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Abstract: This paper proposes a pseudo-haptic interface that depicts the virtual weights of dumbbells
in a virtual gymnasium. When a user performs a dumbbell biceps curl, he/she fixes the elbow
joint as a standard joint and lifts the dumbbell, with its movement trajectory represented as a
circular arc. The trajectories and velocity of dumbbell bicep curls differ depending on human
physiological characteristics. Therefore, the proposed system provides an adaptable exercise area and
force visualization of virtual dumbbells using a velocity-based pseudo-haptic interface and computer
vision-based tracking method. The system recognizes the position and rotation of joints related to
a dumbbell biceps curl with the implementation of density-based spatial clustering of applications
with noise (a clustering algorithm) and resizes the radius and angle of an integrated force circular
gauge. Furthermore, when a user lifts a dumbbell, the system recognizes, using linear regression,
the current position and lifting force of the virtual dumbbell and visualizes the current lifting force
with a guided movement trajectory to match the lifting force. Experimental results show that the
proposed pseudo-haptic interface increased weight perception and usability by up to 30% compared
to conventional methods (p < 0.05).

Keywords: pseudo-haptic interface; weight perception; virtual fitness; virtual reality; augmented virtuality

1. Introduction

The immersive technology of augmented virtuality (AV) is widely used in many ap-
plications related to serious games, such as sports, healthcare, and rehabilitation [1–6]. To
add real-world information to the virtual world, the process of serious games can consist
of three fields: recognition, calculation, and representation [7,8]. Recognition in terms
of human body information tracks (or identifies and classifies) the joints of the human
body, in what is called the human pose estimation method, using computer vision-based
technology [9]. Although recent human pose estimation methods provide high accuracy
using deep learning-based algorithms, they are difficult to apply to augmented virtual-
ity serious games because of performance issues. Hence, augmented virtuality serious
games generally use conventional computer vision tracking methods [6] or controllers for
performance. A serious game calculates the state based on recognized information and
delivers results of the recognition to a user in the representation process. In the representa-
tion process, it is necessary to provide various perception methods to achieve the goal of
augmented virtuality.

In this study, we focus on the representation of virtual object manipulation using
a human body tracking method, which is one of the challenging issues in augmented
virtuality serious games. A user can grasp a virtual object and manipulate it with his/her
real hands using a human body tracking method. Virtual perception of a virtual object is
essential for perceiving the weights of virtual objects to increase the sense of presence and
virtual experience in augmented virtuality serious games, such as sports and health care.
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Several researchers have focused on simulating mass in virtual objects by using haptic
and visual senses. To obtain the sensation of mass in VR through haptic senses, exoskeleton-
based haptic feedback interfaces have been used, where the devices are attached to body
parts to provide forces on different parts of the body [10,11]. Although haptic devices
provide accurate and direct weight perception, they are generally expensive and difficult to
wear and use in augmented virtuality serious games. Alternatively, a pseudo-haptic feed-
back approach has been used to simulate virtual weights to reduce the complexity of the
haptic device. To provide weight perception of virtual objects with pseudo-haptic feedback,
visualization of different heaviness of virtual objects is combined with simplified device
feedback, such as tactile, skin pressure, and vibration [7,12–15]. Although pseudo-haptic
feedback has established the feasibility of weight perception of virtual objects without com-
plex haptic devices, the user still wears or carries some devices. Furthermore, conventional
research restricts possible weight perception areas to the human hand. It is difficult to
extend to other areas of the human body because of limited device configurations.

Because of the above, recent virtual object weight perception research has focused on
extending the perception area from the hand to the human body [16–18]. According to the
experimental results, specific body postures and gestures can increase weight perception
in terms of lifting objects. Another pseudo-weight perception method, which controls the
lifting force of virtual objects with visual feedback, showed enhanced results of weight
perception [16,19,20]. Although conventional weight perception methods improve the
representation of virtual weights, the effect of weight perception is less effective for people
with different body sizes, because the conventional weight perception module is mostly
designed with a bias toward the median adult male body size. Furthermore, the material-
weight illusion (MWI) issue can be raised by differences in the visual appearances of virtual
objects of the same mass [21–24]. Users may feel lighter when they lift a heavier-looking
object and heavier when they lift a lighter-looking object.

Here, we proposed a personalized weight perception interface based on the physical
characteristics of users when lifting virtual objects.

Toward this, a virtual gymnasium (VG) was created to provide the opportunity for
gymnasium (gym) exercises using the proposed pseudo-weight perception method. The
salient feature of this system is that it provides a personalized weight perception interface
by controlling the lifting force and customizing visual feedback according to the individual
user body size. The proposed VG method creates a visualization of a circular (green to red)
bar to represent the difference between the standard force required to lift a virtual dumbbell
and the current force applied by the user. When the user lifts a virtual dumbbell in any
exercise scenario, the circular bar indicates the difference between applied and actual forces
using a machine learning algorithm. The user must place the circular bar in the middle to
obtain the sensation of the actual weight. Hence, the proposed method visualizes a circular
arc interface to guide the movement trajectory of every lifting process. The position and
size of the circular arc interface can be changed according to the body size of each user.

The main contributions of this study are as follows:

• The proposed system provides a novel, personalized virtual weight perception inter-
face that allows users to perceive the optimized weights of virtual objects during the
lifting process by recognizing the user’s upper body size.

• The system provides both one-handed and two-handed lifting algorithms to support
various lifting exercises, such as dumbbell and barbell curls.

2. Related Work
2.1. Augmented Virtuality Serious Game

VR technology gives users the impression of walking among computer graphics
and operating objects within the virtual environment. VR is generally used in a variety
of environments and applications, and it has been classified along a reality-virtuality
continuum [3], as shown in Figure 1, according to the display environment and degree of
representation of virtual objects.
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The real environment refers to the real world, and the virtual environment is a world
in which everything is expressed in 3D VR. Augmented reality is the integration of virtual
representations with the real environment. Augmented virtuality implies that a real
environment, which includes a user, can be projected onto a virtual environment. Because
augmented virtuality allows a user to recognize information from the real world in VR, it
has been widely used in the field of serious games, where information between the real
environment and the virtual environment are closely linked. Lin et al. [4] developed a
stroke rehabilitation serious game, which records the best performance for each patient and
adapts gameplay. Almousa et al. proposed an augmented virtuality serious game for the
upper limb stroke rehabilitation process [5]. Lee et al. proposed a VG to increase exercise
effects by lifting a dumbbell [6]. Although the purposes of the games are different, they use
characteristics similar to augmented virtuality, which is virtual object manipulation with
the user’s hands.

