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Abstract: With the development of 5G and artificial intelligence, the security of Cloud-Edge-End
Collaboration (CEEC) networks becomes an increasingly prominent issue due to the complexity of
the environment, real-time variability and diversity of edge devices in CEEC networks. In this paper,
we design a lightweight fuzzy collaborative trust evaluation model (LFCTEM) for edge devices,
and calculate the trust values of edge devices by fuzzifying trust factors. To alleviate the selfish
behavior of edge devices, this paper introduces an incentive mechanism in the trust evaluation model,
and achieves a long-term incentive effect by designing an incentive negative decay mechanism,
which enhances the initiative of collaboration and improves the interference resistance of CEEC
networks. We verify the performance of LFCTEM through simulation experiments. Compared
with other methods, our model enhances the detection rate of malicious edge devices by 19.11%,
which improves the reliability of the CEEC trust environment. Meanwhile, our model reduces
the error detection rate of edge devices by 16.20%, thus alleviating error reporting of the CEEC
trust environment.

Keywords: edge computing; Cloud-Edge-End Collaboration; trust evaluation; fuzzy logic; incentive
mechanism

1. Introduction

With the development of 5G and artificial intelligence, data generation is exploding,
and the total amount of global data will grow to 175 ZB by 2025 [1]. More than 49% of
these data will be stored in public cloud environments. These put forward extremely high
requirements on network delay, data security and controllability [2]. Due to the huge
amount of data contributed by massive IoT devices, traditional cloud processing produces
high end-to-end delays and brings huge loads to the transmission communication network.
In order to effectively meet the new requirements of low delay, privacy and energy saving,
edge computing was born [3,4]. However, the limited computing power of edge end cannot
fully meet the increasing demand of edge devices. Edge computing cannot replace cloud
computing, but can act as a supplement to cloud computing together with edge devices,
presenting an architecture form of Cloud-Edge-End Collaboration, as shown in Figure 1.
However, the architecture of CEEC also has some security challenges. Firstly, because of
the heterogeneity and complexity of CEEC networks, the traditional centralized security
mechanism cannot be applied well. Secondly, due to the openness of CEEC networks and
the high dynamic nature of edge devices, it is difficult to effectively identify malicious edge
devices. However, edge devices have limited resources, which makes them vulnerable to
attacks, and lack effective lightweight security mechanisms. Therefore, it is necessary to
build a trusted environment and study the trust management of CEEC.
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Figure 1. Cloud-Edge-End Collaboration architecture.

Some research has been conducted on trust evaluation in edge computing [5–7].
Yu et al. [8] took multi-dimensional trust data as the training set of a BP neural network to
evaluate the trust degree of edge nodes in a computational power network, and adopted the
improved particle swarm optimization algorithm to optimize the structure and weight of
the neural network so as to effectively improve the detection rate of malicious nodes. This
method adaptively adjusted the weight of trust aggregation. Particle swarm optimization
was used as feedback to realize the incentive mechanism for edge nodes. However, it did
not take into account privacy protection and computational costs. It was also not tested for
anti-aggression. In the literature [9], the decision tree classification model method was used
to construct trust rules, and the Euclidean distance concept was used to calculate the trust
value in the calculation of recommendation trust. Furthermore, the artificial neural network
function was used to self-train the vehicle nodes that did not meet the expected trust value
to improve the vehicle trust degree. This work developed a manual training model as an
incentive mechanism. However, it did not consider privacy protection and anti-aggression.
It also did not take into account computational costs. In the literature [10], a capsule neural
network was used to predict trust attributes based on historical data to obtain the trust
value of edge devices. Only the shallow network structure and a small amount of training
data were needed to realize the trust evaluation, which met the time requirements of
frequent processing of multi-modal and small-sample data in edge scenarios. This study
used a capsule neural network to aggregate trust attributes and overcome the subjectivity
of trust weights. However, it did not consider privacy protection and incentives. It also
did not analyze adaptability to attacks and did not consider the computational cost of the
algorithm. Zhang et al. [11] proposed a credible edge platform by combining blockchain
with edge computing. This realizes the lightweight design of the platform through the
microservice architecture. It improves the portability of the platform by introducing the
Edgex Foundry framework, and it also verifies the availability of the trusted edge platform
by deploying it on multiple network nodes for simulation.

Huang et al. [12] used multi-weight subjective logic to realize the credit value cal-
culation of the reputation system and construct the local and global reputation. They
determined the weight of reputation according to the three aspects of familiarity, similarity
and timeliness, and constantly updated the value of reputation. This method improved
the efficiency of resource allocation. However, it did not take into account privacy protec-
tion and robustness against attacks. It also did not take into account inter-transmission
incentives. At the same time, the establishment of weight in reputation calculation was
subjective, which reduced the accuracy of trust values. Wang et al. [13] introduced trust
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chains when evaluating trust of sensor nodes. The trust value of a single atomic trust
chain combined interaction trust, energy trust and recommendation trust. The fine-grained
trust values of sensor nodes were evaluated by serial and parallel trust transitions in the
merged trust chain. This approach was robust against malicious attacks. However, it did
not consider privacy protection and incentive of trust data. The computational cost of the
algorithm has not been evaluated. It also did not discuss the weight of trust aggregation,
which reduced the accuracy of trust values. In the literature [14], node trust was evaluated
according to several parameters. Direct trust evaluation considered node communication
success rate, proximity, packet loss rate and residual energy. In the evaluation of indirect
trust, recommendation trust with different weights came from the surrounding nodes.
Finally, the trust was aggregated to obtain a multi-dimensional comprehensive trust value.
This method could resist malicious attacks and balanced the energy consumption of nodes.
However, it did not consider privacy protection and incentives. In the calculation and
aggregation of direct and indirect trust, it did not analyze the specific allocation of trust
weight. Tian et al. [15] collected trust values from multi-source evaluation from the percep-
tion level, and assigned weights to different types of trust evaluation values according to
service attribute sets, self-service evaluation factors, user quality evaluation factors and
social sensor personality preferences so as to achieve multi-dimensional aggregation of
trust values. This method considered the adaptability of trust weight and reduced the
computational cost. However, it did not consider privacy protection and robustness against
attacks. It also did not consider the incentive mechanism between sensor nodes.

