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Featured Application: The proposed methodology creates LSTM-based carbonation models us-
ing the data from existing bridges. The proposed methodology and results can help bridge man-
agers to conduct preventive maintenance.

Abstract: Reinforced concrete slab (RCS) bridges deteriorate because of exposure to environmental
factors over time, resulting in reduced durability. Particularly, the carbonation of RCS bridges
corrodes the rebars and reduces the strength. However, carbonation models derived from short-term
experiments exhibit low reliability with respect to existing bridges. Therefore, a long short-term
memory (LSTM)-based methodology was developed in this study for generating carbonation models
using existing bridge inspection reports. The proposed methodology trains the LSTM model by
combining data extracted from reports and local environmental data. The learning process uses
padding and masking methods to consider the history of environmental data. A case study was
performed to validate the proposed method in three different regions of Korea. The results verified
that the coefficient of determination of the proposed method was higher than those of the existing
carbonation models and other regression analyses. Therefore, the developed methodology can be
used for predicting regional carbonation models using the data from existing bridges.

Keywords: concrete carbonation; long short-term memory (LSTM); reinforced concrete slab (RCS)
bridge; bridge deterioration; carbonation model

1. Introduction

Bridge deterioration is characterized by a decline in durability, structural safety, and
function over time, which can lead to serious safety issues. Particularly, the material deterio-
ration of reinforced concrete reduces its durability owing to the infiltration of environmental
substances, such as carbon dioxide and seawater. Carbon dioxide is an aggressive sub-
stance that penetrates the pores inside the concrete and reacts with the hydrated calcium
compound to modify it. This phenomenon is referred to as concrete carbonation and is
an indicator for determining the lifespan of structures. Carbonation activates the penetra-
tion of other chlorides and the chemical corrosion of concrete rebars. Chemical corrosion
negatively affects the stability of bridges, which can cause accidents. Most maintenance
methods aim to observe bridge deterioration and maintain minimum performance for acci-
dent prevention. However, these maintenance methods require a significant budget as the
repairs occur after deterioration. Therefore, several researchers have proposed preventative
maintenance methods, wherein the deterioration and performance degradation of bridges
are predicted in advance to ensure effective economic management.

Several studies have calculated the carbonation of bridge structures [1,2]. Typically,
carbonation occurs slowly and is analyzed using accelerated testing. These studies aimed
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to regress the short-term carbonation of concrete within one year. The short-term car-
bonation model is most affected by the mixing ratio and curing time of the concrete [3].
However, field investigations of the natural environment remain scarce despite numerous
experimental and theoretical studies. In general, three limitations are observed in applying
the carbonation model to actual bridges. First, the actual reinforced concrete bridge over
10 years is significantly affected by environmental variables from a long-term perspective.
However, the experimental environment estimates the weights for the environmental pa-
rameters because it exposes the concrete only for a short period. The low weighting of
environmental variables can deteriorate the performance of long-term carbonation models.
Second, most of the design data for bridges older than 30 years have been lost. Moreover,
the mixing and curing periods of the concrete set in the design stage change owing to
errors during the actual construction. These problems prevent the calculation of constants
of several developed carbonation models, thereby reducing their usefulness. Third, envi-
ronmental conditions change because of continuous changes in climate. The increase in the
average temperature caused by global warming and the increasing trend of atmospheric
CO2 concentration (278 to 400 ppm during the industrial period [4]) may accelerate the
carbonation of cement and concrete [5,6]. Owing to these limitations, establishing a mathe-
matical calculation model to accurately reflect the various factors of complex carbonation is
difficult. Therefore, a novel approach that differs from the existing theories is required.

