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Featured Application: In Situ component and calorific value analysis of mixed coals in a thermal 
power plant. 

Abstract: In Situ monitoring of the calorific value of coal has the advantage of reducing the amount 
of unburned carbon by injecting an appropriate amount of combustion air immediately to induce 
complete combustion. High sulfur concentrations cause severe environmental problems such as 
acid rain. In order to estimate the calorific value and measure the sulfur concentration, a new 
powerful technique for mixed coals was studied. Laser-induced breakdown spectroscopy (LIBS) 
does not require sample preparation. Several blended coals were used for the experiment to 
replicate the actual coal-fired power plant conditions. Two well-known data processing methods in 
near-infrared spectroscopy have been adopted to enhance the weak sulfur emission lines. The 
performance of the partial least square regression model was established by the parameters such as 

coefficient of determination, 2R , relative error, and root mean square error (RMSE). The RMSE 
average was compared with the results of previous studies. As a result, the values from this study 
were smaller by 6.02% for the calibration line and by 4.5% for the validation line in near-infrared 
spectroscopy. The RMSE average values for calorific values were calculated to be less than 1%. 

Keywords: laser-induced breakdown spectroscopy (LIBS); coal; sulfur; calorific value; multivariate 
data processing 
 

1. Introduction 
The environmental impact of coal-fired power generation is growing. Korea is still 

considerably dependent on coal as an energy source due to price competition. The 
contribution ratio of coal-fired power plants to total emission by air pollutants is 2.7% for 
total suspended particles, 3.7% for particle matter 10 (PM10), 4.7% for particle matter 2.5 
(PM2.5), 16.2% for nitrogen oxides (NOx), and 24.1% for sulfur oxides (Sox) in Korea, 
according to the Korea national institute of environmental research data [1]. According to 
this report, the summation of SOx and NOx has the largest proportion, at over 40%. In the 
case of NOx emitted from coal-fired power plants, most of the combined nitrogen comes 
from the combustion air and should be controlled through a denitrification facility. On 
the other hand, in the case of Sox, the use of fuel containing a small amount of sulfur is 
recommended, because the sulfur comes from the fuel itself [2]. By using in situ 
measurement techniques for determining the calorific value of the coal and sulfur 
concentration within the coal, it can be possible to control of the excessive amounts of 
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combustion air and warnings can be given about excessive sulfur concentrations in the 
non-uniformly mixed coal. 

Conventional techniques for quantitatively analyzing element concentrations usually 
need complicated sample pretreatment such as fusion dissolution and microwave 
digestion and require standard reference materials. Due to these problems, analyzing 
many samples can be expensive and quite time-consuming [3]. Thus, a fast and reliable 
analysis method is required. To overcome these limitations of conventional analysis 
methods, many studies have been conducted measuring the element concentration of coal 
using spectroscopy methods. Bona et al. [4] conducted a study to measure the values of 
coal using mid-infrared spectroscopy. In this study, the results of three modes of the 
multiplicative scatter correction (MSC) data preprocessing method were detailed. The 
minimum value of the average root mean square error (RMSE) of sulfur was 37.36%, 
which was somewhat high. Wang et al. [5] conducted a near-infrared (NIR) spectroscopy 
study on the measurement of various properties from four types of coal by applying 
multivariate statistical techniques. The minimum value of the percentage error of the 
mean RMSE of sulfur was 8.98% for full sample sets, and the averaged mean RMSE of all 
kinds of the coal samples was 13.53%. These values were considerably lower than those 
of the mid-infrared spectroscopy study. In recent times, research on a technology called 
laser-induced breakdown spectroscopy (LIBS) have been actively conducted. LIBS is a 
spectroscopic method using lasers. Qualitative and quantitative analysis of elements is 
possible, including lighter elements in the periodic table, regardless of their states of gas, 
liquid or solid. A small quantity of mass on the sample surface is ablated by a focused 
high energy laser beam. The plasma is then generated and expanded above the sample 
surface. Discrete atomic lines are emitted after a cooling process [6]. This emitted light can 
be collected by a spectrometer and used for qualitative and quantitative elemental 
analysis. LIBS has been successfully applied in various fields, especially for element 
analysis. Martin et al. [7] quantitatively identified the elemental composition of 
preservative-treated wood using principal component analysis (PCA). In another study, 
Yao et al. [8] studied a set of fertilizer samples to reveal the correlation of phosphorus and 
potassium using the partial least square (PLS) regression analysis method. These studies 
suggest that elemental analysis with LIBS is feasible and can be applied to sulfur 
concentration analysis. In fact, some studies have attempted to measure the sulfur 
concentration using LIBS. Gaft et al. [9] tried to use single-pulse and double-pulse laser 
irradiation approaches to apply LIBS to on-line sulfur analysis of minerals under ambient 
conditions. However, data processing methods were not used to detect and improve the 
sulfur emission lines in their study. 

