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The use of polysaccharides in many aspects of life dates back to the ancient era. Since
then, humankind has used polysaccharide products and raw materials for food, cosmetic,
medicinal and construction purposes.

The growing cost of petroleum and the prospect of a shortage of its natural deposits
has prompted the search for alternative sources of energy and industrial raw materials.
Polysaccharides are a common, cheap, sustainable and renewable group of organic com-
pounds, and are considered attractive raw materials that provide access to several novel
biodegradable materials for use in the chemical, food and pharmaceutical industries. Nat-
ural polysaccharides have attracted increasing interest due to their potential application
across many fields [1].

Regarding their chemical structure, polysaccharides can easily be modified using
physical, physicochemical, chemical and enzymatic methods. Numerous studies have
confirmed the bioactivity of polysaccharides, which makes them applicable to clinical
practice, nutrition and dietetics [2]. Depending on their origin, polysaccharides can ex-
hibit antioxidative, immunomodulating, anti-inflammatory, antiviral (e.g., against HIV),
antimutagenic, cancerostatic or anticlotting properties [3–5].

Polysaccharides have a wide range of key characteristics essential for their practical
use; for instance, they have low, medium and high molecular weights; variable poly-
dispersity; the ability to form linear and branched macrostructures; monofunctionality
(compounds bearing solely hydroxyl groups) and polyfunctionality (compounds with
hydroxyl, carboxylic and/or amino groups); a high degree of chirality; either low or high
aqueous solubility; little-to-no toxicity; and immunogenicity. Thanks to these properties,
polysaccharides are widely applied in nanotechnology.

Recently, the applicability of various polysaccharides in the synthesis of inorganic
nanoparticles was recognized [6–8]. Polysaccharides act as reducers and stabilizers—or
matrices. Such matrices bring about the formation of nanoparticles of uniform size, thus
satisfying the requirements for their practical applications [9]. Nanoparticles immobilized
within such matrices exhibit interesting properties such as a demand for overall function-
ality, barrier properties and transparency. Nanocomposites with such nanoparticles are
biodegradable and environmentally benign. Thus, they have numerous potential applica-
tions in prophylaxis, therapy and agricultural production [10]. The following polysaccha-
rides are suitable for developing nanoparticles: starch, cellulose, alginates, pectins, xanthan
gum, cyclodextrins, chitosan [11], heparin [12] and hyaluronic acid [13].

Chemical modifications of polysaccharides involve acid- and base-catalyzed depoly-
merization, oxidation, esterification, etherification and grafting. Such modifications can
convert polysaccharides from hydrophilic into hydrophobic species [14]. Supplying polysac-
charides with various functional groups through sulfation, alkylation, carboxymethylation,
phosphorylation, selenation, acylation, and other processes enables control of polysaccha-
ride bioactivity.
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Physical methods include: heating [15,16], freezing [17], treating with a high pressure,
sonication, treating with glow plasma [18] and electromagnetic radiation of different range
of wavelengths (infrared, microwaves, visible, ultraviolet and ionizing radiation) [19,20].
Physical modifications are usually simple, cheap and safe as they do not use chemicals,
enzymes or microorganisms. They are used chiefly to reduce molecular weight and viscosity
and to improve the solubility of polysaccharides.

Biological modifications of polysaccharides mainly involve their enzymatic degrada-
tion. They are advantageous for their high specificity and yield with minimal side effects.
Some genetic modifications for breeding plants containing polysaccharides of tailored
structures have recently been developed; for instance, either hylon or waxy starches are
available from genetically modified corn.

Modified polysaccharides are manufactured to satisfy the industrial demands of
the food, pharmaceutical, cosmetic, pulp, textile, metallurgical and drilling industries.
Among commercially available natural polysaccharides starch, cellulose and pectins are
the most common; however, easy access to other polysaccharides such as carrageenans,
xanthan gum, alginates could open up many more potential applications. [21]. Considerable
attention is paid to eliminating traditional processes of manufacturing and using natural
polysaccharides in favor of modern solutions to satisfy ecological and consumer demands.