Artificial neural network (ANN) algorithms have been applied to solve several com-
plex problems in concrete technology [7–13], and ANN-based models are widely used for
estimating specific carbonation depths [14–19]. Although most studies consider certain
influencing parameters, environmental conditions are not considered because of continuous
changes in climate [20,21]. ANN models including climate change will produce highly
accurate carbonation models, but further studies are needed [22,23]. Therefore, this study
aims to develop an ANN-based methodology to predict the long-term carbonation model
of field bridges considering climate change. The generated carbonation model considers
climate change using data extracted from inspection reports. The dataset was constructed
from the carbonation data of slabs, girders, piers, and abutments, which are major members
of reinforced concrete slab (RCS) bridges in Korea. Additionally, environmental data were
collected based on the different regions in Korea. The carbonation algorithm obtained the
environmental data from the year of construction to the time of measurement as time series
data; the analysis was performed using a long short-term memory (LSTM) model. In other
words, the LSTM model was trained using a carbonation algorithm developed based on the
environmental data from construction to inspection. During the analysis, the timestep non-
uniformity problem was solved according to the usage period via padding and masking
methods. The results verified that the proposed methodology exhibited higher accuracy
than other carbonation models. The results of this study contribute to the development of
an ANN-based carbonation model to consider long-term carbonation.

2. Literature Review
2.1. Concrete Carbonation Model

Concrete carbonation is a phenomenon where calcium carbonate (CaCO3) is produced
by the reaction of calcium hydroxide Ca(OH)2 and C-S-H in a hydrated cement paste. This
action gradually lowers the concrete pH from 12 to 9. Although carbonation can increase
the strength of concrete, the properties of steel change when carbonation reaches the steel
reinforcement. A corroded rebar has a larger volume than steel, which leads to concrete
damage, spalling, and cracking [24]. Despite maintaining a certain covering depth of rebars
to prevent this deterioration, carbonation continues over time. Several studies have focused
on short-term carbonation (within a year) to predict carbonation rates. Until 1980, the
carbonation depth was predicted using a linear regression method based on compounding
variables, such as material ratio, binder type, and certain environmental variables [25,26].
Subsequent studies have proposed mathematical and analytical models for predicting the
carbonation depth of concrete [27]. Most studies are based on the theory of diffusion based
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on Fick’s second law, which states that the depth of concrete carbonization is proportional
to the square root of time, as indicated in Equation (1) [28–30].

Ct = k
√

t, (1)

where Ct denotes the carbonation depth, k indicates the coefficient of carbonation rate, and
t represents the exposure time. Here, k is the most important coefficient that determines
the carbonation rate. Khunthongkeaw et al. [29] expressed the coefficient as an equation
for carbon dioxide concentration and relative humidity. Niu et al. [31] suggested an equa-
tion that included temperature and concrete quality. Chang and Chen [32] proposed a
carbonation model including the cement type, hydration degree, water–cement ratio, and
diffusivity of CO2, considering reactivity as a parameter. This coefficient is primarily influ-
enced by various factors, such as cement or binder, water–binder ratio, curing time, CO2
concentration, and relative humidity. Because these equations are based on laboratory
conditions, they exhibit a relatively high error in field conditions owing to changes in the
influencing factors. Sisomphon and Franke [33], Dhir et al. [34], and Roy et al. [35] proposed
equations to modify the exponent of t according to environmental changes. Furthermore,
a fib model [36,37] has previously been applied to bridge abutment and pier carbonation
data using an equation based on a robust prediction model.

2.2. LSTM

Traditional neural networks exhibit certain difficulties in handling continuous data
because they operate only on input data. A recurrent neural network (RNN) is a sequence
model of an ANN, where a cyclic connection exists between the weight units [38]. This
cyclic structure is an algorithm that can perform calculations by combining the previous
information with the current information. RNN is a multi-perceptron model, with a three-
level structure comprising input, hidden, and output layers. However, RNNs exhibit
limitations in learning the long-term dependencies of time series data. For instance, the
gradient value decreases slightly with every occasion of passing through the neural network
with the increase in length. This phenomenon causes problems of vanishing or exploding
gradient, wherein the gradient becomes zero and disappears before backpropagation or the
gradient becomes excessively large, respectively. Therefore, advanced RNN technology
was developed to compensate for these limitations.