Fuzzy logic constructs multiple fuzzy factors by modeling the uncertain factors, de-
ducing the uncertainty relation of entity behavior through fuzzy operators, evaluating
the subject using the fuzzy comprehensive evaluation algorithm and, finally, obtaining
the result. Some examples from the literature [16–21] introduce fuzzy logic technology to
implement trust management in edge computing. In the literature [16], prior knowledge
in trust evaluation was provided by a fuzzy inference system, which combined expert
knowledge of trust evaluation into a fuzzy rule base using fuzzy methods. It was also based
on artificial neural networks to capture different patterns to make decisions about the trust
status of IoT nodes. In the literature [17], the uncertainty in trust evaluation was divided
into three fuzzy sets: packet loss factor, false packet injection factor and content change
factor. The algorithm based on fuzzy logic was used to evaluate the trust degree of vehicles,
and the network topology factor was introduced to combat data change attack. This method
could resist packet loss attack, error injection attack and data change attack. It also solved
the uncertainty of trust weight by aggregating trust factors through fuzzy logic. However,
it did not consider privacy or incentives. It also did not estimate the computational cost.
Serin et al. [18] reduced security threats by establishing a credible environment based on
ambiguity in smart cities. The model could effectively avoid and isolate malicious nodes in
IoT, and reduced the impact of collusion attacks. However, the above work is one-sided in
the extraction of trust data when constructing fuzzy factor subsets, which will affect the
accuracy of trust evaluation values. In order to improve service quality, Hossain et al. [19]
designed the collaborative task offloading scheme FCTO by taking the delay sensitivity of
QOS as the fuzzy input parameter. This scheme optimizes the task completion time and
server utilization by introducing fuzzy logic in task offloading.

Due to the selfish behavior of edge nodes, the quality and reliability of their trust
evaluation in complex and changeable network environments are affected. An incentive
mechanism can be introduced to reward the quality of trust evaluation results so as to
improve the initiative of edge nodes in trust evaluation with limited resources. The
incentive mechanism in trust evaluation is the direction of future research. In recent years,
some research has taken incentive into account. In the literature [22], smart contracts were
used to automatically punish the misconduct of stakeholders. Additionally, decentralized
accountability mechanisms and automatic rewards were developed to encourage nodes to
verify collaboration services and provide verification rewards. This regulated the behavior
of participants and built a reliable edge computing network. In the literature [23], the cloud
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server set rewards for data collectors who actively collected sparse and high-quality data
in remote areas so as to increase the collection contribution and, thus, improve the overall
quality of data collection. In the literature [24], an incentive mechanism was designed: the
winner of the competition was given the basic reward, and those who finished early were
given extra rewards. These rewards would entice edge servers to complete computational
tasks initiated by their peers and encouraged them to complete them quickly. In the
literature [25], vehicles were encouraged to intentionally maintain trusted data sharing
through the self-executing nature of smart contracts in a blockchain. It used the contribution
of the vehicle as an incentive and adjusted the proportion of the reward according to how
trustworthy the data were. In the literature [26], a penalty factor was introduced into the
trust value of the vehicle, so that the vehicle refusing to provide service can obtain a lower
trust value, and if the vehicle provided a false location, its trust value would be greatly
reduced. This discouraged dishonest vehicles and incentivized selfish vehicles to actively
offer their services. In the literature [27], users were motivated by the development of
an effective voting mechanism with built-in consensus and punishment functions in the
blockchain. The nodes involved in the verification would be rewarded with part of the
deposit, while the abusive users would be punished and blacklisted. In the literature [28],
UAVs were used to collect partially verifiable data, and random sampling by trusted
third parties was used for joint trust evaluation. Therefore, the uncertainty of verifiable
collected data increased the likelihood of detecting fake data uploads by mobile edge users,
thus achieving the purpose of motivating users to upload trusted data honestly. In the
literature [29], when evaluating trust in data in federated learning, a trust reward and
punishment method was proposed in order to achieve the incentive of consensus of trust.
When a task was completed, a certain amount of credit would be added. However, when
the trust value was large, the proportion of increased trust value would be reduced so that
the trust value of nodes added later could quickly catch up. In order to realize the fairness
among all nodes, the punishment degree of each node was different. The higher the trust
value, the harsher the punishment was to ensure the fairness of rewards and punishments.
However, all the above research works were short-term incentives for the edge devices,
and the effect of incentives was limited, which may cause the intermittent selfish behavior
of the edge devices.

Overall, our study investigates the gaps in the above studies and makes the following
contributions:

• Firstly, we propose a Cloud-Edge-End Collaboration (CEEC) computing power archi-
tecture and design a lightweight fuzzy cooperative trust evaluation model (LFCTEM)
for edge devices, which fuzzies the uncertainty factors in the CEEC network. By
constructing four fuzzy trust factors, we evaluate the trust value of edge devices
according to the success rate of direct interaction, adjacent distance, public interaction
success rate and cooperative positivity of the edge device group.

• Secondly, we introduce the incentive mechanism in the trust evaluation algorithm to
encourage the edge devices through the cooperation reward scores, quality reward
scores and efficiency reward scores. We also adopt the incentive negative decay
mechanism to improve the continuity of active cooperation of edge devices so as to
avoid their intermittent selfish behavior.

