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Abstract: With the advancements in wireless sensor networks and the Internet of Underwater Things
(IoUT), underwater acoustic sensor networks (UASNs) have attracted much attention, which has
also been widely used in marine engineering exploration and disaster prevention. However, UASNs
still face many challenges, including high propagation latency, limited bandwidth, high energy
consumption, and unreliable transmission, influencing the good quality of service (QoS). In this
paper, we propose a routing protocol based on the on-site architecture (SROA) for UASNs to improve
network scalability and energy efficiency. The on-site architecture adopted by SROA is different
from most architectures in that the data center is deployed underwater, which makes the sink nodes
closer to the data source. A clustering method is introduced in SROA, which makes the network
adapt to the changes in the network scale and avoid single-point failure. Moreover, the Q-learning
algorithm is applied to seek optimal routing policies, in which the characteristics of underwater
acoustic communication such as residual energy, end-to-end delay, and link quality are considered
jointly when constructing the reward function. Furthermore, the reduction of packet retransmissions
and collisions is advocated using a waiting mechanism developed from opportunistic routing (OR).
The SROA realizes opportunistic routing to choose candidate nodes and coordinate packet forwarding
among candidate nodes. The scalability of the proposed routing protocols is also analyzed by varying
the network size and transmission range. According to the evaluation results, with the network scale
ranging from 100 to 500, the SROA outperforms the existing routing protocols, extensively decreasing
energy consumption and end-to-end delay.

Keywords: routing protocol; underwater sensor networks; Q-Learning; clustering; Internet of
Underwater Things (IoUT)

1. Introduction

During recent years, Underwater Acoustic Sensor Networks (UASNs) have gained
much attention for the potential to explore and monitor the underwater environment [1].
UASN is one of the fundamental techniques of the Internet of Underwater Things (IoUT),
which was developed from the concept of terrestrial Internet of Things (IoT) [2]. Large-scale
UASN enables the extension of IoT to ocean applications, considered to be a promising
solution for exploring the oceans [3]. One of the key problems for these applications is how
to collect and forward the sensed data from the source node to the sink node [4].

Owing to the unique features of the underwater acoustic environment, routing in
UASNs confronts crucial challenges, such as signal propagation delay, limited bandwidth,
and low energy efficiency [5]. Scaling up or down the network size according to the
actual demand in the underwater environment is usually necessary, while maintaining the
reliability of the network. Adaptive formation of the network is taken into consideration
in this article, enabling nodes to independently join or leave the network. Moreover, the
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propagation delay has a significant impact on energy consumption, resulting in node
failure due to fast energy depletion. Hence, centralized topology should avoid the failure
of a single node, which could make the overall network crash. Moreover, due to the
serious loss of signals and multipath effect, the packet loss rate of the acoustic channel
leads to the unreliable transmission of data packets [6]. In addition, the energy of battery
is constrained, and the battery is expensive to recharge or replace owing to the harsh
underwater environment. To make things worse, the communication energy cost is greater
than radio communications. In this context, to overcome energy constraints in UASNs,
energy efficiency should also raise great attention [7]. Therefore, a scalable and energy-
efficient routing protocol urgently needs to be designed.

Recently, numerous routing techniques for UASNs have been proposed. To improve
the network scalability, Hindu et al. [8] proposed a Self-Organizing and Scalable Routing
Protocol. The proposed protocol makes use of a multi-hop communication method to send
sensed data to the sink node, and each node creates its own routing table by utilizing control
packet broadcasts during the startup and neighbor discovery phases. While the protocol
makes the communication efficient and the network scalable, the energy consumption
for control packets is relatively high. To decrease energy consumption, Nicolaou et al. [9]
proposed the hop-by-hop vector-based forwarding (HHVBF) routing protocol to reduce
energy consumption and network latency, in which the forwarders are selected within the
virtual pipeline. The performance of HHVBF is highly related to the pipeline radius, and
thereby short or large radius will result in the collisions and low delivery ratio, respectively.
Anand et al. [10] introduces another calculation called compelling Energy Resourceful
Routing utilizing cost work. This calculation chooses the course that fulfills the nature
of the administration in vitality stable, postpone requirements and throughput, hub in a
flexible, and reduces power usage which drags out the lifetime of the system. Moreover,
intelligent algorithms are utilized by routing protocols in UASNs. These routing protocols
design the reward function, taking remaining energy into account. For example, Hu
et al. [11] presented a Q-learning-based routing protocol for energy-efficient and lifetime-
extended underwater sensor networks (QELAR). The QELAR applied the Q-Learning
approach to the underwater sensor network. Routing decisions were made using a reward
function that took residual energy into account. However, the link quality is ignored, and
propagation delay is not seriously considered, which may result in unreliable transmission
when the distances between nodes are far from each other. Furthermore, routing algorithms
that rely on instant rewards may become stuck in local optima instead of discovering
global optima.

In addition to the scalability and energy efficiency, the reliability of the network is
also critical to UASN. Opportunistic routing (OR) has been adopted by UASN to improve
the reliability in wireless networks [12]. The opportunistic forwarding method can reduce
packet loss while avoiding retransmission [13]. Nonetheless, the majority of existing
OR protocols lack an alternation mechanism for sorting the priorities of relay set nodes,
resulting in the frequent participation of dominating nodes in forwarding and nonuniform
energy consumption over the network. Coutinho et al. [14] proposed the GEDAR, which
is a geographic and opportunistic routing protocol. Each node in the protocol greedily
chooses the forwarding node with the highest expected packet advance (EPA), and the EPA
is proportional to the distance between the nodes. The authors additionally designed a
recovery mode for the void node based on the depth adjustment to address void routing.
However, the greedy criterion and depth adjustments consume a lot of energy in packet
forwarding while energy is extremely important for acoustic signal propagation in UASNs.