From recent studies, it is possible to directly measure the composition of coal using 
LIBS as well as elemental analysis. Yao et al. [10] attempted to employ multivariate 
analysis to extract coal ash content information from LIBS spectra rather than from the 
concentrations of the main ash-forming elements. Gaft et al. [11] have made efforts to 
measure ash in real time by using LIBS. Dong et al. [12] tested the analytical methods with 
partial correlation and principal component regression to extract the correlation between 
the amount of volatile matter and the LIBS spectral information based on coal structure. 
Yuan et al. [13] applied the multivariate dominant factor based on the PLS model to 
demonstrate an overall improvement in performance compared with the conventional 
PLS model for various coal properties such as ash content, volatile matter content, and 
calorific value. 

In spite of these previous research studies on coal calorific values, there still remains 
different perspective issues to be resolved. As more coal-fired power plants in Korea use 
up to four types of coal blending to cut costs; quantitative analysis of blended coal calorific 
values is needed. If only one type of coal is used in the coal-fired power plant, pre-
analyzed data values can be used. However, using blended coal makes it difficult to 
analyze in real-time. Moreover, if the coal samples are not uniformly mixed in the 
conveyor system, heterogeneous distribution of sulfur can occur. The prediction of sulfur 
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concentration by LIBS in conjunction with PLSR, especially for blended coal samples, is 
the main concern of this work. 

From other previous research, two challenges which can be major obstacles in 
detecting sulfur emission lines with LIBS have been identified [14,15]. The most important 
challenge is that the spectrometer of the LIBS system used in this study can only detect 
from 200 to 800 nm spectral range. The strongest intensity of sulfur emission lines usually 
can be detected beyond this limit, at 125–180 nm (vacuum ultraviolet range) [16] and 
longer than 900 nm (near-infrared range) [17]. When using LIBS, the 125–180 nm region 
cannot be measured, and the measurement accuracy is low in the region above 900 nm 
[9]. To overcome this problem, the data quality of weak sulfur ionic emission lines in the 
400–600 nm region needs to be enhanced. Therefore, to determine the proper data 
processing method, two kinds of methods were investigated. These two methods have 
been employed in NIR spectroscopy studies but rarely in LIBS studies. 

In this study, a reduction in the prediction error for sulfur analysis will be attempted 
by applying an appropriate data processing method with LIBS. The calorific values will 
be analyzed without using Dulong’s equation. Ten original coal samples were blended 
with varying blending ratio. Therefore, sixty blended coal samples were used to construct 
the regression model in this work. Furthermore, one kind of coal sample that was not 
applied to consist of the calibration line was verified with our method utilized to estimate 
the sulfur concentration and calorific value of unknown samples. The blended samples 
mixed with the unknown original sample were investigated for verification. 