• Finally, we present experiments carried out on the OMNET++5.6.2 simulation platform,
and further comparison of our algorithm with DTEM and FLTEEV algorithms, thus
proving the effectiveness and advantages of our model.

2. Materials and Methods
2.1. Cloud-Edge-End Collaboration (CEEC) Computing Power Architecture

The architecture of each cooperative computing power in the CEEC environment is
shown in Figure 2. The cooperative computing system in the CEEC architecture includes
the cloud layer, edge layer and end layer.
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Figure 2. Cloud-Edge-End Collaboration (CEEC) computing power architecture.

The cloud layer has high computing power, and the powerful computing resources of
the cloud can be used to achieve the incentive reward for the edge devices. When the edge
devices have intermittent selfish behavior, its incentive integral is negatively attenuated.

The edge layer includes edge servers. Each edge server stores the adjacent history
interaction data and incentive scores of dynamic heterogeneous computing powers in the
region. Edge servers cooperate to evaluate the trust value between edges and manage the
global trust database so as to ensure the efficient operation of CEEC networks.

The end layer is mainly composed of a variety of heterogeneous computing devices at
the edge, including intelligent sensors, desktops, intelligent vehicles, intelligent gateways
and so on. Each dynamic heterogeneous computing device is abstracted as a dynamic
heterogeneous edge device. Because these edge devices are dynamically heterogeneous,
with a change in their position they will enter the area managed by different edge servers
and the dynamic heterogeneous computing devices in this area will perform collaborative
computing within the edge.

2.2. Associated Trust and Security Issues

There are several trust and security issues in CEEC networks as follows:
Privacy protection issues: When maintaining trust in edge computing, users need to

exchange trust data frequently, which may contain their private information. Disclosure of
private data will create additional security concerns and most research does not take privacy
into account. With the continuous promotion of edge computing and the rapid growth of
IoT devices, the problem of data privacy warrants further study. Privacy protection models
also need to adapt to the needs of various complex edge computing scenarios.

Trust weight allocation issues: In the trust evaluation methods based on traditional
mathematical statistics, the trust value is usually determined by aggregating trust factors
through weighting and other related calculations. However, there is no basis to determine
the trust weight. Some studies determine the trust weight based on subjective judgment,
while others determine the trust weight based on experience. All of these will lead to
inaccurate trust weight allocation, thus affecting the results of trust evaluation. Therefore,
it is necessary to further study the allocation of trust weight and develop a new trust
aggregation method.

Edge intelligence trust management problem: In the edge intelligence scenario, there is
no trust management mechanism for heterogeneous data owners. In edge intelligence net-
works, a single data owner may hold multiple training data sets that are heterogeneous in
quality and type. The existing trust model is mainly oriented to a single application scenario
and cannot realize the compatible trust management of multiple heterogeneous training
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data sets held by a single data owner. There is a lack of unified management mechanism to
fully and flexibly manage the trust of the data owners of the edge intelligence networks.

2.3. Lightweight Fuzzy Collaborative Trust Evaluation Model

In order to effectively evaluate the trust value of edge devices in the CEEC environ-
ment, we design a lightweight fuzzy cooperative trust evaluation model (LFCTEM). In this
paper, four trust factors generated by fuzzy sets are used to fully model the neighboring
cooperation attributes of edge devices and the trust value of edge devices is evaluated
based on the fuzzy logic algorithm. The fuzzy logic system is used to overcome the indirect
uncertainty of the trust mechanism.

In the CEEC environment, a group of neighboring edge devices is used to evaluate
the trust value of one of the edge devices so as to further improve the reliability of the
trust evaluation value. However, due to the complexity of the CEEC environment, the
unreliability of wireless communication transmission and the unpredictability of edge
device behavior, uncertainty will be introduced in the collaboration trust evaluation. Un-
certainty is also introduced by the fact that the edge devices often generate inaccurate
and incomplete information. In the CEEC environment, any slight change may lead to
mismatch between the calculation result of the trust value and the real-time state of the
edge device, thus affecting the accuracy of the trust value. Therefore, in the continuous
cycle, we use fuzzy logic to alleviate this mismatch. In this paper, the input–output relation
of the fuzzy algorithm based on the IF–THEN rule is constructed.

The fuzzy logic algorithm designed in this paper includes four trust factors generated
by fuzzy sets as input, which are direct interaction success rate factor (DISRF), adjacent dis-
tance factor (ADF), public interaction success rate factor (PISRF) and cooperative incentive
mechanism factor (CMF). Their membership functions are shown in Figure 3.

(1) Direct interaction success rate factor (DISRF) represents the interaction success rate
between an edge device and its neighboring edge devices. It is an entity-centric trust
factor. Due to the high dynamic of edge devices and the unreliability of wireless
communication transmission, the number of neighboring edge devices is constantly
changing, which leads to the uncertainty of their direct trust relationship. With the
decrease in the success rate of direct interaction, the uncertainty of the direct trust
relationship with neighboring edge devices will increase. The calculation of the
interaction success rate between an edge device and its neighboring edge devices is
shown in Equation (1). In this paper, DISRF is set to include two options: malicious
and normal, ranging from 0 to 100%. The membership function of DISRF is shown in
Figure 3a.

(2) Adjacent distance factor (ADF) represents the interaction distance between the host
and guest of an edge device group. It is an entity-centric trust factor. Because
the density and environment of the edge device group will change over time, the
recommendation weight of the edge device group is uncertain when evaluating the
collaborative recommendation trust. At the same time, recommended trust is mainly
obtained based on the indirect trust relationship between the public edge devices of
the host and guest edge devices. As the adjacent distance between the host and guest
edge devices increases, the uncertainty of its indirect trust relationship with the public
edge devices will also increase. The calculation of the interaction distance between
the host and guest of edge device group is shown in Equation (2). In this paper, ADF
is set to include three options: short, medium and long, ranging from 0 to 300 m. The
membership function of ADF is shown in Figure 3b.