2.2. Weight Perception

The immersion in virtual environments challenges researchers to provide real grasping
and sensation during virtual object manipulation. Many systems have been developed for
manipulating virtual objects in VR, but the technologies used in these systems are differ
from each other. The concern of every system is the method of grasping and interacting
with virtual objects to recognize the appropriate feedback in VR.

Ott et al. proposed an integration of three different haptic devices for the generation
of realistic haptic feedback on virtual object manipulation [10]. With the integration of
haptic devices, they proposed various haptic feedback for virtual objects, such as force
feedback through haptic arms and hands. Borst et al. proposed the virtual grabbing and
manipulation of objects using a magnetic data glove consisting of haptic devices. They
developed linear and torsional spring-damper models with articulated hand models to
accurately track 3D hand information for grasping virtual objects [11]. Although the
proposed models showed good experimental results in terms of perceiving the direct
weights of virtual objects using force feedback, usability issues emerged because of the
complexity of the haptic devices.

Lecuyer et al. discovered that visual feedback can replace haptic feedback, which is
also known as “pseudo-haptic feedback.” Pseudo-haptic feedback can easily be extended
to simple haptic feedback, such as tactile and vibration [12]. To understand the concept
underlying weight perception research, it has been applied to visualize various feedback of
object grasping with the simulation of various simple haptic elements, such as stiffness,
distance, visual appearance, or lifting force of a virtual object. Hummel et al. proposed a
pseudo-weight perception method using a wireless finger-tracking device when a user grabs
and manipulates a virtual object [13]. Pseudo-haptic feedback was adaptively generated
based on the distance between the thumb and index fingers used to grab the virtual object.
Giachritsis et al. developed a multi-finger haptic interface for pseudo-weight perception
methods in unimanual and bimanual lifting tasks [14]. Minamizawa et al. proposed a
wearable haptic device known as a gravity grabber, which is attached to the index finger
and thumb to present weight sensations in virtual objects [15]. The user can feel the
augmented weight and inertia of the virtual object while holding an empty glass and feels
the weight of water that is virtually poured into it. Although the results of the experiments
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showed the possibility of a combination of visual and simple haptic feedback, the weight
perception area is restricted to only the fingers.

Another weight perception research focused on the extension of the perception area
from hand to arm. Hanning et al. developed a pneumatic pseudo-haptic device to represent
the weight perception of virtual objects. Because the pneumatic pseudo-haptic device can
alter the air pressure levels of the haptic interface surrounding a user’s arm, various weights
can be perceived according to different air pressure levels [16]. Zenner et al. investigated
dynamic passive haptic feedback for weight perception [17]. They proposed a combination
of active haptic feedback with actuators and visual passive feedback, called a physical
proxy, to represent the weights of virtual objects. The results showed that the potential
combination and adaptation of feedback could enhance weight perception. Achibet et al.
proposed a body-mounted elastic armature to improve interaction by providing passive
haptic feedback to the user’s hand [18]. The proposed elastic armature links the user’s
hand to his/her body and processes an egocentric force when extending the arm. An elastic
armature was applied for object manipulation and weightlifting. Although the proposed
research showed enhanced results in terms of weight perception, a user still wears or holds
a specific device to perceive the weights of virtual objects.

Research on weight perception without wearing or attaching cumbersome haptic
devices has focused on changing colors or indicators to provide an appropriate weight
perception of virtual objects. Ban et al. conducted a psychological study exposing how
weight perception while grasping objects is affected by visual perception. Based on this
knowledge, they developed a visual feedback system that changes the brightness of virtual
objects to control weight perception and fatigue [19]. After detecting the area of an object,
the system changes its saturation and brightness values through its weight perception
algorithms. Lee et al. presented a visual pseudo-weight perception method by controlling
the current lifting force of virtual objects without attaching haptic devices [20]. They used a
computer vision-based tracking system to recognize hand motions, such as grasping, releas-
ing, and lifting. With the calculation of the gap between the current lifting and ideal lifting
forces, their system provided a “force arrow” interface to indicate the force gap and pro-
vide weight perception. Although conventional weight perception methods improved the
representation of virtual weights, they are not adapted to a user’s personal characteristics.

Another consideration of the pseudo haptic interface is to overcome the material-
weight illusion (MWI) issue. When users are lifting objects of same size, participants
perceive lighter even though the visual appearance is heavier-looking [21–24]. Because
MWI is affected by visual appearance, stimulating other properties in terms of visual
feedback and sensations of a pseudo haptic interface is important to provide proper weight
perception when lifting a virtual object.

Hence, personalization and adaptation may increase the sense of presence in VR appli-
cations. Mourtzis et al. proposed a personalized perception method that adapts educational
content to students’ profiles for factory education in an extended reality environment [25].
Although the domains are different, the idea of personalization can be applied to weight
perception of lifting virtual objects.

3. Research Question

To address some of the above-mentioned gaps and challenges, we wanted to investi-
gate if weight perception could be enhanced by a personalized interface adaptable to the
body size of a user, which guides both lifting force and lifting movement along a person-
alized movement trajectory. We also asked about the difference between the exercising
effects of lifting a virtual object along a personalized movement trajectory from those of
conventional virtual weight perception methods. Furthermore, we were interested in how
different weights could be perceived when the exercise process lifts an object with only one
hand, when an object is lifted with both hands, and when a two-handed object, such as a
barbell, is lifted. We intend to determine the relationship between these differences and the
lifting force control through personalized weight perception. Therefore, we designed two
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user studies. First, we compared the proposed personalized weight perception method
with conventional weight perception methods. Second, we developed and compared three
contents of lifting exercises.

4. Force Gauge Circular Graphical User Interface
4.1. System Overview

The implementation of the proposed pseudo-weight perception method is described
using system diagrams. Figure 2 illustrates the architecture of the proposed system. The hu-
man tracking system Kinect V2 tracks the 3D positions and movements of the left and right
hands, elbows, and shoulders for data input through the input manager. The system calcu-
lates the average distance between joints in the calibration process. Then, the personalized
movement trajectory is generated using the data and Equations (1) and (2). After calibration,
the obtained data were integrated into the weight perception manager. The system checks
the interaction between the user and virtual dumbbell using the Kinect device.
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When grasping occurs, collision detection is performed between the user’s hands and
virtual dumbbell. After confirming grasping occurrence, the pseudo-weight perception
algorithm executes and attains the current lifting forces by calculating the current lifting
force, as defined in Equation (8).