LSTM [39] is a widely adopted RNN for training time series data by adjusting the
information flow in the sequence data to capture complex temporal correlations. This
method was proposed to solve the gradient problem of RNNs. Figure 1 depicts the
structure of LSTM, where σ denotes the sigmoid activation function and tanh indicates the
hyperbolic tangent activation function. LSTM comprises an input gate it, forget gate ft,
updating cell state, and output gate Ot. The input gate memorizes the current information,
whereas the forget gate erases the memory. The cell state gt, referred to as the long-term
state, computes long-term memory. The hidden unit ht computes short-term memory. The
equations for the LSTM structure can be expressed as follows:

it = σ(Wxixt + Whiht−1 + bi), (2)

gt = tanh
(
Wxgxt + Whght−1 + bg

)
, (3)

ft = σ
(
Wxfxt + Whfht−1 + bf

)
, (4)

Ot = σ(WxOxt + WhOht−1 + bO), (5)

Ct = ft � Ct−1 + it � gt, (6)

ht = Ot � tanh(Ct), (7)

where � denotes the Hadamard product; bi, bO, bf, and bg indicate the biases at each
step; Wxi, WxO, Wxf, and Wxg represent the weights for xt; and Whi, WhO, Whf, and Whg
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denote the weights for ht−1 at each step. The LSTM overcomes the limitations of long-term
memory using the cell state in the traditional RNN method.
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Figure 1. Conceptual structure of the long short-term memory (LSTM).

2.3. Padding and Masking Methods

Time series data have a multidimensional tensor shape that changes with time and
are analyzed using specialized methods, including RNN. The preprocessing required for
the RNN method involves transforming the data into a specified tensor form. Most RNN
methods accept data as three-dimensional tensors of batch size, timestep, and feature
dimension. In other words, all data in one mini batch must contain the same number
of timesteps on the time axis and the same dimension. However, testbeds in most fields
include different timesteps. For instance, in the field of natural language processing, the
word count varies in different sentences. This discrepancy is compensated using several
methods. Padding is one such method, wherein a dummy is attached to the dataset to fit
the longest step length. Figure 2 illustrates a conceptual diagram of zero-padding. The
padding method fills the amount corresponding to the insufficient step using a dummy.
This method requires additional work because the dataset must be transformed during the
padding process.
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Another method is masking, which excludes the padded dummy in the model training
process. Figure 3 depicts a conceptual diagram of the masking method. The mask value
represents real and dummy data. The masking method sets the learning weight of the
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dummy data to zero during training. However, padding is generally set to zero as well,
which poses a potential problem. When the index of the training data is expressed as zero,
distinguishing between the dummy and real data becomes difficult. This is referred to as
the zero-indexing problem, which can be avoided by setting a special symbol, which must
be a number that does not overlap with input data.
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2.4. Evaluation Index of the Carbonation Models

The performance of the carbonation model is calculated by comparing the predicted
results and measured data [40]. This study used the coefficient of determination (R2) and
root mean square error (RMSE) to evaluate the model. The coefficient of determination and
RMSE are calculated as

R2 =

 ∑N
i=1(yi − yi)

(
ti − ti

)√
∑N

i=1(yi − yi)
2 ∑N

i=1
(
ti − ti

)2

2

(8)

RMSE =

√
1
N ∑N

i=1(ti − yi)
2, (9)

where ti and yi denote the i-th measured data and predicted results. ti and yi denote the
average of measured data and predicted results, and N is number of samples.

3. Data Collection for the Case Study of Natural Carbonation
3.1. Data Description of Inspection Reports

The natural carbonation data were collected from bridge inspection reports of three
regions in Korea. Typically, bridge managers conduct periodic inspections and report the
test results. In this study, 242 inspection reports of RCS structures were collected from
three regions. Table 1 lists the reports collected from each region. Region A was a relatively
densely populated downtown area, Region B was a low-density coastal area, and Region C
was an island.

Table 1. Characteristics and number of inspection reports collected from different areas.

Region Number of Reports Characteristics Area (km2)