(3) Public interaction success rate factor (PISRF) represents the interaction success rate
between the host and guest of an edge device group and their public edge devices.
It is an entity-centric trust factor. Due to the high dynamic of edge devices and the
unreliability of wireless communication transmission, the number of public edge
devices between the host and the guest edge devices is constantly changing, which
leads to the uncertainty of their indirect trust relationship. With the decline in the
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success rate of public interaction, the uncertainty of the indirect trust relationship with
the public edge devices will also increase. The calculation of the interaction success
rate between the host and guest of the edge device group and their public edge device
is shown in Equation (3). In this paper, PISRF is set to include three options: low,
medium and high, ranging from 0 to 100%. The membership function of PISRF is
shown in Figure 3c.

(4) Collaboration incentive mechanism factor (CMF) represents the positive inclination
of neighboring edge device groups to participate in collaboration. It is a data-centric
trust factor. Due to the selfishness of edge devices, they may intentionally limit the
consumption of computing resources in order to protect their own interests during
the collaborative tasks, which leads to the uncertainty of the collaborative behavior
of edge devices. As the collaboration positivity of the edge devices decreases, the
uncertainty of the recommendation trust value generated by the adjacent edge devices
will also increase. The incentive score for the group of adjacent edge devices is
described in detail in the next section. In this paper, CMF is set to include three
options: negative, normal and active, ranging from 0 to 300. The membership function
of CMF is shown in Figure 3d.

$ij =
∑{Devicen} Rr

∑{Devicen} Rr + Re
(1)

where $ij is the interaction success rate between an edge device and its neighboring edge
devices, {Devicen} is the neighboring edge devices of the edge device, Rr is the number of
successful interactions and Re is the number of failed interactions.

dij =

√(
dx

i − dx
j

)2
+
(

dy
i − dy

j

)2
(2)

where dij is the interaction distance between the host and guest of the edge device group, is
the location of the host edge device, dx

i and dy
i is the location of the guest edge device.

$mn =
∑{Devicek} Rr

∑{Devicek} Rr + Re
(3)

where $mn is the interaction success rate between the host and guest of the edge device
group and their public edge devices, {Devicek} is the public edge devices for the host and
guest of the edge device group, Rr is the number of successful interactions and Re is the
number of failed interactions.

The output of the fuzzy logic algorithm designed in this paper is the trust evaluation
value (TEV), which contains four options: Untrust, Trust-3, Trust-2 and Trust-1, ranging
from 0 to 1. The membership function of TEV is shown in Figure 4. The fuzzy logic
algorithm consists of 54 fuzzy logic rules, as shown in Table 1.

When the output membership value of the fuzzy logic algorithm is obtained, it will
be defuzzed to obtain the trust evaluation value. In this paper, the fuzzy logic library of
MATLAB is used to construct the fuzzy logic trust evaluation algorithm and deblur the
output membership value.

2.4. Incentive Score Mechanism

Since all the participants in the trust evaluation are dynamically distributed and or-
ganized together, and their management is relatively loose, the incentive mechanism can
effectively ensure the quality of the collaborative evaluation. For the edge devices, the
benefits of participating in the trust evaluation should be proportional to the computing
resources invested so as to keep their positivity towards continuing to participate in the col-
laborative evaluation. For the edge side, the quality of the evaluation should be improved
by recruiting high-quality edge devices for collaboration through incentive mechanisms.
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Therefore, we need to find a balance between the consumption of edge computing resources
and the quality of collaborative trust evaluation. We designed an incentive mechanism and
introduced incentive scores. The incentive score can be used by edge devices to obtain re-
sources and collaboration assistance, thus ensuring the integral value of the incentive score
in an edge collaboration environment. The key idea is to stimulate the positivity of the edge
devices towards participating in the cooperative trust evaluation through incentive scores,
and to use negative attenuation to improve the persistence of the positive cooperation of
the edge devices.

Figure 3. The input membership function of LFCTEM: (a) direct interaction success rate factor; (b) adjacent
distance factor; (c) public interaction success rate factor; (d) cooperative incentive mechanism factor.

Figure 4. The output membership function of LFCTEM.
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Table 1. Fuzzy logic rule.

No. DISRF ADF PISRF CMF TEV

1 Malicious Short Low Negative Untrust
2 Malicious Short Medium Negative Untrust
3 Malicious Short High Negative Untrust
4 Malicious Short Low Normal Untrust
5 Malicious Short Medium Normal Untrust
6 Malicious Short High Normal Trust-3
7 Malicious Short Low Active Untrust
8 Malicious Short Medium Active Trust-3
9 Malicious Short High Active Trust-3
10 Malicious Medium Low Negative Untrust
11 Malicious Medium Medium Negative Untrust
12 Malicious Medium High Negative Trust-3
13 Malicious Medium Low Normal Untrust
14 Malicious Medium Medium Normal Untrust
15 Malicious Medium High Normal Trust-2
16 Malicious Medium Low Active Untrust
17 Malicious Medium Medium Active Trust-3
18 Malicious Medium High Active Trust-2
19 Malicious Long Low Negative Untrust
20 Malicious Long Medium Negative Trust-3
21 Malicious Long High Negative Trust-3
22 Malicious Long Low Normal Untrust
23 Malicious Long Medium Normal Trust-3
24 Malicious Long High Normal Trust-2
25 Malicious Long Low Active Untrust
26 Malicious Long Medium Active Trust-2
27 Malicious Long High Active Trust-2
28 Normal Short Low Negative Trust-3
29 Normal Short Medium Negative Trust-3
30 Normal Short High Negative Trust-3
31 Normal Short Low Normal Trust-3
32 Normal Short Medium Normal Trust-2
33 Normal Short High Normal Trust-1
34 Normal Short Low Active Trust-3
35 Normal Short Medium Active Trust-1
36 Normal Short High Active Trust-1
37 Normal Medium Low Negative Trust-3
38 Normal Medium Medium Negative Trust-2
39 Normal Medium High Negative Trust-1
40 Normal Medium Low Normal Trust-3
41 Normal Medium Medium Normal Trust-2
42 Normal Medium High Normal Trust-1
43 Normal Medium Low Active Trust-2
44 Normal Medium Medium Active Trust-1
45 Normal Medium High Active Trust-1
46 Normal Long Low Negative Trust-3
47 Normal Long Medium Negative Trust-1
48 Normal Long High Negative Trust-1
49 Normal Long Low Normal Trust-2
50 Normal Long Medium Normal Trust-1
51 Normal Long High Normal Trust-1
52 Normal Long Low Active Trust-2
53 Normal Long Medium Active Trust-1
54 Normal Long High Active Trust-1