Moreover, many researchers propose routing protocols to overcome the constraints
of the undersea environment, which are based on routing strategies [15]. To some extent,
the forwarding algorithm of protocols can be utilized to reduce latency and energy con-
sumption, while the key problem remains unresolved. In terms of the direction of data
forwarding, the traditional underwater sensor network usually works in the way that
data packets are sent upward from the bottom to the ocean surface, namely the land data



Appl. Sci. 2022, 12, 12482 3 of 22

center [11]. However, the vast majority of monitoring data originates from the deep sea,
hence long paths caused by the traditional architecture result in more energy consumption
and transmission delay. Tilak et al. [16] shows that the major source of energy consumption
is bulk data and long transmission distances, particularly in the underwater environment.
Based on these facts, an on-site architecture is taken into consideration in UASNs, which
deploys data centers under the sea. Fortunately, recent studies have demonstrated the
viability of locating servers underwater [17]. With the on-site architecture, energy con-
sumption and transmission delay can be significantly reduced. The acoustic channel in
the deep sea is less affected by seasonal changes and transmission quality is much better,
when comparing with the sea surface. Moreover, the cost of deploying and maintaining
large-scale servers will be significantly lowered [18].

Therefore, to enhance the performance of opportunistic routing and intelligent routing
algorithms, based on the on-site architecture, we propose a scalable and energy-efficient
routing protocol (SROA) that applies the Q-Learning technique to the OR paradigm in
UASNs. The SROA protocol is a clustered-based protocol with four phases and finds the
optimal routing paths to achieve scalable and energy-efficient transmission.

Three main contributions of this paper are summarized in the following.

(1) We apply a novel on-site architecture to the proposed protocol, locating the data
center near the data source on the seabed. The on-site architecture can effectively
minimize the number of forwarding hops in routing by shortening the distance
between the source and sink nodes, lowering the hop count in routing and enhancing
transmission reliability.

(2) We group the network into a number of clusters by an unsupervised learning algo-
rithm. Besides, to improve the reliability of the network and to avoid the failure of a
single-point, a mechanism for the selection of the cluster head and potential cluster
head is designed, which both takes the residual energy and location of the nodes
into account.

(3) We introduce the Q-Learning algorithm to the OR paradigm and elaborately design
the reward function for Q-Learning, which jointly considers the factors of residual
energy, delay, and PDR. In addition, a waiting mechanism based on the computed
Q-value is designed to improve transmission reliability and reduce packet conflicts
via the OR broadcast features, making the routing protocols reliable and scalable.

(4) To be more realistic, different communication ranges and network scales are set. The
overall performance of SROA is evaluated and compared to existing routing protocols.

The remainder of this paper is organized as follows. Section 2 introduces the system
model and fundamental concept of reinforcement-learning. The SROA protocol is then
introduced in Section 3. Section 4 evaluates the performance of the proposed protocol.
Lastly, Section 5 concludes this paper.

2. Network Model

We mainly introduce the system model, underwater acoustic model, and machine
learning algorithm adopted by SROA in this section.

2.1. System Model

The network architecture of the proposed SROA is shown in Figure 1. Sensor nodes
are randomly deployed underwater and divided into a number of clusters. Each cluster
elects the cluster head and potential cluster head for data transmission between clusters.
In order to transmit the sensed data through acoustic channels, sink nodes are deployed
on the seabed that are integrated with the underwater data center, making it convenient
for aggregating or processing sensed data, then forward the sensed data to the terrestrial
base station for further data analysis. The deployed sensor nodes collect data from the
surrounding environment and the sensed data will be sent to the sink node through multi-
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hop forwarding. In a three-dimensional system, the distance between the two sensor
nodes [9] is calculated as follows,

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (1)

where (xi, yi, zi) are the location coordinates for the i node.
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Some assumptions:

(1) The sink node and sensor nodes can obtain its location information. Sensor nodes can
obtain the location of the sink using the existing services [19,20].

(2) The initial energy of underwater sensor nodes is same; however, the sink node is
not restricted by energy. Each node has the ability to keep its recent communication
records in local storage [21].

(3) Nodes in a particular layer send packets to that layer’s cluster head, who then trans-
mits packets to the cluster head. Sensor nodes have uniform transmission radius and
are not impacted by water flow in a short period of time [22,23].

2.2. Underwater Acoustic Channel Model

Path loss caused by an ever-changing feature of acoustic channels is signal frequency
dependent. Underwater ambient noise is the main factor that affects underwater acoustic
transmission. In the underwater environment, signal attenuation is related to noise inter-
ferences, frequency, turbulence, and distance. In a propagation path without obstacles, a
signal’s attenuation factor at frequency f is [24]:

A(d, f ) = dSa( f )d (2)

where d and S represent the distance and spreading factor, respectively. S is set to one
for shallow water cylindrical propagation; 1.5 for practical propagation; and two for deep
water spherical propagation. The absorption coefficient happens as a result of a signal’s
frequency, and the absorption factor a(f ) shown by the Thorp equation is:

10loga( f ) =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f
+ 2.75× 10−4 f 2 + 0.003 (3)

Turbulence, ships, wind, and thermal noise are the key factors of underwater ambient
noise N(f ), represented as Nt(f ), Ns(f ), Nw(f ) and Nth(f ) [21]. Considering the application
scenarios of UASNs, shipping noise and sea surface noise are the main factors affecting
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transmission frequency. Therefore, the influence of uncertain noise must be taken into
account in the prediction of underwater acoustic transmission quality. Since most ambient
noise sources can be described by Gaussian statistics, the following empirical formula gives
the estimations of the four noise components [25]:

10 log Nt( f ) = 17− 30 log f
10 log Ns( f ) = 40 + 20 ∗ (s− 0.5) + 26 log f − 60 log( f + 0.3)

10 log Nw( f ) = 50 + 7.5
√

w + 20 log f − 40 log( f + 0.4)
10 log Nth( f ) = −15 + 20 log f

(4)

where s is the shipping activity factor, and the value of s is between zero and one; w is wind
speed in m/s. The effective noise level at frequency f is the sum of the contributions of the
above factors:

N( f ) = Nt( f ) + Ns( f ) + Nw( f ) + Nth( f ) (5)