Region A 137 High-densely
downtown area 600

Region B 22 Low-density
coastal area 1850

Region C 166 Low-density
island 10,550
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The data reported for the carbonation analysis were extracted from the inspection and
diagnosis reports. Each inspection report contained carbonation information; however, its
format differed depending on the inspection company. In this study, carbonation data were
manually extracted from inspection reports. A total of 1379 carbonation data points were
extracted, which included 588 superstructures and 791 substructures. Table 2 lists the addi-
tional data collected with respect to carbonation. The construction year, inspection year, and
concrete strength data directly associated with carbonation were extracted. Furthermore,
we collected information related to the bridge, such as bridge length, maximum span length,
width, and live load, to estimate bridge constructability. Although these variables were not
theoretical factors involved in carbonation, they indirectly predicted the quality at the time
of construction [36,41–43]. Figure 4 illustrates the carbonation depth of bridges with respect
to service life. As indicated in the figure, the dispersion of the carbonation depth for service
life was high, contrary to the theoretical equation. This was attributed to field bridges being
exposed to conditions different from those of the laboratory environment. For instance,
differences were observed in environmental conditions according to region, the quality of
concrete based on the completed environment, and the history of environmental conditions
as per the year of construction.
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Table 2. Data extracted from the inspection reports.

Classification Factors Average Min Max

Carbonation-related factors

Service life 24.79 5 47

Year of construction 1989.65 1969 2010

Concrete strength 23.42 18 35

Indirect factors
Length 83.19 5.2 261

Maximum span length 17.70 5 55



Appl. Sci. 2022, 12, 12470 7 of 15

Table 2. Cont.

Classification Factors Average Min Max

Indirect factors

Width 18.87 4 61.48

Height 6.67 2 29.5

Loading condition for design 22.08 13.5 24

Element position
(superstructure and

substructure)
- 0

(superstructure)
1

(substructure)

Carbonation Carbonation depth 10.510 2 40

3.2. Data Description of Environmental Conditions

Regional environmental data were collected to analyze the environmental impacts of
carbonation. The carbonation of concrete was affected by the mixing ratio, moisture ratio,
curing period, and long-term environmental changes. In this study, regional environmental
data were collected considering the long-term changes in carbonation. The environmental
data were extracted from the national meteorological database of Korea [44]. The collected
environmental data were organized with respect to year and region. The data were col-
lected from 1940 to 2021, and 492 data points were collected for each region. Table 3 and
Figure 5 present the environmental conditions data for each region. The collected envi-
ronmental data comprised the annual average temperature, daily temperature difference,
precipitation, relative humidity, carbon dioxide, and number of snowy days. The average
temperature, daily temperature difference, precipitation, humidity, and carbon dioxide
directly influence carbonation. The number of snowy days was included because chloride
penetration by deicing agents is known to accelerate carbonation. In Korea, the carbon
dioxide concentration is used as a single carbon dioxide concentration index.

Table 3. Environmental conditions data for each region.

Classification Factors Region Average Min Max

Temperature (◦C)

Average temperature

A 12.1 9.6 13.8

B 13.6 12.2 14.8

C 15.5 13.9 17.5

Daily temperature difference

A 9.0 7.8 11.4

B 17.5 12.8 20.5

C 3.4 2.9 4

Humidity Relative humidity

A 66.4 56.6 73.6

B 66.8 61 72

C 71.7 61.8 79.8

Carbon dioxide Carbon dioxide concentration

A

327.5 233.5 421.4B

C

Precipitation Precipitation

A 1344.9 623.5 2355.5

B 1431.7 819.3 2195.5

C 1465.9 773.3 2526

Chloride penetration Number of snowy days

A 27.1 3 50

B 6.6 0 21

C 22.0 5 44
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4. LSTM-Based Methodology for Generating the Carbonation Model

Figure 6 depicts the methodology developed for generating a carbonation model
considering three environmental conditions. The methodology involved data collection,
preprocessing, input data construction, learning, and validation phases. Initially, in the
data collection phase, the data necessary for LSTM training were collected from the local
environmental database and inspection reports. The number of features for the input data
was 15, with 9 and 6 features extracted from the inspection and environmental data points,
respectively, by year. The preprocessing phase excluded outlier data and normalized the
data. To compensate for the measurement errors caused by inspectors, normalization was
conducted using a robust method against outliers; the robustness was ensured because
the transformation occurred such that the median was 0 and the interquartile difference
range was 1.
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The input data construction phase builds an input dataset to consider historical
environmental data. The goal of this stage is to build time series data of environmental data
according to years of service. The timestep extended up to the service life of the bridge. For
instance, a bridge with a service life of 30 years was created with an input size of (15, 30),
with 15 features and 30 timesteps. However, because the service life for each dataset was
different, the size of the input dataset differed for each bridge. The difference in the input
dataset hindered the learning of artificial intelligence, including the LSTM. In this study, a
padding method was applied to correct the different timesteps according to the service life
of the bridge. The timestep for the padding method was set to 100 years. For instance, a
bridge with a service life of 30 years had 30 timesteps and 70 dummy timesteps.