In the CEEC environment, the incentive score mechanism is used to achieve the
balance between resource regulation and collaborative evaluation. As shown in Figure 5,
the edge devices can obtain the incentive score in the following three ways:
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(1) When the edge device is assigned a collaborative trust evaluation task and completes
the evaluation task it is responsible for on time, it will receive the basic cooperation
reward score.

(2) According to the quality of the evaluation task assigned to the edge device, it will
receive a quality reward score. In this paper, the completion quality of the trust evalu-
ation task is evaluated mainly by the accuracy of collaborative evaluation. By setting
the threshold, the completion quality is divided into three levels (excellent, medium
and low), and the corresponding quality reward scores are matched according to the
completion quality of different levels.

(3) Based on the time it takes to complete the evaluation task assigned to the edge device,
it receives an efficiency reward score. When the edge device completes the task
assigned to it in advance, the corresponding efficiency reward scores are matched
according to the time to complete the task ahead of schedule.

Figure 5. Edge cooperative incentive score mechanism.

When the edge initiates a cooperative trust evaluation task T{user} for the edge device
group, the edge first broadcasts the information about the cooperative trust evaluation task
T{user} on the CEEC environment, including the maximum completion time τmax and the
basic cooperative reward score Rb of T{user}. The value of Rb is mainly determined by the
amount of task computation and the priority of T{user} at the edge. For collaborative trust
evaluation tasks with heavy computation or high priority, the basic cooperation reward
scores are also higher, which improves the attraction of collaborative edge devices and fa-
cilitates the completion of collaborative trust evaluation tasks. When the collaborative trust
evaluation task T{user} is completed, the total incentive score awarded to the collaborative
edge devices are calculated as follows:

R = Rb + Rq + Re (4)

where Rb is basic cooperation reward score, Rq is quality reward score and Re is efficiency
reward score.

Rq is calculated from the quality of completion of the trust evaluation tasks assigned
to the edge devices. We set the quality threshold ϕ1 and ϕ2 (0 ≤ ϕ1 < ϕ2 < 1), and the
completion quality is divided into excellent (collaborative evaluation quality is ϕ2 or above),
medium (collaborative evaluation quality is between ϕ1 and ϕ2) and low (collaborative
evaluation quality is below ϕ1). In order to motivate the edge devices to complete the
cooperative trust evaluation task with high quality, we give the edge devices with excellent
completion quality a higher increase in quality reward scores. For collaborative edge
devices with moderate completion quality, we give moderate quality reward scores to
maintain their base motivation. For collaborative edge devices with low completion quality,
quality reward scores will not be given in this paper. The calculation of Rq is as follows:

Rq =


ϑq·e(ϕq−ϕ2) , ϕ2 ≤ ϕq ≤ 1

ϑq ·(ϕq−ϕ1)
ϕq

, ϕ1 ≤ ϕq < ϕ2

0 , 0 ≤ ϕq < ϕ1

(5)
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where ϑq is the baseline quality reward score, ϕ1 and ϕ2 are the quality threshold of the
collaborative trust evaluation task and ϕq is the completion quality of the collaborative
trust evaluation task.

ϕq is calculated from the accuracy of collaborative evaluation:

ϕq =
δr

δr + δe
(6)

where δr is the number of times that the collaboration evaluation of the edge device group
is correct and δe is the number of times that the collaboration evaluation of the edge device
group is wrong.

Re is calculated from the completion time of the evaluation task assigned to the
edge device:

Re =

{
ϑe ·(τmax−τe)

τe
, τe < τmax

0 , τe ≥ τmax
(7)

where ϑe is the baseline efficiency reward score and τe is the actual time for the cooperative
edge device to complete the collaboration trust evaluation task.

When the actual completion time of the collaborative edge device is shorter, the
efficiency reward score will be higher. Conversely, when the actual completion time of the
cooperative edge device exceeds τmax, it will not receive the efficiency reward score.

Through this incentive reward mechanism, CEEC will reward collaborative edge
devices that can accomplish the task of collaborative trust evaluation quickly and with
high quality. The reward score is mainly used as a short-term incentive to quickly motivate
cooperating edge devices.

2.5. Incentive Negative Decay Mechanism

When the cooperative edge devices have a high incentive scores reserve, there is no
urgent need for incentive scores in the short term. In this case, short-term collaboration
negativity may occur on such collaborative edge devices, which will affect the efficient
collaboration of the CEEC environment. Therefore, in order to achieve long-term incentive
and maintain the continuity of the active cooperation of the edge devices, we designed the
incentive negative decay mechanism.