The purpose of this Special Issue was to gather and present papers dedicated to the
formation, isolation and applications of polysaccharides in various branches of science and
technology. A total of 16 papers were published, including four review articles on new
chitosan derivatives and their biological application [22], the characterization of pectin [23],
and in particular, the influence of its extraction method on functional properties. It was
shown that the functional properties of pectin are influenced by the source, methods and
conditions of extraction. Górska et al. [24], in their review article, discussed the methods
of obtaining and determining the structure and biological properties of polysaccharides
in combination with selenium. Seleno-derivatives of polysaccharides have found wide
application due to their anti-cancer, immune-enhancing, antioxidant, anti-diabetic, anti-
inflammatory, hepatoprotective and neuroprotective properties. Yu et al. [25] discussed a
“Comparison of Analytical Methods for Determining Methylesterification and Acetylation
of Pectin” via titration, FT-IR and HPLC. Ciesielska et al. [26] presented a biomedical appli-
cation of cyclodextrins cross-linked with carboxylic acid anhydrides. Cyclodextrin-based
nanosponges became cross-linked via pyromellitic dianhydride due to biocompatibility,
the improved solubility of lipophilic compounds, increased stability, controlled release of
the active substance and reduced toxicity, and can be used in biomedicine. In the following
articles, various methods of isolating polysaccharides were presented, their properties were
investigated and potential applications discussed.

Poerio et al. [27] compared the physicochemical properties of chitin extracted from
Cicada orni sloughs harvested in three different years in order to assess the stability of the
source and the repeatability of the extraction process. In the next study [28], the chemical
properties of a purified ginseng polysaccharide fraction and an assessment of its immune-
enhancing activity using RAW264.7 macrophages were analyzed. It has been shown that
the obtained polysaccharides can help to maintain homeostasis during viral and bacterial
infections. In another paper [29], it was discovered that the polysaccharide fraction isolated
from water extracts of Korean red ginseng may enhance the innate immune response
and cause the phosphorylation of intermediates of intercellular signaling pathways in the
RAW264.7 cell line. Milicaj at al. [30] increased the efficiency of the ADP-Heptose and Kdo2-
Lipid extraction processes by optimizing their extraction protocols. Liang et al. [31] isolated
and identified two polysaccharides from Flammulina velutipes. Khairuddin et al. [32] showed
that Caulerpa lentillifera extract can be used as a dietary supplement and an alternative
method of treating diabetes.

Pater et al. [33] investigated the effect of low-temperature plasma on the activity of
dry yeast in the malting process, and on improving the reserve level of polysaccharide
glycogen. Markou et al. [34] showed that β-glucans are of particular interest as biologically
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active compounds, and polysaccharides from Arthrospira may be a potential ingredient for
the development of new functional foods.

Subsequent works discuss the possibility of using polysaccharide nanostructures or
polysaccharides for the synthesis of nanoparticles. Czakaj et al. [35] demonstrated that
carboxylated cellulose nanocrystals enhance foamability and foam stability when mixed
with the cationic surfactant ethyl lauroyl arginate. Rutkowski et al. [36] described the prepa-
ration of silver nanoparticles in a polysaccharide carrier, studied the inhibitory effect of the
obtained materials on the development of microbial infection, and evaluated their influence
on the germination degree of Tomato (Solanum lycopersicum) seeds in in vitro plant cultures.
Nowak et al. [37] present a novel, environmentally friendly method for the preparation of
sodium alginate/nanosilver/graphene oxide and sodium alginate/nanogold/graphene
oxide nanocomposites and their characteristics. Their bacteriostatic properties were
also tested.

Although submissions for this Special Issue have been closed, due to high interest in
the subject matter, a second part has been launched.
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