Figure 7 illustrates the LSTM model created to predict carbonation based on the
aforementioned dataset. The TensorFlow library of Python was used for model building.
The LSTM layer was primarily used as the learning model; Table 4 lists all the layers of
the model. The masking layer set the weights to one and zero for the existing and padded
data, respectively. The weight was set to ensure that the padded dummy data in the input
data were not learned. Three LSTM layers were used, and the number of LSTM input
data nodes was set to 30. The activation functions of each layer were tanh, rectified linear
activation unit (ReLU), and tanh. Additionally, a dropout layer of 0.5 was added to each
layer to prevent overfitting. The total number of parameters in the model was 20,071.
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Table 4. Long short-term memory (LSTM) model layer for the carbonation model.

Number Layer Name Hidden Unit Activation Function Number of Parameters

1 LSTM 30 tanh 5400

- Dropout - -

2 LSTM 30 ReLU 7320

- Dropout - -

3 LSTM 30 tanh 7320

- Dropout - -

4 Dense 1 Linear 31

In the learning phase, the training and validation datasets were generated by dividing
the dataset. The LSTM model was trained as a carbonation model for the training dataset.
The padded dummy timesteps used a masking method to ensure that the training weight
was zero. This method reduced the training time by excluding dummy data and improved
the reliability of the model. Finally, the trained model verified the LSTM-based carbonation
model in the validation phase using the validation dataset.

5. Experimental Results
5.1. Experimental Results of the Case Study

The carbonation estimation model was trained using the input data. The model was
then verified by maintaining the training and validation data ratio as 80:20. We used the
random extraction method and the Adam learning method; the number of iterations was
set to 100. The coefficient of determination and RMSE were selected as the performance
indicators of the carbonation model. Typically, the coefficient of determination denotes
the proportion of variance of the response variable, which can be explained by the applied
model. In general, a coefficient of determination greater than 0.5 implies that the predictor
variable can statistically predict the response variables. Table 5 and Figure 8 present the
training and validation results. The learning time was 556.20 s. The hardware specifications
were Intel i7-7700K CPU 4.20GHz and NVIDIA GeForce GTX 960. The coefficient of deter-
mination of the training data and the RMSE were 0.638 and 4.572, respectively. Conversely,
the coefficient of determination of the verification data was 0.504, and the RMSE was
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5.057. Thus, the coefficients of determination for both the training and validation datasets
exceeded 0.5.

Table 5. Performance indicators of the carbonation model.

Performance Indicator Value

Training dataset R2 0.638

Training dataset RMSE 4.572

Validation dataset R2 0.504

Validation dataset RMSE 5.057
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The cross-validation was conducted to check for overfitting of the proposed model.
Cross-validation verifies whether a particular dataset is overfitted when the dataset has a
small size. The k-fold method was used for cross-validation. The k-fold cross-validation
divided the training dataset into four folds, and a total of five folds were included in
the validation dataset. The distribution method was randomly selected. Figure 9 shows
the results of the cross-validation. The average of the cross-validation result was 0.5028,
which was slightly different from the first experimental result. This result verified that the
experimental results were not overfitting for a specific dataset.
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5.2. Comparison of the Proposed Methodology with Other Analysis Methods

The proposed method was compared with the existing equation-based carbonation
model, wherein the model equation was developed using the same dataset as the carbona-
tion coefficient according to Equation (1). Although previous studies have calculated the
coefficient, the coefficient calculated in this study was optimized for the data to obtain the
highest possible performance index. Because each region exhibited different environmental
conditions, carbonation equations and the performance indicators for the three regions were
generated separately. Table 6 summarizes the test results. The coefficients of determination
of the equation-based carbonation model were 0.035, 0.129, and 0.016 for Regions A, B, and
C, respectively; conversely, the coefficients of determination of the proposed carbonation
model were 0.426, 0.542, and 0.677 for Regions A, B, and C, respectively. Therefore, the
proposed model exhibited a higher performance index than that of the equation-based
carbonation model.