The main idea of the incentive negative decay mechanism is as follows. In this paper,
the decay time interval τd is set as the negative decay threshold. When the collaborative
edge device is in a negative state for a long time (that is, the collaborative edge device
is not participating in the collaboration evaluation for longer than τd), its incentive score
will decay significantly. In order to avoid the significant decay of incentive score, the
cooperative edge device needs to continuously participate in the cooperative evaluation
task or intermittently participate in the cooperative evaluation task in a short time interval.
This will maintain the continuity of the active cooperation of the edge device and achieve
the effect of long-term incentive.

In the incentive negative decay mechanism, in order to give larger incentives to the
cooperative edge device, the incentive score will decay rapidly with the increase in time
in the initial decay stage. This is to urge the edge device to participate in the cooperative
trust evaluation task as soon as possible. In the mid-decay stage, the decay amplitude of
the incentive score will be properly slowed down so as to give the cooperative edge device
reaction time to obtain the incentive score again. In the late decay stage, if the cooperative
edge device does not participate in the cooperative trust evaluation task when it reaches
the maximum decay time τdmax, its incentive score will decay to approach 0. Then the
cooperative edge device will become a passive edge device and will not be able to access
the computing resources and collaboration assistance provided by the CEEC environment.

Five combinations of undetermined formulas are considered in the design of the
negative decay formula of incentive score in the incentive negative decay mechanism and
we compare their decay rates comprehensively. The combinations of five undetermined
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formulas are shown in Table 2, and their decay rates are shown in Figure 6. In this paper,
the initial decay stage is set between 0 and 6 h, the mid-decay stage is set between 6 and
16 h and the late decay stage is set between 16 and 48 h. We set the maximum decay
time τdmax to 48 h (two days). When the collaborative edge device does not participate
in the collaborative trust evaluation task for two days, it is considered as a negative edge
device and its incentive score decays to 0. According to Figure 6, it can be found that
the attenuation ranges of R3 and R5 are too small, and they cannot approach 0 in the late
decay stage. R4 can approach 0 in the late decay stage, but its attenuation amplitude in the
initial decay stage is not enough to give the cooperative edge device a large incentive. If
the attenuation amplitude is too large in the initial decay stage, the incentive score will
approach 0 in the mid-decay stage, and the mid-decay stage is not reserved for sufficient
reaction time of the cooperative edge device.

Table 2. Incentive score negative attenuation formula.

Decay Rate of Reward Scores (%) Time (Hour)

R1
R

[
5·(τn−τd)

72 +1]
3

R2
R

[
5·(τn−τd)

72 +1]
2

R3
R

log[
5·(τn−τd)

72 +3]
R4

R

e
5·(τn−τd )

72

R5
R

5·(τn−τd)
72 +1

Figure 6. Comparison of negative decay of incentive score.

After comprehensive analysis, we found that the decay rate of incentive integral of
R2 reaches 50% at the initial decay stage, which gives the cooperative edge device a large
incentive. In the mid-decay stage, the decay rate of the incentive score gradually decays
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from 50% to 15%, giving the cooperative edge device sufficient reaction time to reacquire
the incentive score. It can also approach 0 in the late decay stage, which meets the demand
of the negative decay mechanism of incentive negative decay mechanism. Finally, we
determined that R2 is the negative decay formula of the incentive score.

Therefore, the calculation formula of the incentive negative decay mechanism is
as follows:

Rd =
R

[ 5·(τn−τd)
72 + 1]

2 (8)

where τn is the time that the collaborative edge device is not participating in the collabora-
tion evaluation and τd is decay time interval.

In the CEEC environment, the decay rate of incentive score will be changed due to
the change in the completion time of the collaboration trust evaluation task, the basic
cooperation reward score, the incentive score consumed by obtaining the computing
resources and the cooperation help provided by CEEC, and the duration of alternating
between participating in collaboration and negative collaboration.

3. Results

This chapter introduces the experimental environment. We verify the effectiveness,
accuracy and motivation of the proposed lightweight fuzzy collaborative trust evaluation
model (LFCTEM) from different aspects.

3.1. Experimental Setup

The operating environment is Windows 10, and the computer uses 2.30 GHz Intel(R)
Core(TM) i7-10875H CPU (Intel, Santa Clara, CA, USA) and 16 GB memory. In order to
make the experiment closer to the edge computing scenario, this paper uses OMNET++
5.6.2 to simulate the interaction data of edge devices in a CEEC network and generate
experimental data. MATLABR2020b is used to build the fuzzy logic algorithm and test the
trust evaluation. In the experiment, we determine the simulation parameters in Table 3 to
obtain the optimal model.

Table 3. Simulation Parameters.

Parameters Description Value

Rb Basic cooperative reward score 20
ϑq Baseline quality reward score 10
ϕ1 The quality threshold of collaborative trust evaluation task 0.2
ϕ2 The quality threshold of collaborative trust evaluation task 0.5
ϑe Baseline efficiency reward score 10

τmax The maximum completion time of cooperative trust evaluation task 5 (min)
τdmax The maximum decay time 48 (h)

τd Decay time interval 1 (h)

In the simulation, we simulate 10 randomly distributed edge servers and 500 dynamic
heterogeneous edge devices in the CEEC network, with a range of 1000 × 1000 m. The trust
evaluation range of all edge devices is set from 0 to 1, and a decision threshold is set in
this paper. When the trust evaluation value of the edge device is lower than the threshold,
the edge device is considered to be in a malicious state. When the trust evaluation value
of the edge device is higher than the threshold, the edge device is considered to be in a
trusted state.