This paper proposes a force gauge circular graphical user interface (FGCGUI) that
allows users perceive personalized weight by controlling the lifting force of a virtual object.
When a user grasps the virtual dumbbell at point A (Figure 3) and moves toward point B,
the proposed algorithm begins to store the hand’s position at every point between points
A and B. During the lifting process, the user selects a standard joint such as the elbow, as
shown in Figure 3. Thus, the movement trajectory of a dumbbell is generally represented
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as a circular arc according to the length of the user’s arm. Another consideration is that the
lifting force generally changes according to the differences in the weight of virtual objects
during the exercise process. If an appropriate lifting force for the virtual object and an
appropriate lifting movement guideline are provided, users can feel an appropriate sense
of weight when lifting the virtual object.
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joint. (B) A user lifts a dumbbell, and the movement trajectory is represented as a circular arc.

4.2. Movement Trajectory

The proposed FGCGUI also visualizes the movement trajectory to provide proper
weight perception and exercise effects (Figure 4). Because the lifting curl is a repetitive
exercise that visualizes a circular arc using an elbow joint fixed as a standard joint, the
proposed system generates a customized movement trajectory according to sampled data
with the density-based spatial clustering of applications with noise (DBSCAN) clustering
algorithm, based on the length of the arm of the user [26]. The proposed system samples
the positions of the hands while the user lifts a virtual object and creates a customized
movement trajectory based on the sampled positions. However, the sampled positions
may not be accurate owing to recognition errors and changes in each input. The proposed
system generates a movement trajectory as non-uniform rational B-spline (NURBS) curves
using De Boor’s algorithm [27] (Figure 4). If the sampled positions are di, then the total
number of sampled positions can be set to n, sampled points (de Boor points) are pi, knots
which produce a vector that defines the domain of the curve can be set to uj, B-splines
function of degree n is set to Ni

n(u) as described in Equation (1). Linear interpolation can
be performed sequentially on di n times for each section between the positions. Because the
linearly interpolated values should be calculated using the curved movement trajectory, we
calculated them as a B-spline curve in a 3D space. The result of this calculation is the sum
of the B-spline functions, as described in Equation (2). Figure 4 shows the generation of the
movement trajectory of the curve using De Boor’s algorithm when there are four sampled
positions from p0 to p3, the outermost lines connecting them linearly, and their knots being
from u = 0 to u = 3. Because the sampled positions become the outermost line and the curve
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is created accordingly, the proposed system determines the sampled positions located at
the outermost part of the recognized hand of the user.

r(u) = p0N3
0(u) + p1N3

1(u) + p2N3
2(u) + · · ·+ pnN3

n(u)

r(u) is the function of B-spline curve with a given knots

pi : sampled points(de Boor Points), i = 0, 1, . . . , D− 1

Nn
i (u) : B-splines basic function of degree n(= 3)

uj :knots produce a vector that defines the domain of the curve,

j = 0, 1, . . . , K− 1, where K = D + n + 1

(1)

Nn
i (u) =

u−ui−1
ui+n−1−ui−1

Nn−1
i (u) + ui+n−u

ui+n−ui
Nn−1

i+1 (u)

N0
i (u) =

{
1 if ui−1 ≤ u ≤ ui
o else

,
D−1
∑

i=0
Nn

i (u) = 1
(2)
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Figure 4. Example of the generation of movement trajectory.

Figure 5 shows the movement trajectory created using Equations (1) and (2) in a
VR environment. When a user creates a movement trajectory, he/she repeats the lifting
process following a video of the fitness trainer’s exercise process (Figure 5). The proposed
system then creates a personalized movement trajectory using the sampled positions of
the elbow and hand of the user. The movement trajectory also changes depending on the
exercise type.
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4.3. Controlling Lifting Force

Throughout the weight-lifting process, the FGCGUI shows whether the current ap-
plied force exceeds or does not exceed the standard force according to the given virtual
dumbbell’s weight and allows the user to control the force according to the FGCGUI. When
the user grasps a virtual dumbbell, the proposed algorithm obtains information about
the position and rotation of the hands, elbows, and arms through the Kinect sensor. The
velocity can be found with distance d at point A at time t2 and distance d at point B at time
t1 using Equation (3).

Vuser = ∆hand position/∆time. (3)

After grasping the virtual dumbbell, the FGCGUI system stores all the values at each
point between points A and B. Hence, every point becomes a new point and has a velocity
value. Velocity regulates the magnitude of the lifting force. Nevertheless, the FGCGUI
system depends on the force. Thus, acceleration is required, and the variation in velocity
seems to be proportional to the lifting forces. However, the FGCGUI system considers
the forces required to lift a real dumbbell’s weights. According to the given velocity at all
points between points A and B, the acceleration can be obtained using Equation (4).

Auser = ∆Vuser/∆time. (4)

After obtaining the acceleration from the user, FGCGUI requires force from the user.
The proposed system should calculate a virtual force to lift the virtual object. However,
because there is no experimentally resolved guideline for the relationship between the
virtual force for lifting a virtual object and the force for lifting a real object, we decided to
use the same virtual force as the force for lifting a real object. Thus, according to Newton’s
second law, the acceleration of an object is reliant on a dual variable: the interim net
force upon the object and the mass of the object. As the mass of an object increases, its
acceleration decreases. Thus, the user force can be calculated using Equation (5).

Fuser = Mvirtual dumbbell weight × Auser. (5)

The proposed system calculates the shape and length of the FGCGUI based on the
two forces. The first force is the user input force while perceiving a virtual weight, and
the second force is the guided force, which demonstrates and evaluates the applied user
force while lifting a virtual weight. The user force Fuser is based on the user acceleration
Auser. Similarly, the guided force Fguided is based on the guided acceleration Aguided: The
procedure for obtaining the user is based on the runtime while picking the virtual weight.



Appl. Sci. 2022, 12, 12414 9 of 26

The FGCGUI system is based on three types of exercises in which the user can perceive
weight. Thus, Aguided is influenced by the type of exercise, weight of the dumbbells, and
the angle of rotation of the arms. Acceleration was obtained within a very short interval.
Therefore, the length of the area is not required.