Based on the noise model of the underwater environment, the average signal-to-noise
ratio (SNR) is expressed as follows:

Γ(d, f ) =
Ptp/A(d, f )

N( f )B
(6)

where B denotes bandwidth and Ptp is the power for transmission. The bit error rate
between nodes for distance d is [25]:

pe(d) ≈
1

4SNR
(7)

Therefore, for the successful packet transmission, p(d, m) represents the probability
that m bits are transmitted between two nodes across the distance d:

p(d, m) = (1− pe(d))
m (8)

2.3. Q-Learning Technique

Machine learning is very popular and applied to many fields. As a subset of machine
learning, reinforcement learning obtains specific objectives by interacting with the environ-
ment [26]. Q-Learning is one of the reinforcement-learning techniques and it does not need
to know prior information of environment [27]. It eventually converges on the optimal
strategy by iteratively learning the information gained from environmental feedback. In
this context, it is suitable for the dynamic underwater environment.

The node is described with a tuple (s, a, r), denoting the state of sensor nodes, action
taken by nodes, and direct reward, respectively.

In UASNs, when node i processes a data packet, the state of it is changed to busy;
otherwise, si is idle. The neighbors selected as the next hop are the actions made by the
node. The agent performs action ai from strategy π before proceeding to state sj from state
si. Reward is the evaluation of an agent’s actions.

Qπ(si, ai) is the reward that constitutes the direct reward and discounted future
rewards, as defined below:

Qπ(si, ai) = ri + γ ∑
sj∈X

Pai
sisj Q

π(sj, a) (9)

The first part ri is the direct reward and the second part is the future reward. γ ∈ (0, 1)
is the discount factor of the future reward. The probability of an agent in state si entering
state sj is given by Pai

sisj . The optimal value for a state can be derived after the execution of
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optimal policy. Furthermore, the Bellman equation can be used to determine at least one
optimal strategy π* [28]. Under the policy, the optimal value is defined as:

V∗(s) = maxa(Q∗(s, a))
Q∗(si, aj) = ri + γ ∑

sj∈X
Pai

sisj V
∗(sj) (10)

Q∗(si, aj) is the expected reward obtained by performing action aj in accordance with
the optimal policy at state si. Therefore, the optimal action a∗i can be described as:

a∗i = argmax
ai∈A(si)

Q(si, ai) (11)

The design of reward function in the SROA will be introduced in Section 3.4.

3. Design of SROA

The details of SROA are described in this section, including the packet format, the
mechanism of SROA, and the reward function.

3.1. The SROA Overview

The SROA protocol is proposed to find routing paths for achieving scalability, energy
efficiency, and reliability based on on-site architecture in UASNs. The proposed protocol
maintains stable with the increasing network size, selecting efficient routes for transmission
and avoiding single-point failure through the decentralized mechanism in the network. In
addition, a machine learning method is adopted to select optimal routes. The design of the
proposed routing protocol is depicted in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

list, it will drop the packet. Otherwise, the packet will be kept by the receiver for the wait-
ing time. Furthermore, if the node overhears other nodes transmitting this packet during 
the waiting period, it will cease forwarding the packet. Table 1 lists the notations in the 
SROA protocol. 

Node deployment and initialize 
routing table

Start

Discover neighbors and update 
routing table

Broadcast hello messages

Form clusters and elect cluster 
head 

Construct relay nodesConstruct reward function and 
calculate Q-values

End

Waiting timer is 
expired

Is a potential 
forwarder

Drop data packet

yes

no

Data forwarding

yes

no

 
Figure 2. Flowchart of the SROA protocol. 

Table 1. List of symbols. 

Symbol Meaning 
R0 the constant cost 

Tdelay The predefined maximum delay 

C The set of clusters 
ni the ith node 

Neighbori  neighbors of ni 
neighborij The jth neighbor of ni 

i

res
nE  ni’s remaining energy  
i

ini
nE  ni’s initial energy 

Ti The waiting time of ni before forwarding  
jn

bP  Buffered packets of nj 
Er,Es Energy for packet reception and transmission 
Clj The jth cluster 

CH, PCH Cluster head, potential cluster head 
CR Communication Range 

3.2. Packet Structure of SROA Protocol 
Figure 3 shows the data packet structure of SROA. The packet format is used to con-

vey information across nodes and to coordinate the clustering and routing processes. 

Figure 2. Flowchart of the SROA protocol.



Appl. Sci. 2022, 12, 12482 7 of 22

By monitoring channel conditions, sensor nodes deployed in the underwater environ-
ment collect information and their local information tables are kept up to date. Through
broadcasting messages, all the sensor nodes are grouped into multiple clusters and elect
the cluster heads for each cluster. Sensor nodes in the SROA are divided into three types:
Cluster heads (CHs), the potential cluster node (PCHs), and ordinary nodes (ONs). The
cluster head node is responsible for aggregating data from ONs and transferring the data
packet to the sink node through a multi-hop communication; PCH is used as an assistant
for CH and similar to the CH in the basic function. The rest of the sensor nodes are the
ONs that collect data and forward packets to cluster head within a single hop. Afterwards,
Q-Learning is applied to select relay forwarders. The Q-values of qualified neighboring
nodes are calculated by the sender node, employing the Q-Learning technique. Moreover,
it should be noted that data packets in SROA are transmitted to sink node through multiple-
hop communication using the OR strategy. The candidate forwarding set is constructed
by taking energy, latency, and connection quality into account. However, it is not suitable
for all the nodes participating in the same packet forwarding, which will result in energy
consumption and collisions of packets. Therefore, a waiting mechanism is designed to the
coordinate candidate set. The obtained Q-value determines the waiting time of candidate
nodes. The greater Q-value implies the higher priority for data transmission; hence the
waiting time of that node is shorter. When receiving a packet, the sensor node will first
check the packet header. If the receiver is not in the candidate list, it will drop the packet.
Otherwise, the packet will be kept by the receiver for the waiting time. Furthermore, if
the node overhears other nodes transmitting this packet during the waiting period, it will
cease forwarding the packet. Table 1 lists the notations in the SROA protocol.