3.2. Experiment and Analysis
3.2.1. Verify the Incentive Negative Decay Mechanism

A collaboration evaluation example is used to observe the acquisition of incentive
scores of collaborative edge devices with different positive degrees. In this experiment, we
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set the time of a single collaborative trust evaluation task as 4 h. Based on the incentive
scores obtained after successful collaboration, the score is 20. Since the collaborative edge
device needs to exchange incentive scores for computing resources and collaboration help
provided by CEEC, we simply set the consumption as one incentive score per hour and we
set the running time of the instance to the maximum decay time τdmax, 48 h. In order to show
the effect of the incentive negative decay mechanism directly and concisely, participating
cooperation and negative cooperation are carried out alternately, which shows that the
cooperative edge device intermittently participates in the cooperative trust evaluation
task. In Figures 7 and 8, the negative collaboration time of the edge device is set as 1 h,
2 h, 3 h, 6 h, 12 h, 16 h and 20 h. The red time period represents when the edge device is
participating in the collaboration trust evaluation task, and the blue time period represents
when the edge device is in a negative state.

Figure 7. Comparison of incentive score with different negative collaboration time(red: positive, blue:
negative): (a) Edge devices that continuously collaborate actively; (b) Edge devices that passively
collaborate for 1 h; (c) Edge devices that passively collaborate for 2 h; (d) Edge devices that passively
collaborate for 3 h.

It can be seen from Figure 7a that when the collaborative edge device continuously ac-
tively participates in the collaborative trust evaluation task, its incentive score will increase
in a stepwise way and a large number of incentive scores can provide the edge device with
more computing resources and collaboration help from CEEC. According to Figure 7b,c,
when the negative cooperation duration is short (between 0 and 2 h), the edge device can
still maintain the reserve of incentive scores by intermittently participating in the coopera-
tive trust evaluation task. According to Figures 7d and 8a, when the negative collaboration
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duration gradually increases (between 2 and 6 h), the incentive score obtained by the edge
device is no longer enough to compensate for the negative attenuation effect caused by
the negative collaboration although the edge device participates in the collaboration trust
evaluation task intermittently. At this time, with the continuous decay of the incentive
score, the edge device receives the incentive, so it needs to actively participate in the co-
operative trust evaluation task to re-enhance the reserve of incentive scores. According
to Figures 7d and 8a, when the negative cooperation duration increases to the mid-decay
stage (between 6 and 16 h), the incentive score of the edge device will approach 0 with
continuous decay. The edge device needs to increase the positivity towards participating in
the collaborative trust evaluation task in the mid-decay stage or it will become a negative
edge device. It can be seen from Figure 8b–d that when the negative cooperation duration
is too long (between 16 and 48 h), the incentive score of the cooperative edge device will
decay to 0 within a maximum decay time period (48 h). Furthermore, the edge device will
also become a negative edge device and be unable to access the computing resources and
collaboration help provided by CEEC.

Figure 8. Comparison of incentive score with different negative collaboration time(red: positive,
blue: negative): (a) Edge devices that passively collaborate for 6 h; (b) Edge devices that passively
collaborate for 12 h; (c) Edge devices that passively collaborate for 16 h; (d) Edge devices that passively
collaborate for 20 h.

3.2.2. Verify the Accuracy of LFCTEM by Comparison

Two important indexes for analyzing the accuracy of trust models of edge devices are
detection rate and error detection rate of malicious devices. The detection rate is the ratio
of the number of detected malicious edge devices to the total number of malicious edge
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devices according to the trust evaluation scheme of the model. Error detection rate is the
ratio of the number of false detected edge devices according to the trust evaluation scheme
of the model (that is, a normal edge device that is mistakenly detected as a malicious edge
device, or a malicious edge device that is mistakenly detected as a normal edge device) to
the total number of detected edge devices. In this experiment, the detection rate and error
detection rate of malicious edge devices in the CEEC network of LFCTEM, DTEM [30] and
FITEEV [18] are compared and analyzed at 5%, 10%, 20%, 40% and 50% of malicious edge
devices. Among them, DTEM is a trust management system that adds time degradation
factor and incentive mechanism. It modifies Bayes’ equation by satisfaction function to
solve direct trust, and determines the weight of indirect trust value based on improved
grey correlation analysis. FITEEV is a reputation data-management system based on fuzzy
logic. It introduces packet forwarding rate factor, correctness factor, monitoring factor,
speed factor and content change factor to improve the detection rate of malicious devices.
Figures 9 and 10 show the detection rate and error detection rate of the three models under
different proportions of malicious side devices.

Figure 9. Comparison of detection rates of malicious edge devices by LFCTEM, DTEM and FITEEV.

As shown in Figure 9, the detection rate of LFCTEM is significantly higher than that
of the other two models, and the detection rates of the first four groups of malicious edge
devices with different ratios are all higher than 80%. In the evaluation of trust value,
LFCTEM converts the fine-grained trust information of the edge devices group, including
success rate of direct interaction, adjacent distance, success rate of public interaction and
positivity of cooperation evaluation, into fuzzy trust factors based on the fuzzy logic
algorithm so as to further enhance the accuracy of the trust evaluation between the adjacent
edges devices, and enhance the malicious edge devices detection rate of the model. As the
proportion of malicious edge devices in the CEEC network increases, the detection rates of
malicious edge devices of the three algorithms all decrease. However, LFCTEM always
keeps a high detection rate of malicious edge devices and the detection rate of malicious
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edge devices of LFCTEM increases by 19.11%, so it can be seen that LFCTEM has a better
performance than the other two models.

Figure 10. Comparison of error detection rate of malicious edge devices of LFCTEM, DTEM and FITEEV.