The Kinect sensor was used to obtain rotation data from the user for Aguided because
of the Kinect sensor limitation, and the data were noisy. Often, the speed and acceleration
of the hands suddenly change drastically, even if you keep your hand still. It appropriately
interpolates the values of the current acceleration and previous acceleration to compensate
for this. Because the cycle of obtaining the acceleration is very short, it does not give a
feeling that the acceleration changes slowly owing to interpolation. After obtaining the data
from Kinect, they were scanned using DBSCAN. After completing the scanning process, the
scanned data were subjected to linear regression, and the guided acceleration was obtained
using Equation (6).

Aguided = Linear Regression × Real mass/Virtual mass (6)

The guided acceleration was obtained using linear regression. The guided force was
obtained according to Newton’s second law. Hence, Fuser and Fguided are obtained. It can
be stated that the force gage is the difference between guided and user acceleration.

As mentioned above, the acceleration of the hand has vividly changed and caused an
interpolation between the current acceleration and previous point acceleration. Because
the acceleration period is very short, there is no impression that the acceleration will slowly
change owing to interpolation, but it affects the force. Equation (7) shows the final force
after interpolation in terms of acceleration and speed. The F interpolation user was obtained
by adding the same force to the user at two points.

Finterpolarion user = 0.4× Fuser−1 + Real mass/Fuser (7)

Because the FGCGUI system is based on force and a circular gage, it is important to
note that the user interface (UI) is made using a unity circular scroll bar, and its value ranges
from 0 to 1 (0.4–0.6 is the range of values between users). However, the exact force and
perceived weight By the FGCGUI depends on the virtual mass, and the acting and guided
forces change as the mass changes. Finally, a graphical UI was created, which represents the
division between the exercising user and the system-guided forces to perceive the weight
through visual feedback based on Equation (8).

ResultUI =
(

Finterpolation user × 0.5
)

/Fguided (8)

When a user grasps a weight, the circular gage instantiates in the head-mounted
display (HMD). Initially, the gage is empty, but when the user applies the force to lift the
weight, the circular gage starts filling from green to red. To provide an appropriate force to
lift a virtual dumbbell, the proposed system is divided into three levels of current lifting
force (Figure 6). If a user lifts the virtual dumbbell with a lack of force, FGCGUI visualizes
the current lifting force in green, as shown in Figure 6A. If a user lifts the dumbbell with the
proper force, FGCGUI visualizes the current lifting force in yellow, as shown in Figure 6B.
If a user lifts the dumbbell with an excessive lift force, the FGCGUI visualizes the current
lifting force in red, as shown in Figure 6C. Although we measured the guide force of real
dumbbells with professional fitness trainers, the personal guide force of dumbbells can be
changed differently according to personal characteristics [28,29]. To address this situation,
the proposed system determines that the circular gauge varies between 0 and 1 as green
and red, respectively, and the ideal point of the force gage is 0.4–0.6 when the user perceives
the weight confidently, as described in Equation (8).
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4.4. Persoanlized Weight Perception Interface in Virtual Gymnasium

The FGCGUI was visualized as a combination of an arc-based movement trajectory
and a circle-based force gauge (Figure 7). After adaptive generation according to the user’s
arm length, the arc-based movement trajectory is fixed during the lifting curl process.
Nevertheless, the circle-based force gauge moved according to the current hand position
during the lifting curl process.
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Figure 7. FGCGUI.

Figure 8 explains the overall process of the proposed personalized weight perception
interface. When a user starts to calibrate the process, the proposed system measures the
3D position and distance of the left and right hands, elbow, and shoulder while the user
stands in front of the Kinect sensor with changing upper body postures between t-pose and
a-pose for 30 s. The proposed system samples specific 3D points of the exercise movements
through the lifting behaviors of the user. Then, the proposed system generates the guided
movement trajectory according to the sampling movements and 3D positions of the joints.
When a user lifts the virtual dumbbell, the proposed system calculates the current lifting
force through the velocity of the movements. The proposed system visualizes a circle-based
gauge that indicates a gap between the standard and current lifting forces.
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5. Application

The proposed personalized weight perception method has been applied to VG simu-
lation with different types of exercises where the user can grasp a virtual dumbbell and
perceive pseudo-weight through visual feedback. The applications of VG are fitness care,
game playing, and physical training in the real world.

As shown in Figure 9, VG system consists of three exercise scenarios: bicep, shoulder,
and barbell bicep curl exercises. The proposed system visualizes three exercise scenarios
when a user enters the VG (Figure 9). A user can select a specific exercise scenario by
clicking one of the three virtual buttons associated with the exercise scenario (Figure 9).
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Figure 9. Proposed three exercise scenarios: dumbbell (bicep), shoulder, and barbell curl.

The three exercised contents utilized FGCGUI according to their characteristics. Be-
cause a user takes turns lifting his/her left- and right-handed dumbbells in the dumbbell
curl exercise, the proposed system provides two FGCGUIs. Thus, the proposed system visu-
alizes the left-handed FGCGUI when a user lifts a left dumbbell, as shown in Figure 10A. It
also visualizes the right-handed FGCGUI when the user lifts the right dumbbell, as shown
in Figure 10B.
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The proposed system slightly changes the standard joint from the elbow to the shoulder
during the shoulder curl process (Figure 11). The arc-based movement trajectory also
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changes according to the changes in the shoulder curl process. Figure 11A,B show the left
and right FGCGUI during a shoulder curl process. A user grasps with his/her two hands
on the same barbell during the barbell curl process (Figure 12).
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6. User Study
6.1. Experiment 1-Comparing with Conventional Pseudo-Haptic Interfaces

Because the classical method for measuring presence uses questionnaires, we con-
ducted the user study with the questionnaires. Participants were asked to live an experience
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of the pseudo-haptic interfaces, then they completed a questionnaire and give their feelings
about their experience.

6.1.1. Materials

The experiments aimed to verify the usability of the weight perception of a user in a
VG environment. Table 1 lists the environment of the experimental system.

Table 1. Experimental system environment.