Table 1. List of symbols.

Symbol Meaning

R0 the constant cost
Tdelay The predefined maximum delay

C The set of clusters
ni the ith node

Neighbori neighbors of ni
neighborij The jth neighbor of ni

Eres
ni

ni’s remaining energy
Eini

ni
ni’s initial energy

Ti The waiting time of ni before forwarding
P

nj

b Buffered packets of nj
Er,Es Energy for packet reception and transmission
Clj The jth cluster

CH, PCH Cluster head, potential cluster head
CR Communication Range

3.2. Packet Structure of SROA Protocol

Figure 3 shows the data packet structure of SROA. The packet format is used to convey
information across nodes and to coordinate the clustering and routing processes. There are
two parts in SROA: The header and the data. The header contains packet-related fields and
routing-related fields. The first two fields denote the source and destination address. Other
header fields are the routing decision-related fields, including source node ID, residual
energy, V value, cluster ID, and relay set.

Once an ordinary node receives the data packet, it updates the local neighbor table
through the received packet header and then forwards the data packet to its CH or PCH. If
the data packet is received by a CH or PCH, it retrieves the packet header and neighbor table
for the information updates. If it is in the relay set, the candidate set will be constructed
by the calculated the Q-values of the Q-Learning, based on related factors and the packet
header is wrapped with the relevant fields. A waiting timer then starts. Otherwise, the
current node is not in the relay set and the reception will be dropped.
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The payload data field is not required. When no payload data is present, data from
the upper level will be relayed to the sink node. Otherwise, the data packet serves only to
exchange information.

3.3. SROA Protocol Description

The SROA protocol includes four phases: Initialization, clustering, relay set construc-
tion, and packet transmission.

(1) Initialization: In this phase, initializations such as neighbor tables, routing tables,
and initial energy of nodes are established. The sensor nodes communicate with their
neighboring nodes through the exchange of data packets, and then update their local tables.
Each node maintains a local neighbor table that stores neighboring node information and
clustering information for routing determinations. By this way, each node may learn about
the whole network, not just the information of its own neighbors.

(2) Clustering: At this stage, the sensor nodes are grouped into clusters, and each of
these clusters has a CH and PCH, respectively. Ordinary sensor nodes simply communicate
with the CH. The CH then sends the fused data to the sink node through the multi-hop
communication path. The clustering phase enables nodes in the same group to have similar
characteristics. In the underwater environment, the expenditure for resizing the network
is known to be high, thus clustering makes the SROA adapt to the scaling of different
network sizes by clustering and residing tables in each sensor node. Moreover, the energy
distribution of nodes in the cluster is more uniform, extending the overall network lifetime.

Before clustering analysis, preliminary exploratory analysis of the sensor nodes is
required, the core of which is to determine the number of categories for clustering analysis,
which is helpful for the identification of abnormal nodes in the later stage. The silhouette
coefficient method has been widely recognized in the evaluation of the clustering effect,
and it is a better evaluation method. The silhouette coefficient can evaluate the quality
of the clustering model. Its main basis is the degree of cohesion and separation [29]. The
contour coefficient is calculated using the following formula:

S(i) =
b(i)− a(i)

max{a(i), b(i)} (12)

where b(i) is the average distance of the nearby clusters, and a(i) is the average distance
for each node in the cluster. The silhouette coefficient is then computed for each of the k
random values. As a result, a k with a greater coefficient is the better value [30].

The k-means clustering algorithm is an algorithm that finds k clusters of a dataset,
each cluster described by its centroid. However, the initial seed of k-means is randomly
selected, so the convergence speed of the algorithm is very closely related to the initial value.
Therefore, we adopt the k-means++ algorithm in a three-dimensional underwater network,
which can improve the selection of the initial value. For the 3D underwater context, we use
k-means++ with modifications. The silhouette coefficient is used to compute the value of k,
which is required by the method.

The proposed algorithm randomly selects the first centroid, and the subsequent
centroids are selected by calculating the distance from other nodes to the previous centroid.
Then, the node with the farther distance replaces the randomly selected centroid as the
new centroid. Then, the above process is repeated until all k centroids have been chosen.
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At last, the conventional k-means processes are used to assign each data point to the
closest centroid.

After clustering the sensor nodes, the selection of CH and PCH is performed. Similar
to initialization phase, the broadcast message is also sent to other nodes containing the
clustering information. This raises communication costs, but it can synchronize the state
of the network and avoid unnecessary packet transmission among nodes for dynamic
topologies by exchanging information.

When selecting CHs, the residual energy and location of the node are taken into
account. The nodes that are with more residuals and are closer to other nodes in the cluster
are more likely to be CHs. The probability for node i to be selected as CH is expressed as:

Pi = ρEi + (1− ρ)∑
j∈N

Lij (13)

where ρ is the coefficient and can be tuned for a specific scenario. Lij is the distance between
the current node i and other nodes in the cluster. Generally, there is one CH and the majority
are ONs for each cluster. The CH collects the sensed data and aggregates data from its
members, then the data will be forwarded to the sink through multi-hop communication.
Besides, in our proposed protocol, a PCH node is elected to alleviate the burden on the CHs,
wherein data packets can be forwarded by either CHs or PCHs. PCH can be considered as
a replication or backup for CH, which improves the high availability and avoids single-
point failure. Hence, the selection of PCH is almost similar to CH. When the CH crashes
and is not able to be connected any more, PCH will take the place of CH and become
the new CH. Meanwhile, the cluster is triggered to start a new round of CH elections.
After completing the clustering, sensor nodes broadcast messages indicating the cluster
information. Usually, the CH consumes more energy than other sensor nodes, resulting in
a shorter CH lifespan. To prolong the network lifetime, the proposed protocol relies on the
periodic reselection approach, where CHs and PCHs change periodically, namely, when the
remaining energy of CHs and PCHs becomes less than a certain threshold, reselection is
performed automatically based on the previously described factors. In SROA, we apply the
average energy of the cluster member nodes Ea as the threshold value Et. The procedure of
clustering is described in Algorithm 1.