As shown in Figure 10, the error detection rate increases with the proportion of ma-
licious edge devices. However, the average first four error detection rates of LFCTEM,
DTEM and FITEEV models are 13.96%, 27.85% and 18.85%, respectively, and LFCTEM
has the lowest false detection rate. Through the analysis, it can be seen that the incentive
mechanism is introduced in LFCTEM to reward the accuracy of cooperative trust evalu-
ation of the edge device group using quality reward scores. This is in order to avoid the
impact of malicious trust evaluation and false evaluation caused by malicious behavior
of edge devices, and, thus, reduce the error detection rate of edge devices. Because FI-
TEEV considers the monitoring factor and the content change factor, it can protect against
malicious side devices to a certain extent, and, thus, can guarantee a relatively low error
detection rate when the proportion of malicious edge devices is high (40%). However,
DTEM does not take corresponding measures, resulting in an error detection rate of 47.60%
when the proportion of malicious edge devices reaches 50%, while the error detection rate
of malicious edge devices of LFCTEM decreases by 16.20%. As can be seen from the figure,
LFCTEM significantly outperforms the other two models.

3.2.3. Verify the Anti-Aggression of LFCTEM

We carried out simulation experiments to verify the anti-aggression of LFCTEM.
The ON-OFF attack scenario of malicious edge devices is simulated experimentally. The
malicious ON-OFF attack is realized by simulating the positive cooperation and negative
states of the edge devices alternately. In this attack scenario, a total of 50 rounds of
interaction were simulated. Malicious edge devices first cooperate actively in the first
10 rounds of interaction to obtain a high trust value. In rounds 10 to 20 of the interaction, the
malicious edge devices launch the ON-OFF attack, changing from the positive cooperative
state to the negative state. The attack will damage the CEEC trusted environment. In
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rounds 20 to 40 of the interaction, the malicious edge devices continue to pretend to be
actively cooperating to cheat trust. In rounds 40 to 50 of the interaction, the malicious edge
devices again switch to the negative state for the ON-OFF attack. Figure 11 shows the
change of the trust value of the edge devices of LFCTEM in the ON-OFF attack scenario.

Figure 11. Trust value of LFCTEM under ON-OFF attack scenario.

As can be seen from Figure 11, in the initial interaction rounds (the first 10 rounds),
the malicious edge devices disguise as a positive cooperation state, so their trust value is
in the trusted state. In the interaction rounds from 10 to 20, the malicious edge devices
start to launch ON-OFF attacks and switch to the negative state. LFCTEM can quickly and
accurately reflect the abnormalities of edge devices through interactive data and the trust
values of negative edge devices decrease quickly. Moreover, due to the negative behavior of
the edge devices, their incentive scores are greatly attenuated, which leads to the decrease
in the CMF factor. The decrease in the CMF factor requires the positive cooperation of the
edge devices for a period of time to gradually earn the incentive reward scores. Therefore,
the recovery of trust values of malicious edge devices requires better cooperative behavior
and more time. This means that the proposed LFCTEM can quickly and accurately identify
malicious behaviors and effectively resist ON-OFF attack.

4. Conclusions

This paper designs a lightweight fuzzy collaborative trust evaluation model (LFCTEM)
for edge devices, aiming at the dynamic and heterogeneous edge computing environment
and efficient collaborative scheduling of computing power resources in the CEEC network.
In this paper, the success rate of direct interaction, the adjacent distance, the success rate of
public interaction and the cooperative incentive score of the group of edge devices in the
CEEC network are converted by the membership function by fuzzing the trust factor. We
calculate the trust value of the edge devices so as to improve the detection rate of malicious
edge devices. Finally, in order to effectively solve the selfish behavior of edge devices, this
paper designs a cooperative incentive score mechanism, which improves the positivity
of collaborative trust evaluation of edge devices in the CEEC network by constructing
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basic incentive scores, quality incentive scores and efficiency incentive scores. We also
design the incentive negative decay mechanism to ensure long-term incentives to mitigate
the intermittent selfish behavior of the edge devices. Finally, simulation experiments are
carried out on the theoretical basis and the feasibility and stimulation of the proposed
model in the CEEC network are verified from many aspects. Compared with DTEM and
FITEEV, our model enhances the detection rate of malicious edge devices by 19.11%, which
improves the reliability of the CEEC trust environment. Furthermore, our model reduces
the error detection rate of edge devices by 16.20%, thus alleviating error reporting of the
CEEC trust environment.

As CEEC networks expand unceasingly, the efficient coordination scheduling of the
vast amounts of highly dynamic heterogeneous computing power resources is still a
big challenge. The next steps for research to focus on are how to make full use of the
computing power resources, further reduce the idle time, build the multi-layer suitable
for the large-scale deep learning trust evaluation scheduling network. In future work, the
multi-dimensional trust attribute will be further considered to study the high dynamic
adaptability and the high computational power resource utilization of the model.
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Nomenclature

Parameter Description
DISRF Direct interaction success rate factor
ADF Adjacent distance factor
PISRF Public interaction success rate factor
CMF Cooperative incentive mechanism factor
$ij Success rate of interaction between an edge device and its neighboring edge devices
{Devicen} Neighboring edge devices of the edge device
Rr Number of successful interactions
Re Number of failed interactions
dij Interaction distance between the host and guest of the edge device group
dx

i ,dy
i Location of the host edge device

dx
j ,dy

j Location of the guest edge device
$mn Success rate of interaction between the host and guest of the edge device group
{Devicek} Public edge devices for the host and guest of the edge device group
TEV Trust evaluation value
T{user} Cooperative trust evaluation task
{user} Edge device group
τmax Maximum completion time
Rb Basic cooperative reward score
Rq Quality reward score
R Total incentive score
Re Efficiency reward score
ϕ1,ϕ2 Quality threshold
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ϑq Baseline quality reward score
ϕq Completion quality of collaborative trust evaluation task
δr Number of times that the collaboration evaluation of the edge device group is correct
δe Number of times that the collaboration evaluation of the edge device group is wrong
ϑe Baseline efficiency reward score

τe
Actual time for the cooperative edge device to complete the collaboration trust
evaluation task

τd Decay time interval
Rd Incentive negative decay rate
τn Time that the collaborative edge device is not participating in the collaboration evaluation
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