Item Value

VR HMD Oculus Rift S
PC (Server) i7-8700 CPU (3.2 GHz, 8 cores)/GTX2070
MR Software Unity 2018.4(LTS)
Network Local area network with 100 Mbps bandwidth

To evaluate the usability of the proposed weight perception interface, we compared the
proposed FCGGUI with two other weight perception interfaces [19,20], with defined weight
perception interfaces (Table 2). The “changing visual appearance” interface changes the size
of the virtual object according to actual mass. Because the “changing visual appearance”
interface is a primary pseudo-haptic interface, we selected it as a comparison target. We
also decided on the “force arrow” interface because the “force arrow” controls the lifting
velocity of the virtual object, which is closely related to the FCGGUI.

Table 2. Group of tasks.

Task Pseudo Weight Interface

A Changing visual appearance [19]
B Force arrow [20]
C FCGGUI

6.1.2. Weight Perception

Because the perception of participants is close to conducting a qualitative experiment,
we designed two questionnaires to verify the usability of the proposed weight perception
interface. We had two approaches to the usability of weight perception. We defined five
weight-perception questions to focus on the perception of virtual weights. As part of this,
we extended the conventional weight perception methods [20] with a general sense of
presence questionnaire [30] (Table 3).

Table 3. Questionnaire on weight perception.

Number Questions

WP1 Did you feel the weights of the virtual object?
WP2 Did the weight perception interface indicate lifting forces correctly?
WP3 Was it similar to experience of real lifting exercise?
WP4 Did you distinguish the weight differences of the virtual dumbbells?
WP5 Did you have an exercising feeling effect through the virtual dumbbell curl process?

6.1.3. Interaction

We defined five usability questions to compare the three weight-perception methods
(Table 4). After completing the lifting process, each participant was asked to consider
the 10 questions and give their opinions on a seven-grade scale, ranging from strongly
disagree (1) to strongly agree (7).
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Table 4. Questionnaire on usability of weight perception interface.

Number Questions

U1 How well were you able to control the lifting process?

U2 How much did the control devices interfere with your performance in the lifting
process?

U3 How satisfied are you with the weight perception interface?
U4 Is it easy to use?

6.1.4. Participants

We selected 15 participants aged between 20 and 40 years who had user experience in
3D VR environments. The participants were trained for 15 min in the basic usage of the
proposed VG environment.

6.1.5. Procedure

We divided the participants into three groups and asked them to perform three tasks
randomly to avoid errors in learning effectiveness. In Task A, the visual shape of the
virtual dumbbell is changed according to its weight. The VG visualizes the current lifting
force using a linear-based weight perception interface called “force arrow” in task B. The
proposed FCGGUI was selected for Task C. Table 5 describes the order of the tasks.

Table 5. Order of tasks.

User Group Order of Tasks

U1 A→ B→ C
U2 B→ C→ A
U3 C→ A→ B

Because conventional weight perception interfaces provided only one-handed weight
perception interactions, the proposed system also used a one-handed weight perception
interface in the experiment. The participants lifted two different weights of virtual dumb-
bells (5 and 10 kg, respectively) in the three tasks. One period of lifting curl consisted of ten
lifting virtual dumbbells turns. Each participant performed three periods of lifting curls per
virtual dumbbell weight. After three periods of lifting curls, a switch is made to a different
virtual dumbbell weight.

6.2. Results of Experiment 1
6.2.1. Weight Perception

Figure 13 shows the results of the average points score from the participants’ responses
to the weight perception questionnaires. In terms of the results of weight perception ques-
tion 1 (WP1), the FCGGUI was ranked first. Some participants perceived more weights
of the virtual dumbbells when they followed the lifting force and movement trajectory
according to the arc-based FCGGUI. According to the results of weight perception ques-
tion 2 (WP2), the “force arrow” interface was ranked first because the liner arrow interface
indicates accurate current lifting force. Although the “force arrow” interface was ranked
first, some participants had difficulty matching indicated accurate forces during the lifting
curl process. They were satisfied with the FCGGUI because matching the proper lifting
force was easier than matching that of the force row. The results of weight perception
question 3 (WP3) showed that the changing appearance of the virtual dumbbell was ranked
first. Some participants were not satisfied with the “force arrow” interface because it was
more annoying than the FCGGUI. The FCGGUI was ranked first in terms of the results of
the weight perception question 4 (WP4). Participants could distinguish the real weights of
the virtual dumbbells by controlling the lifting force. According to the results of weight
perception question 5 (WP5), the participants perceived the real lifting exercise effects
with the proposed FCGGUI. For statistical analysis, we conducted an analysis of variance
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(ANOVA) test on the weight perception questionnaire results. Table 6 shows that the
ANOVA test results for the average scores of the weight perception questionnaires for tasks
A, B, and C were statistically significant (p = 0.05).
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Table 6. Results of the ANOVA test of the weight perception in Experiment 1.

Condition ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 12

WP1
F = 28.09292,

pa = 1.82 × 10−8

MSw = 0.71746

Changing Size (M = 3.8, SD = 0.8857)
Force Arrow (M = 5.533333, SD = 0.695238)

FCGGUI (M = 6, SD = 0.571428)

WP2
F = 38.26974,

pa = 3.44 × 10−10

MSw = 0.48254

Changing Size (M = 3.26667, SD = 0.638)
Force Arrow (M = 5.533333, SD = 0.38)

FCGGUI (M = 5, SD = 0.428571)

WP3
F = 6.918,

pa = 0.002529
MSw = 0.542857

Changing Size (M = 5.133333, SD = 0.552381)
Force Arrow (M = 4.133333, SD = 0.4)

FCGGUI (M = 4.466667, SD = 0.666667)

WP4
F = 16.47642,

pa = 5.22 × 10−6

MSw= 0.673

Changing Size (M = 3.933333, SD = 0.78)
Force Arrow (M = 5.133333, SD = 0.695238)

FCGGUI (M = 5.6, SD = 0.542857)

WP5
F = 23.78986,

pa = 1.24 × 10−7

MSw = 0.438

Changing Size (M = 2.866667, SD = 0.552381)
Force Arrow (M = 3.733333, SD = 0.352381)

FCGGUI (M = 4.533333, SD = 0.4)

6.2.2. Interaction

Figure 14 shows the results of the average points of the usability questionnaire mea-
surements. Because participants had difficulty matching the accurate standard lifting force
of the virtual dumbbells, they answered that the best interface in terms of control lifting
force was the FCGGUI, according to the results of usability question 1 (U1). In terms
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of the interference of the weight perception interface during the lifting curl process, the
participants were generally satisfied with the FCGGUI, according to the results of usability
questions 2 (U2) and 3 (U3). Some participants advised that changing the appearance of
the virtual dumbbells was lacking in terms of corresponding information to understand
and help the lifting curl process. According to the results of usability question 4 (U4),
the FCGGUI was lower than “force arrow.” Some participants indicated a lack of under-
standing of the usage of the arc-based movement trajectory together with the circle-based
force gauge. We conducted an ANOVA test on the usability questionnaire results for the
statistical analysis. Table 7 presents the ANOVA test on the average scores of the usability
questionnaire among tasks A, B, and C, which was statistically significant (p = 0.05).
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Table 7. Results of the ANOVA test of the interaction in Experiment 1.