(3) Relay set construction: At this stage, when a node ni receives data packet, it first
checks whether itself is a CH or PCH, if not, the packet will be forwarded to the CH in the
cluster. If it is true, to improve the packet delivery rate and reduce energy consumption, the
sender constructs the relay set Ri, which are in the transmission range of ni and calculates
the Q-value of them. If the nodes in Ri receive data packet, and all the candidate nodes
forward the reception without suppression, this will deplete the energy as well as occupy
the channel bandwidth. Therefore, the forwarding priority list should be determined and
packaged into packet header after constructing the Ri.

In SROA, the sender computes the Q-values of qualified neighbors through the re-
ceived packet header and local neighbor table. Afterwards, the Q-value-based waiting time
for candidate nodes, namely the forwarding priority, is computed. It is necessary to set
the waiting time of each node properly. If the waiting time is set too long, it will result in
long delay during transmission. Otherwise, too short a waiting time cannot suppress the
low-priority nodes and the packet has already been transmitted before the expiration of the
waiting time, leading to packet redundancy. As a result, the sender computes the waiting
time for each candidate node using Q-values, local neighbor table, and packet header. The
greater the Q-value, the higher the priority of that node, thus the node with the shorter
waiting time participating in the forwarding. Based on the calculated Q-value, the waiting
time is:

Ti = k·(1− Qi
Qmax

),
k = 2· R

va

(14)
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where parameter k is equal to the maximal delay, during which candidate nodes hear
the packet delivery from other high-priority nodes before forwarding. Taking the worst
condition into account, k is set to 2· R

va
, which is twice the propagation delay between the

two nodes. Qi is the Q-value of ni, while Qmax is the maximum Q-value among the nodes.
The waiting time T is zero when the Q-value of the candidate node is just the maximum.
As a result, the end-to-end delay can be reduced. Before data forwarding, the sender node
will wrap the collection of candidate forwarders and the calculated suppressing time into
the header.

Algorithm 1: The procedure of Clustering.

1. Procedure Clustering(all nodes)
2. Get all nodes N = {n1, . . . , nm} where m is the number of nodes;
3. Get all the locations of N;
4. //Calculate the optimal k
5. Calculate the silhouette coefficient for N;
6. k is the highest silhouette score;
7. Select centroid c1 randomly where c1 ∈ N;
8. //cluster the network, apply k-means++
9. For j = 1; j <= k; j++
10. For i = 1; i <= m; i++
11. Calculate distance between ni and previously ci
12. New centroid ci+1 ∈ N is selected with longer distance;
13. End for
14. End for
15. Assign ni ∈ N to the nearest cj ∈ C by k-means++;
16. //select CH and PCH for each cluster
17. For j = 1; j < k; j++
18. Calculate the average energy Ea for Clj;
19. For ni ∈ Clj and Ei > Ea

20. Select CH and PCH by distance and residual energy;
21. Update the cluster status;
22. End for
23. End Procedure

(4) Packet transmission: When a node receives the packet, it will first check the
package header. If the candidate set contains itself, it starts the waiting timer according
to the fields in packet header. Then, the data forwarding repeats the above steps until
the data packet is received by the sink node. Therefore, a complete routing path has been
built. Then, the successive packets from the same source node are sent directly along the
calculated routing path. When a transmission failure occurs, Q-Learning will run again
and converge to alternative routes. The routing procedure of SROA protocol is described in
Algorithm 2.

Algorithm 2: Routing Process.

1. Procedure routing(node ni)
2. Initialize V(s);
3. Get E

nij
res, P

nij

b , and locations of Neighbori;
4. If (ni ! = sink node)
5. If (ni is not a CH or PCH)
6. find the CH(head node) of ni;
7. transmit data packet to CH;
8. Return;
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Algorithm 2: Cont.

9. Else
10. For nij in Neighbori do
11. Compute direct reward rij;
12. Compute Q∗(si, ai);
13. Calculate waiting time Tij;
14. Start a timer with the waiting time Tij;
15. While current time < expired time
16. If the packet is already transmitted
17. Update local table and drop the packet;
18. End if
19. End while
20. Update the packet loss rate Pai

sisi ;
21. Update V(s) based on max Q∗(si, ai);
22. Data forwarding;
23. End for
24. End Procedure

3.4. Design of Reward Function

The reward function is a critical part of Q-Learning, so we go over the reward function
in depth. The SROA adopts three performance indicators in the reward function to assess
the action interacting with the environment, including remaining energy, network latency,
and link quality, to make the protocol more energy-efficient and reliable. The Q-value
calculated represents the quality of routing decisions. When taking action aj successfully in

the transmission, the reward is denoted by R
aj
sisj , which is defined as follows:

R
aj
sisj = −R0 − α1 ∗ [c(en) + α2 ∗ (c(delay)− c(pdr))]

where α1, α2 ∈ (0, 1)
(15)

The reward function takes constant cost, energy cost, delay cost, and link quality cost
into account. Due to the occupation of the channel bandwidth during communication, R0
represents the constant cost. Hence, the constant cost increase with the number of relay
hops. If the reward function only contains the constant cost, it will lead to selecting just
the shortest path. Nevertheless, the shortest path is not always the best path owing to the
imbalanced energy use and transmission reliability. As a result, additional factors, such as
remaining energy, network latency, and package delivery, must be addressed. In addition,
network latency and package delivery ratio are the indicators of transmission, so a link
sensitivity factor denoting α2 is introduced for balancing energy and to link the quality of
the path. When the link sensitivity factor is set to zero, the selected path takes only the
energy into account. As a result, the sensitivity factor in the formula is the weight assigned
to the link cost.

c(en) denotes the energy-related cost. When packet transmission is successful, it is
defined as:

c(en)= (1 − E
nj
res − Er

Eini
) + (1 − Ei

res − Es

Eini
) (16)

In Equation (16), Er and Es represent the energy consumption to receive and transmit
packets. The sensor nodes with higher residual energy have lower energy-related costs,
thereby balancing energy distribution and increasing network lifespan in UASNs.

c(delay) is a reflection of the congestion in the underwater sensor network. The nodes
with many packets in their buffers will have long network latency. It is defined as:

c(delay) = 1− 1

p
nj
b + 1

(17)
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where P
nj
b is the number of buffered packets of the neighboring node. With more packets in

a neighbor node’s buffer, the waiting time for the packet to be successfully forwarded from
that node will be longer, causing data packets to wait in the queue for a longer period of
time. As a result, c(delay) is comparatively greater.