Table 6. LSTM model layer for the carbonation model.

Region Methodology R2 RMSE

A
Proposed model 0.426 4.970

Fick’s second law equation 0.035 6.411

B
Proposed model 0.542 5.556

Fick’s second law equation 0.129 7.377

C
Proposed model 0.677 5.132

Fick’s second law equation 0.016 8.793

The proposed method was compared with other regression analysis methods, includ-
ing linear regression, regression trees, support vector machines, and Gaussian process
regression. All regression analysis methods used the same training and validation datasets.
Table 7 summarizes the performance results of the different regression analysis methods.
The method with the highest coefficient of determination (0.4310) among the regression
analysis methods was the rational quadratic with Gaussian process regression. The pro-
posed carbonation model exhibited a coefficient of determination that was 16.8% higher
than that of the Gaussian process regression.

Table 7. Carbonation model prediction results of other regression methods.

Regression Analysis Method
Validation Dataset

R2 RMSE

Linear regression

Linear 0.1322 7.260

Interaction linear 0.2203 6.898

Robust linear 0.1302 7.373

Stepwise linear 0.2102 6.928

Tree

Complex tree 0.3877 6.157

Medium tree 0.3367 6.363

Simple tree 0.2161 6.932

Support vector machine

Linear 0.1259 7.537

Quadratic 0.2457 6.868

Cubic 0.2229 7.182

Fine Gaussian 0.3756 6.220
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Table 7. Cont.

Regression Analysis Method
Validation Dataset

R2 RMSE

Gaussian process regression

Squared exponential 0.4220 5.964

Matern 5/2 0.4235 5.955

Rational quadratic 0.4310 5.910

6. Conclusions

Preventive maintenance of RCS bridges provides economic benefits by predicting
bridge deterioration and enabling adequate performance. However, the existing carbona-
tion models exhibit low reliability in the case of bridges exposed to varying environmental
conditions as the models have been determined based on short-term period laboratory
experiments. Therefore, we developed a methodology for predicting a carbonation model
based on the LSTM model for RCS bridges exposed to natural environmental conditions,
considering the data collected over a certain period. The proposed methodology designed
an LSTM model to reflect the history of regional environmental conditions based on car-
bonation data. The training data for the experiment were extracted from inspection reports
of bridges in Korea, and the data were divided according to region. The proposed method-
ology was verified by comparing it with other methodologies, such as the equation-based
carbonation model and several regression analysis methods. The coefficient of determina-
tion of the result was 0.504, which was 16.8% higher than those of other regression analysis
results. The average coefficient of determination of the regression model based on Fick’s sec-
ond law equation was 0.06. The analysis results confirmed that the developed methodology
can produce a better carbonation model than the equation-based carbonation model for the
field bridges, provided sufficient data are available. Moreover, the obtained experimental
results of the carbonation model were better than those reported in previous studies, thus
emphasizing the need to consider long-term environmental conditions. This methodology
contributes to carbonation models of field bridges adapting to environmental changes.

The proposed methodology analyzes carbonation based on field bridge inspection
and climate change data. The coefficient of determination of the result was lower than that
observed in the analysis performed using experimental data. This was because different
managers used different equipment to measure the data during the nationwide inspections;
therefore, measurement equipment and human errors were included in the inspection
reports. This error caused excessive abnormalities in the collected data, which reduced
the data quality and predictive performance. Additionally, the initial design mixing ratio
considered in previous studies was a crucial factor affecting carbonation. However, in this
study, only the information from the inspection and diagnosis reports was used for practical
field applications. In the future, better results can be obtained by considering the mixing
ratio during the analysis. The limitation of this study is that LSTM models can derive
results that are different from scientific facts based on incomplete data. These limitations
will reduce the generality and reliability of the proposed model. Therefore, future research
needs a methodology to create a carbonation model by designing an artificial intelligence
model based on scientific knowledge. Another limitation of this study is that the data are
collected only from inspection reports. The collected data did not include concrete design
information related to carbonation. Further research that builds a model including design
information of concrete will have higher reliability.
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