Condition ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 13

U1
F = 47.625,

pa = 1.59 × 10−11

MSw= 0.533333

Changing Size (M = 3.866667, SD = 0.552381)
Force Arrow (M = 5.266667, SD = 0.638)

FCGGUI (M = 6.466667, SD = 0.4)

U2
F = 47.53595,

pa = 1.63 × 10−11

MSw = 0.485714

Changing Size (M = 3.933333, SD = 0.352381)
Force Arrow (M = 2.466667, SD = 0.695238)

FCGGUI (M = 1.466667, SD = 0.409524)

U3
F = 33.87764,

pa = 1.74 × 10−9

MSw = 0.752381

Changing Size (M = 3.466667, SD = 0.4)
Force Arrow (M = 4.933333, SD = 0.92381)

FCGGUI (M = 6.06, SD = 0.86574)

U4
F = 6.679739,

pa = 0.003
MSw = 0.971429

Changing Size (M = 4.46667, SD = 0.98)
Force Arrow (M = 5.666667, SD = 0.952381)

FCGGUI (M = 5.533333, SD = 0.9428)

6.3. Experiment 2—Two Handed Lifting
6.3.1. Materials

We conducted performance evaluations using the FCGGUI because it provides three
types of two-handed lifting exercises. We conducted performance evaluations using the
FCGGUI because it provides three types of two-handed lifting exercises. We asked partici-
pants the same questions as the weight perception and usability questionnaires described
in Tables 3 and 4.
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6.3.2. Participants

Fifteen different participants aged between 20 and 40 years were selected. After basic
training on the proposed VG, the participants were divided into three groups to compare
the three proposed two-handed lifting exercises.

6.3.3. Procedure

Table 8 lists the order of the three exercises (Figures 10–12). In the dumbbell and
shoulder curl situations, the participants lifted two different weights, 5 and 10 kg. In terms
of the barbell curl process, we defined two different weights: 10 and 20 kg. The participants
performed three periods per weight of the dumbbell or barbell. The participants were
asked to complete the same questionnaire about weight perception and usability after the
lifting process.

Table 8. Order of exercising tasks.

New User Group Order of Tasks

NU1 Dumbbell→ Shoulder→ Barbell
NU2 Shoulder→ Barbell→ Dumbbell
NU3 Barbell→ Dumbbell→ Shoulder

6.4. Results of Experiment 2
6.4.1. Weight Perception

Figure 15 shows the results of the weight perception questionnaire measurements
for the three two-handed exercises. According to the results, the dumbbell curl process
shows the best weight perception, and the barbell curl shows the worst weight perception.
Because the participants could only lift one virtual dumbbell with their hand during the
curl lifting process, they were generally satisfied with the dumbbell curl process. As the
length of the movement trajectory was extended and the standard force increased in the
shoulder curl process, the weight perception results of the shoulder curl process were
slightly lower than those of the dumbbell curl process. Some participants had difficulty
performing the barbell curl process owing to the challenge of perceiving the weights of
the two hands simultaneously and recognition errors during the lifting process. Table 9
describes the results of the ANOVA test on the weight perception questionnaire for the
dumbbell, shoulder, and barbell curls. The results were statistically significant (p = 0.05).

Table 9. Results of the ANOVA test of the weight perception in Experiment 2.

Condition ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 14

WP1
F = 3.873,

pa = 0.028594
MSw = 0.625397

Dumbbell (M = 5.933333, SD = 0.638)
Shoulder (M = 5.533333, SD = 0.542857)

Barbell (M = 6, SD = 0.695238)

WP2
F = 5.543147,
pa = 0.0073

MSw = 0.625397

Dumbbell (M = 6.066667, SD = 0.749)
Shoulder (M = 5.4, SD = 0.685714)

Barbell (M = 5.133333, SD = 0.552381)

WP3
F = 4.7233,

pa = 0.0141117
MSw = 0.653968

Dumbbell (M = 5.6, SD = 0.4)
Shoulder (M = 4.933333, SD = 0.495238)
Barbell (M = 4.7333333, SD = 1.066667)

WP4
F = 7.09396,

pa = 0.002217
MSw = 0.473

Dumbbell (M = 5.8, SD = 0.457143)
Shoulder (M = 5.466667, SD = 0.4)

Barbell (M = 4.866667, SD = 0.552381)

WP5
F = 3.37931,

pa = 0.043567
MSw = 0.7365

Dumbbell (M = 5.4, SD = 0.685714)
Shoulder (M = 5.133333, SD = 0.695238)

Barbell (M = 4.6, SD = 0.828571)
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6.4.2. Interaction

Figure 16 shows the results of the measurement usability of the weight perception
questionnaire for the three two-handed exercises. The participants were generally satisfied
with the dumbbell-shaped curl process. Table 10 shows the results of the ANOVA test on
the usability questionnaire, which were also statistically significant (p = 0.05).

Appl. Sci. 2022, 12, 12414 20 of 26 
 

 
Figure 16. Results of average points of the questionnaires for the evaluation of user interaction. 

Table 10. Results of the ANOVA test on the interaction in Experiment 2. 