The packet delivery-related cost, denoted by c(pdr), represents the transmission quality
in UASNs. The SROA calculates the PDR using the acoustic signal attenuation model,
which is defined in Section 2.2 and indicated as p(dj, m):

c(pdr) = p(dj, m) (18)

The packet delivery ratio is a crucial metric for assessing transmission reliability.
The node with the highest delivery ratio is thought to be more trustworthy in packet
advancement, hence it is more likely to be chosen as the forwarder.

Since the SROA mainly aims to improve transmission reliability and energy efficiency,
c(en), c(delay), and c(pdr) are in the range of (0, 1) by definition, which is enabled to balance
α1 and α2 in Equation (15) by further tuning the weights for various demands. They are,
by definition, in the range (0, 1), allowing us to balance α1 and α2 in Equation (15) by
fine-tuning the weights for various demands.

However, the failure of the transmission also occurs in the real environment. If the
packet retransmission approaches the limit and the receiver still does not receive the packet,
significant energy and time will be consumed. Retransmission of data packets results in
extra delay and energy consumption, raising the cost of unsuccessful transmission. The
failure reward function is described as:

R
aj
sisi = −R0 − α1 ∗ [c(en) + α2 ∗ c(delay)] (19)

where
α1, α2 ∈ (0, 1)

c(en)= ci(en) = 1− Ei
res−Es∗Nmax

Eini
c(delay) = 1− 1

p
nj
b +1

According to the definition of the reward function, the direct reward for successful
and failed transmissions is defined as follows:

ri(aj) = P
aj
sisj R

aj
sisj + P

aj
sisi R

aj
sisi (20)

In order to estimate the acoustic channel state and state transition probability, each
node records recent packet transmissions locally. The lost packets are indicated as λ and
n is the total number of packet transfers. Therefore, the loss rate P

aj
sisi and the successful

transmission rate P
aj
sisj are stated as follows:

P
aj
sisi =

λ
n

P
aj
sisj = 1− λ

n
(21)

Therefore, substituting P
aj
sisi and P

aj
sisj into the reward function, the reward function can

be updated:

Q(si, aj) = ri(aj) + γ((1− λ

n
)Q∗(sj) + (

λ

n
) ∗Q∗(si)) (22)

The Q-value is related to the actions taken in the underwater environment and infor-
mation exchange of the network. Initially, the Q-value of each node is set to zero, except the
sink node. When a node delivers a packet, it updates its Q-value based on the information
from the forwarder. In SROA, since the Q-value of sensor node is less than zero after packet
forwarding, the Q-value of sink node is fixed at zero to ensure that the protocol converges.
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4. Simulations and Analysis

In this section, our proposed protocol SROA is evaluated for the performance based on
Matlab R2021a and NS 3.26 [31] from three aspects. First, simulation settings are introduced
before evaluations. Afterwards, we assess the impact of various parameters on the SROA.
The performance of on-site architecture is also evaluated with the same protocols. Finally,
we evaluate the performance of SROA and compare it with the other three routing protocols
for different metrics.

4.1. Simulation Setting

Sensor nodes are randomly deployed in a 5000 m× 5000 m× 5000 m three-dimensional
space in our simulations. Any sensor node is the same in functional features, and each
node near to the seafloor can generate the data packets independently as a source node.
The sink node is deployed on the seabed, which is considered to be difficult to reposition
once deployed. For analysis, we select a source node from the seabed. The propagation loss
model for underwater acoustic channels is Thorp [32]. The acoustic transmission speed is
set at v0 = 1500 m/s, and the network size ranges between 100 and 500. Table 2 displays
the simulation parameters [9].

Table 2. Simulation settings.

Parameter Value

Network size 100 to 500
Transmission power 10 W

Receiving power 3 W
Transmission rate 1 kbps
Data packet size 50 Bytes

Simulation rounds 200
Communication range 1000 m, 1500 m

Idle power 30 mW
Initial energy 1000 J

To evaluate the SROA, we employ the Carrier Sense Multiple Access (CSMA) as the
underlying MAC protocol. Specifically, when the channel is not occupied, the forwarding
node is able to broadcast the data packet; otherwise, it backs off and discards the packet
after five times of backing off [22]. We mainly evaluate the SROA protocol in several
quantitative metrics and scenarios against the two different parameters: Network size and
transmission range. Network size is different for various demands and environments in
reality, hence the routing protocol is significant to have the ability which scales up the
network with stability. Hence, the test for network scalability, irrespective of variation in
the number of nodes, is essential. However, the transmission range also impacts the metrics
of the protocol. The larger the transmission range of the sensor nodes, the more energy is
needed for communicating. Based on this, two different transmission ranges are tested to
evaluate the effects on the performance of the network. Furthermore, the performance of
SROA is evaluated using the following metrics: Average End-to-End Delay indicates the
network latency, namely the average time consumption for forwarding a data packet to the
sink node, including the waiting time, packet propagation time, and processing time; the
Packet Delivery Ratio represents the ratio of delivered data packets; Energy Consumption
is defined as the total energy consumed by all of the nodes for transmission, which includes
the packet transmission and reception consumption [33]; Average Hop Count of Delivered
Packets means the average number of hops from the source to the destination on the
routing path.
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4.2. Numerical Results
4.2.1. Parameter Analysis

