0025 0.9965

BP 0.0111 0.0136 0.8945
RF

Passive Support
Test Set

0.0112 0.0159 0.8814
GSCV-RF 0.0112 0.0157 0.8845

BP 0.0127 0.0182 0.8455
RF Active Support

Training Set

0.0010 0.0015 0.9775
GSCV-RF 0.0014 0.0019 0.9641

BP 0.0038 0.0050 0.7533
RF

Active Support
Test Set

0.0027 0.0031 0.9165
GSCV-RF 0.0024 0.0028 0.9294

BP 0.0041 0.0056 0.7235

4. Conclusions

In this study, in order to solve problems such as the minute and complicated work
and larger measurement errors in the α prediction of mines, we utilized an RF algorithm to
build a prediction model that yields accurate and reliable α results. Because RF prediction
results are more influenced by the super parameter, the GSCV algorithm was developed to
optimize RF’s hyperparameters, and the GSCV-RF model was constructed to predict α. In
order to determine whether or not RF was superior in α prediction, the authors constructed
a BP model using a BP neural network, which is a common method of obtaining α, and
used it to make α predictions for the same datasets. The quantitative evaluation of each
model’s prediction results was illustrated by the values of MAE, RMSE and R2, and a
graphical representation of the relationship between the actual sample measurement value
and the prediction value and errors was provided. Therefore, the conclusion of the paper is
as follows:

1. The paper began with the roadway support type, and after classifying the roadways
as passive support or active support, the passive support α prediction indicator
system and the active support α prediction indicator system were developed, re-
spectively. The study demonstrated that the accuracy of these two support systems
combined with machine learning, which can successfully predict α, is dependent on
the algorithm employed.

2. The paper introduced the RF algorithm to solve the problem of α determination. To
avoid the super parameter’s influence, the GSCV algorithm was also introduced, and
the GSCV-RF prediction model was constructed to predict the passive support training
sets. The results were MAE = 0.0018, RMSE = 0.0025 and R2 = 0.9965. In the prediction
of the passive support test sets, the results were MAE = 0.0112, RMSE = 0.0157 and
R2 = 0.8845. In the prediction of the active support training sets, the results were
MAE = 0.0014, RMSE = 0.0019 and R2 = 0.964. In the prediction of the active support
test sets, the results were MAE = 0.0024, RMSE = 0.0028 and R2 = 0.9294. The smaller
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MAE and RMSE, as well as the larger R2, demonstrated that the GSCV-RF model can
produce more accurate and reliable predictions of α.

3. After comparing and analyzing the three models, we concluded that the GSCV-RF
model was superior in α prediction, followed by the RF model and the BP model.
The BP model’s R2 was too low, proving that the GSCV-RF model was superior in α

prediction.

Therefore, the GSCV-RF model is able to avoid the tedious and time-consuming work
involved in filed measurements and to obtain accurate and reliable α results. In the design
of ventilation systems, the GSCV-RF model should be utilized to keep ventilation systems
in a safe and reasonable state.
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