Condition ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 15 

U1 
F = 13.89231, 

pa = 2.34 × 10−5 
MSw = 0.619 

Dumbbell (M = 5.733333, SD = 0.495238) 
Shoulder (M = 5.533333, SD = 0.552381) 
Barbell (M = 4.333333, SD = 0.809524) 

U2 
F = 17.37273, 

pa = 3.18 × 10−6 
MSw = 0.349206 

Dumbbell (M = 1.666667, SD = 0.238) 
Shoulder (M = 1.733333, SD = 0.495238) 

Barbell (M = 2.8, SD = 0.314286) 

U3 
F = 8.579268, 
pa = 0.000751 

MSw = 0.520635 

Dumbbell (M = 6.4, SD = 0.257143) 
Shoulder (M = 6.066667, SD = 0.495238) 

Barbell (M = 5.33333, SD = 0.809524) 

U4 
F = 4.797753, 
pa = 0.013286 

MSw = 0.28254 

Dumbbell (M = 5.933333, SD = 0.209524) 
Shoulder (M = 5.6, SD = 0.4) 

Barbell (M = 5.333333, SD = 0.238095) 

6.5. Results of Performance Evaluations 
Quantitative evaluations were also conducted during the second experiment. The av-

erage FPS is measured to verify the performance of the FCGGUI. The average recognition 
ratio was calculated using the pose estimation information of the participants and the er-
rors. To measure the accurate gesture analysis of the tracked information, we measured 
the root mean square errors from the DBSCAN results. Figure 17 shows the performance 
evaluations. Because the experimental system environment was fixed, rending speed up 
to 60 FPS, the result of the average FPS was sufficient to use the FCGGUI in real time. 
Although the proposed system did not use recent deep-learning-based pose estimation or 
recognition algorithms, the recognition results were sufficient to provide weight percep-
tion in the simple lifting process. 

Figure 16. Results of average points of the questionnaires for the evaluation of user interaction.



Appl. Sci. 2022, 12, 12414 20 of 26

Table 10. Results of the ANOVA test on the interaction in Experiment 2.

Condition ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 15

U1
F = 13.89231,

pa = 2.34 × 10−5

MSw = 0.619

Dumbbell (M = 5.733333, SD = 0.495238)
Shoulder (M = 5.533333, SD = 0.552381)
Barbell (M = 4.333333, SD = 0.809524)

U2
F = 17.37273,

pa = 3.18 × 10−6

MSw = 0.349206

Dumbbell (M = 1.666667, SD = 0.238)
Shoulder (M = 1.733333, SD = 0.495238)

Barbell (M = 2.8, SD = 0.314286)

U3
F = 8.579268,
pa = 0.000751

MSw = 0.520635

Dumbbell (M = 6.4, SD = 0.257143)
Shoulder (M = 6.066667, SD = 0.495238)

Barbell (M = 5.33333, SD = 0.809524)

U4
F = 4.797753,
pa = 0.013286

MSw = 0.28254

Dumbbell (M = 5.933333, SD = 0.209524)
Shoulder (M = 5.6, SD = 0.4)

Barbell (M = 5.333333, SD = 0.238095)

6.5. Results of Performance Evaluations

Quantitative evaluations were also conducted during the second experiment. The
average FPS is measured to verify the performance of the FCGGUI. The average recognition
ratio was calculated using the pose estimation information of the participants and the errors.
To measure the accurate gesture analysis of the tracked information, we measured the
root mean square errors from the DBSCAN results. Figure 17 shows the performance
evaluations. Because the experimental system environment was fixed, rending speed up
to 60 FPS, the result of the average FPS was sufficient to use the FCGGUI in real time.
Although the proposed system did not use recent deep-learning-based pose estimation or
recognition algorithms, the recognition results were sufficient to provide weight perception
in the simple lifting process.
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6.6. Experiment 3—Virtual Lifting vs. Real Lifting
6.6.1. Materials

Because the proposed system controls virtual lifting force based on control of lifting
speed, another experiment is required to figure out between the force exerted by the user to
lift the weight and the force required to lift the actual heavy object. To address this situation,
we measured the exerted lifting force in both real and virtual lifting processes. The weight
of the virtual and real dumbbells was set to 2.2 kg according to the opinions that users may
be surprised or injured if they lift a real dumbbell that is too heavy while wearing a VR
headset in the preliminary test.
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6.6.2. Participants

We selected adult males between 25 and 30 for the experiment. Participants performed
the virtual lifting dumbbell and the actual lifting dumbbell, respectively, and measured the
EMG (electromyography) sensor value accordingly.

6.6.3. Procedure

Because the amount of muscle strength measured by the EMG sensor differs according
to participants’ physical characteristics, we performed a normalization process of the EMG
sensor values. After the normalization process, the participants lifted the virtual dumbbell
through FCGGUI first. Then, the participants lifted the actual dumbbell while the cognitive
effect of the virtual weight remained. Participants could lift virtual and actual dumbbells for
a total of 9 sets in sets of 10 repetitions. They were provided a 1-min break after completing
one set of exercises to proceed similarly to the actual exercise.

6.6.4. Exert Force with EMG Sensors

In this experiment, an EMG sensor was used to measure the exerted force applied by
the user to lift the object. The EMG signal is an electrical signal that appears according to
the depolarization phenomenon inside and outside the muscle during muscle contraction
and relaxation. We used the iEMG (integrated EMG), which is electromyography that
can determine muscle activity through the cumulative result of muscle activity. The EMG
Envelope can check information, such as muscle activity time, muscle activity period,
instantaneous muscle activity, and muscle control pattern, through patterns that reflect
changes in the state of muscle contraction [31].

Physiolab’s PSL-IEMG2 module was used in the experiment. The output range is
0~3.3 V, and the EMG envelope can be output by changing the RawEMG signal. Figure 18
shows the output graph of the EMG value through the participant’s biceps during the
virtual lifting process. Because the magnitude of the force that participants can generate is
different, the measured EMG sensor values of the participants were converted into values
through normalization based on the minimum value of 0 and the maximum value of 1.
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6.7. Results of Experiment 3Exert Force
Exert Force

Table 11 shows the average force used by the test participants measured during sets
of 10 reps. When lifting a virtual object using FCGGUI, an average force of 0.1646 was
used, and when lifting with actual weight, it was 0.22381, which is about 35.9% more than
the virtual force. In addition, the standard deviation of the virtual force to lift a virtual
object is 0.036225, which is more deviated than the standard deviation of the actual force
required to lift a real object, 0.021803. This means that it is difficult to standardize because
the deviation of the virtual force is larger than the actual force, even though the participants
could perceive the weight of virtual dumbbells.

Table 11. Results of the average measured electromyogram.