The simulation experiments of different coefficients are conducted in the network
with 300 nodes under different communication ranges of 1000 m and 1500 m. We evaluate
the performance metrics of residual energy variance and average end-to-end delay in the
network. The effect of α1 (total cost weight) and α2 (delay and link quality weight) on the
residual energy variance with two different CRs are shown in Figures 4 and 5, respectively.
The reward function is influenced by the coefficients, with α1 varying between 0.2 and 1.0
and α2 varying between 0.2 and 1.
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Figures 4 and 5 shows that the residual energy variance decreases while expanding the
CR from 1000 m to 1500 m. This is because the CR increasing makes fewer nodes participate
in data packet forwarding, resulting in less energy consumption. It is also evidently
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observed that the residual energy variance increases with the value of α2 increasing, because
link quality and end-to-end delay account for a greater portion in selecting forwarding
nodes. Similarly, taking merely the globally optimum path into account cannot assure the
uniform distribution of remaining energy. Therefore, a delay-limited routing approach
cannot provide uniform distributions of energy. Furthermore, the residual energy variance
diminishes as α1 grows. In Figure 5, for example, when α2 is 0.2 and communication range
is 1500 m, the residual energy variance for α1 = 0.8 is 40% smaller than at α1 = 0.2. The
reason is that energy has a stronger impact on the reward function, hence influencing the
routing decisions. It is apparent that the greater the value of α1, the more probable it is that
a node with more remaining energy will be selected as a forwarder. This is because the
energy of the sensor nodes is well-distributed and the network lifetime may be prolonged.

Correspondingly, Figures 6 and 7 depict the influence of α1 and α2 of SROA on
the average end-to-end delay in a 300 node network with CRs of 1000 m and 1500 m.
Comparing the two figures, we can find that the average end-to-end delay decreases with
the expanding of CR. The reason is that the greater coverage of transmission makes less
sensor nodes involved in the data forwarding, hence packets are routed by a shorter path
which reduces the average end-to-end delay. It can be witnessed that an increase of α2
promotes the protocol to choose the node that best balances the factors of residual energy
and link quality as the forwarder. As a result, the protocol can converge on the path with
the fewest hops, which not only improves energy efficiency but also minimizes end-to-end
delay. It is also shown from each individual figure that increasing α1 results in the larger
end-to-end delay when α2 is set. This is due to the even energy distribution, indicating that
the SROA cannot select the shortest routing path. Specifically, the CR is 1500 m in Figure 7.
When α2 is set to 0.8 and α1 is set to 0.2, the average delay is 6.61 s, which is approximately
24% less than that of α2 = 0.2 and α1 = 0.8.
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By comparing Figures 4–7, it can be seen that the increasing of the CR of sensor nodes
decreases both the residual energy variance and the average end-to-end delay. While
increasing α2 reduces the end-to-end latency, it also increases the residual energy variance,
resulting in a shorter network lifespan. As a result, it can be summarized that a greater
value of α1 makes the distributions of energy more uniform, nonetheless, this increases the
average network latency. A higher value of α2 indicates less end-to-end delay and greater
residual energy variation. The values of α1 and α2 are weighted according to the scenario,
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and different values are used to meet varied network needs. As a result, for the successive
assessments, α1 and α2 are set to 0.5.
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4.2.2. Architecture Analysis

To assess the performance of on-site architecture, we apply the architecture to QELAR
and GEDAR, respectively, comparing the metrics of end-to-end delay and energy consump-
tion. Figures 8 and 9 show the result of comparison on the total energy consumption and
average end-to-end delay for different architectures with the CR of 1000 m, varying network
size from 150 to 400. Clearly, it can be seen from the results that the performances of the
same protocols with on-site architecture are better than that of the original architecture in
terms of total energy consumption and average end-to-end delay.
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We can observe from Figure 8 that QELAR and GEDAR with the on-site architecture
consumes less energy than the original architecture, which reduces the total energy con-
sumption by 25%. One of the reasons is that the data center deployed near the data source
shortens the transmission distance thus reducing energy consumption. Besides, with the
same architecture, the energy consumption of the QL-based QELAR protocol is lower. Due
to its constant cost, it tends to choose the shortest path to forward data packets. In addition,
it can also be seen that the Q-Learning-based QELAR protocol consumes less energy with
the same architecture, because it usually chooses the more optimal path to forward data
packets in a global view.

The average end-to-end delay of the protocols with different architectures is shown in
Figure 9. Corresponding to Figure 8, the end-to-end delay with the on-site architecture is
significantly reduced. The reason is similar to Figure 8, with the on-site architecture, data
packets are forwarded with fewer hops and there are fewer nodes participating in the route,
thereby reducing the average end-to-end delay.

As a result of the on-site deployment, the protocols with new architecture show
apparent improvements in terms of total energy consumption and average end-to-end
delay. Furthermore, the Q-Learning-based protocols also outperform classical protocols.

4.2.3. Average End-to-End Delay

The average end-to-end delay for different protocols with the same CR of 1500 m is
shown in Figure 10. We can observe that, as the network size increases, the average end-to-
end delay decreases. In general, with the increasing of sensor nodes deployed underwater,
it means the deployment of the network is denser and all four protocols can route packets
along shorter paths from the source node to the sink node. Therefore, when the network
size is 500, the delay of the network is minimal. Furthermore, the SROA protocol appears
to have a lower average end-to-end delay than other protocols. The average delay of SROA
is 7.4 s when there are 200 nodes in the network and the CR is set to 1500 m, whereas
QELAR, GEDAR, and HHVBF are 7.88 s, 8.56 s, and 9.1 s, respectively. This is due to the
fact that SROA uses a Q-value-based waiting mechanism to coordinate relay nodes, thus
reducing retransmissions and collisions. Moreover, the routing paths to the sink node are
shorter because of the on-site architecture where the data center is deployed close to the
data source. The average delay of HHVBF is the highest among the four protocols. Owing
to the hidden terminal problem, the happening of collisions results in the increasing of
the average end-to-end delay. The average latency for GEDAR is the second as it utilizes
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opportunistic routing to enhance PDR but transferring void sensor nodes to other areas
still takes time, bringing about extra time consumption.
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4.2.4. Packet Delivery Rate

Figure 11 compares the packet delivery rate of SROA to that of QELAR, HHVBF,
and GEDAR. It can be observed that the PDR of all four protocols rises as the network
size increases. Since relay nodes have more available neighboring nodes for relaying data
packets, the packet delivery rate improves. We can also see that SROA has a greater PDR
than the other methods. For example, SROA’s PDR reaches 96.6% when the network size is
500, which is greater than that of GEDAR, QELAR, and HHVBF. One of the reasons is that
the reward function of the SROA protocol considers not only link quality while determining
routing decisions, but also related factors such as residual energy and end-to-end latency,
ensuring high PDR globally. However, grouping the sensor nodes into several clusters and
the replication mechanism of cluster head makes the transmission more reliable. Moreover,
based on the on-site architecture, the data packet travels fewer hops to the sink node,
improving the packet delivery ratio. For the QELAR, since the sender may choose a path
with fewer hops to improve the packet delivery rate, the PDR of it increases. As GEDAR
considers the expected packet advance, more than one node participates in the packet
forwarding. Therefore, in the figure, GEDAR’s PDR is substantially larger. The PDR of
HHVBF is the lowest, as it does not take the packet error rate into account, resulting in
unnecessary retransmissions and low PDR.

4.2.5. Energy Consumption

Energy is very precious and important in the underwater environment; each routing
protocol should consider the efficiency of energy consumption seriously. The comparison
of energy consumption with a network size ranging from 100 to 500 is shown in Figure 12.
From the figure, we can find that the total energy consumption of these protocols increases
as the network size grows. Generally, it also can be seen clearly that the energy consumed
by the SROA is less than other protocols. Specifically, when network size is 500, the SROA
consumes 23.8%, 32.1%, and 44.2% less energy than QELAR, GEDAR, and HHVBF. Since
the SROA is a cluster-based protocol, the energy distribution of nodes in each cluster is more
uniform which extends the network lifetime. Moreover, the SROA uses waiting mechanism
based on opportunistic routing to forward packets which reduces the retransmissions, thus
SROA consumes less energy in comparison with QELAR and GEDAR. Besides, among the
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four protocols, the energy consumption of HHVBF is the maximum and grows faster with
the increase of nodes. The HHVBF consumes more energy, because neighbors of the source
build their own routing pipes and more nodes participating in data forwarding, which
results in significant energy consumption.
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4.2.6. Average Hop Count

Figure 13 depicts the average hop count of packets delivered from the source to
the sink node. In some extreme cases, sensor nodes may be unable to entirely cover the
shortest routing path; consequently, the average hop count and packet delivery ratio must
be balanced. Figure 13 illustrates that, as the network size rises, so does the average
hop count, and the results are consistent with all four protocols. The reason for this is
that as node density increases, packets will be routed along optimum routing paths, thus
fewer nodes participating in routing. In particular, when the network scale is 400, the
average hop count is 4.23, whereas it is 4.95, 5.16, and 5.81 for QELAR, GEDAR, and
HHVBF, respectively. Among these protocols, the SROA and QELAR, which are machine-
learning-based protocols, takes less hop counts than others because they use the intelligent
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algorithms to choose the best forwarders. In addition, a global view of the network
architecture is enabled by the Q-Learning technique. This not only reduces the average
hop-count but also adapts to various network sizes. Furthermore, the SROA outperforms
the QELAR because the sink node is deployed close to the source node with the on-site
architecture, thus shortening the forwarding path. HHVBF is restricted to the sensor nodes
within the pipe radius, making it inflexible in terms of finding the routes with less hops to
the destination. For the GEDAR, it applies the greedy forwarding method for advancing
packets and does not take hop count into consideration, causing GEDAR to choose routing
pathways with larger hop counts than SROA.
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In UASNs, it is expensive to increase the number of nodes and this makes a new
deployment. Therefore, the scalability of network is very important. Considering the
above experiments, the performance metric of network scalability can also be observed.
Figures 8–13 demonstrate the comparison between SROA, QELAR, GEDAR and HHVBF
in terms of average end-to-end delay, PDR, energy consumption, and average hop count
with different scales of nodes varying from 100 to 500. The simulation results show that
the performance metrics of the proposed SROA are excellent among the four protocols
and remain stable irrespective of the increasing network size. By adding new nodes in the
network, the four evaluation indexes are improved.

5. Conclusions

In this paper, a scalable and energy-efficient routing protocol based on the on-site
architecture for UASN is proposed. The SROA groups the sensor nodes into clusters, which
enables better resource allocation and easily adapts to the changes in the network scale. By
deploying the data center close to the data source, the on-site architecture can shorten the
routing path and greatly reduce transmission delay and energy consumption. The SROA
follows a decentralized mechanism where the failure of a single node does not interrupt
the connectivity in the network. Moreover, a reward function for Q-Learning is applied for
routing decisions, which trades off multiple factors of the network. Considering both the
instant rewards and the discounted long-term rewards, SROA is more likely to select the
optimal candidate forwarders globally. Furthermore, in order to coordinate the forwarding
among the candidate nodes, the SROA designs the waiting mechanism, which is developed
from opportunistic routing. Different from the traditional OR, this mechanism picks a
group of qualified forwarders and sets a waiting time based on the computed Q-values
for each candidate node. The simulation results show that the on-site architecture enables
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QELAR and GEDAR with new architecture that outperforms traditional architecture in
terms of the energy consumption and end-to-end delay obviously. In addition, SROA
performs better than other routing protocols (QELAR, GEDAR, HHVBF) when considering
performance metrics, such as energy consumption, end-to-end delay, PDR and average hop
count of delivered packages. For future work, we will try to deploy the proposed SROA in
a real UWSN hardware platform since it is only evaluated in simulation software at current.
Additionally, a multi-sink and AUV-aided architecture will be considered to coordinate
packet transmission, aiming to improve the packet delivery ratio, avoid routing holes, and
reduce end-to-end delay.
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