Participants FCGGUI Real Lifting

P1 0.1171 0.2308

P2 0.1558 0.2406

P3 0.1326 0.2188

P4 0.1862 0.221

P5 0.2078 0.2636

P6 0.1418 0.1987

P7 0.2155 0.2414

P8 0.2036 0.2238

P9 0.1592 0.2104

P10 0.1264 0.189

Average 0.1646 0.22381

Standard Deviation 0.036225 0.021803

Table 12 describes the result of the ANOVA test on the force required for the user to
lift. The virtual force of lifting the virtual object differs from the exertion force used to lift
the actual object, and the gap between the virtual force and actual force was statistically
significant (p = 0.05).

Table 12. Results of the ANOVA test of the exert force in Experiment 3.

ANOVA Result (pa = 0.05) Mean and SD Results, Stored as in Figure 15

F = 19.61114,
pa = 0.000324

MSw = 0.000894

FCGGUI (M = 0.1646, SD = 0.001232)
Real Lifting (M = 0.22381, SD = 0.000475)

7. Discussion
7.1. Post Experiment about User Preferecens

We conducted a post-experiment of participants and performed user interviews with
the 15 participants after the first experiment. We asked the participants about their pref-
erence for the pseudo-haptic interfaces. Figure 19A shows the results of the preference
questions. According to the pseudo-haptic interface result, FCGGUI was ranked first (80%)
and “force arrow” was ranked second. With the FCGGUI, the participants could control
lifting forces with personalized movement trajectories. Thus, it was easier to perceive vir-
tual weights during the lifting process. Participants who chose the “force arrow” interface
mentioned that the “force arrow” showed an intuitive indicator of lifting velocity. The
participants had problems perceiving the virtual weights with the “changing size” interface.
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Some participants mentioned that a large-size virtual dumbbell felt lighter than other sizes
of dumbbells.
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havior was wrong. Furthermore, the participant mentioned that he could not perceive the 
proper virtual weight of the dumbbell. Figure 20B presents the normal behavior of another 

Figure 19. Results of the number of participants about the preference questions (A) answer to
preference question of pseudo-haptic interface (B) answer to questions of two-handed lifting curl.

We also conducted user interviews with 15 other participants after the second experi-
ment. We asked the participants about their preference for the three two-handed lifting
curls. As shown in Figure 19B, the best-preferred exercise was the “dumbbell curl” pro-
cess because the participants could control their left and right hands, respectively. Some
participants said they best perceived virtual weights and felt exercise effects regarding the
“shoulder curl” process. Regarding the “barbell curl” process, participants were confused
about perceiving the same virtual weights on both hands.

7.2. Lifting Behaviors

According to the results of analyzing the behaviors of the participants, some partic-
ipants’ behaviors became abnormal when they lifted the virtual dumbbell. Figure 20A
shows the abnormal behavior of a participant for whom the angles between the elbow and
hand were incorrect. According to the user interview, he was too focused on controlling the
current lifting force of a virtual dumbbell; thus, he did not realize that his lifting behavior
was wrong. Furthermore, the participant mentioned that he could not perceive the proper
virtual weight of the dumbbell. Figure 20B presents the normal behavior of another partici-
pant with the FCGGUI. The participants, who had wrong behavior in the changing size or
force row method, observed the right behavior of lifting a virtual dumbbell. They provided
feedback describing that they could perceive more weight using the FCGGUI method.
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7.3. Exert Force and Limitations

We performed user interviews with the 10 participants after the third experiment. As a
result of the interview, all of participants answered that they perceived the virtual weights
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of the virtual dumbbell when using FCGGUI. However, the participants answered that the
force to lift a real dumbbell of the same weight differed from the virtual force applied to
the virtual dumbbell. The participants were confused about how much force to apply to lift
the virtual dumbbell. Although the proposed FCGGUI helped the participants by guiding
lifting behavior with the movement trajectory and controlling lifting force with force graph
visualization, participants lifted with much weaker force than the actual dumbbell.

The participants P5, P7, and P8 Table 11 showed that the virtual force using FCGGUI
exceeded 0.2. The participants received personal fitness training regularly and tried to
contract their muscles by giving strength to their arms as much as possible, even when
lifting virtual weights. In addition, most of the participants who participated in other
experiments complained of difficulty recognizing the virtual weight, complaining of a
sense of heterogeneity due to the part where the exerted force was less than the actual
weight in the case of virtual weight interfaces. Although the system proposed in this
paper does not provide the part of increasing virtual force by contracting muscles in the
interface, the participants mentioned that additional research and system expansion would
be possible to reduce the gap lifting force between virtual lifting and actual lifting.

Some participants complained that recognition errors in upper-body tracking could
affect weight perception.

8. Conclusions

In this paper, we proposed an FCGGUI to provide personalized weight perception
for augmented virtuality serious games. To provide personalized weight perception, the
proposed system provides an arch-based movement trajectory for the adaptation of size
and position according to the user’s body characteristics. The system also provides a
circle-based lifting-force indicator for controlling the current lift force of virtual objects.
The proposed FCGGUI interface was implemented and applied to a virtual fitness system,
which could be one of the most promising applications of our approach. According to
the results of user studies, the participants perceived enhanced weight perception and
usability of virtual objects during the repetitive lifting process compared with conventional
approaches. Furthermore, the proposed pseudo-haptic interface could improve the lifting
behaviors of participants through the movement trajectory.

The proposed interface was applied to three two-handed lifting curls such as a dumb-
bell, shoulder, and barbell. According to the measurement results of the weight perception
and usability of the proposed two-handed exercises, participants were generally more
satisfied with dumbbell and shoulder curls consisting of separated two-handed grasping of
virtual dumbbells. Although the barbell curl process showed lower weight perception and
usability with the FCGGUI, the participants were still able to perceive the weights of the
same virtual barbell. According to the result of the experiment on the exerted force through
the EMG sensor value, the participants were aware of the virtual weight. However, the
participants used a lower force than lifting the actual weight.

In future studies, we plan to overcome the current limitations of the proposed weight-
perception interface. The following are some future research ideas:

(1) We will develop and apply a deep learning-based pose estimation algorithm and
gesture analysis method to improve adaptation performance.

(2) We will also extend the proposed weight perception interface to more complex virtual
object manipulations, such as collaborative lifting, moving, and installation.

(3) We will develop a simple pseudo-haptic hardware interface to measure the precise
pressure force to provide exerting force for lifting virtual.
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