2. Materials and Methods 
2.1. Materials and Measuring Systems 

Ten bituminous coals, produced in various mining sites in the world, and combusted 
in a coal-fired power plant in Korea, were Gunvor, Peabody, Whiteheaven, Noble, 
MacQuarie, Lanna Harita, Glencore, Carbo One, and two types of MSJ. The blended coal 
samples were prepared by mixing the above 10 kinds of coal. All coal samples were 
pulverized into a powder with a size less than 100 μm and pelletized with a varied mixing 
ratio. Lal et al. [18] proved that the pellet samples could provide the highest possible 
precision. In the case of the powder samples, the shock wave caused by the high energy 
laser pulse can interrupt the sample surface; consequently, the laser pulse was absorbed 
above the sample surface due to the flying debris. In this study, 0.3 g of each blended 
powder sample was pressed by approximately 10 tons for 2 min using a 13 mm diameter 
pelletizer machine. The sulfur concentrations and calorific values to be used in the partial 
least square regression (PLSR) analysis are listed in Table 1, with 60 samples from C1 to 
C60. 

Figure 1 presents the analysis system for pelletized and blended coal samples using 
a J200-EC LIBS system (Applied Spectra Inc., Fremont, CA, USA). Axiom software 
controlled the LIBS system. The 4th harmonic Nd:YAG laser (1064 nm) irradiation with 
energy varying from 9.9 to 87.3 mJ was focused to a 100 μm-sized spot. All emission from 
the laser-induced plasma was collected using an optical fiber bundle with a 5-channel 
charge coupled device (CCD) spectrometer covering wavelengths from 190 to 890 nm. 
This instrument was equipped with a high efficiency particulate air (HEPA) filter that 
could purge the particles from the laser ablation chamber as well as an xyz-translational 
stage. In order to obtain the best signal/background ratio in this study, gate delay time 
and repetition rate were optimized at 1.4 μs and 1 Hz, respectively. The gate delay time is 
the difference between the laser pulse and the emission line collection of the spectrometer. 
For example, zero means that the spectrometer collects the data as soon as a laser pulse is 
initiated. At the initial stage, only small intensities were generated since a continuous 
spectrum was predominantly emitted. After a few microseconds, the peak emission lines 
became apparent. However, if the time delay is too long, the plasma cools down and the 
peak emission lines will not be distinguished. Therefore, it was important to set an 
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appropriate delay time [19]. Even though the coal samples were pulverized and blended, 
sample heterogeneity exists. In order to reduce this problem and shot-to-shot laser 
fluctuation, each blended coal sample pellet was ablated at forty-nine different locations 
using a (7 × 7) grid pattern on the sample surface with a laser pulse energy of 30 mJ. 
Averaged values of the data obtained from these forty-nine locations were used to 
determine the PLSR model. 

To evaluate the performance of sulfur concentration and calorific value, blended coal 
samples were analyzed using the PLSR approach by the Unscrambler X-version 10.3 
(CAMO) software program. In this program, previous multiple Y responses were chosen 
to develop a PLSR model called the PLS2 method. In this work, sixty different blended 
coal samples with various sulfur concentrations from 0.46 to 1.44% were used as the 
calibration data set. The calorific value range of these samples was between 6360 and 7275 
kcal/kg. This calibration model will be used as a good standard for unknown sample 
prediction. To evaluate the prediction ability and reproducibility, the remaining unknown 
original coal sample, which was not included in application of the PLSR model, was 
regarded as an unknown sample and used for regression of prediction data set. 

Table 1. Reference concentrations of blended coal samples. 

Reference Concentration 

Sample S (%) 
Calorific 

Value 
(kcal/kg) 

Sample S (%) 
Calorific 

Value 
(kcal/kg) 

Sample S (%) 
Calorific 

Value 
(kcal/kg) 

C 1 1.3983 6567 C 21 0.5600 6743 C 41 0.5546 6861 
C 2 1.2866 6624 C 22 0.5900 6866 C 42 0.6291 6872 
C 3 1.1749 6681 C 23 0.6200 6990 C 43 0.7037 6882 
C 4 1.0632 6738 C 24 0.6500 7113 C 44 0.7782 6893 
C 5 0.9515 6795 C 25 0.6800 7129 C 45 0.8528 6904 
C 6 0.5183 6935 C 26 0.6300 6580 C 46 1.3383 6567 
C 7 0.5567 7020 C 27 0.5900 6530 C 47 1.1667 6623 
C 8 0.5950 7105 C 28 0.5500 6480 C 48 0.9950 6680 
C 9 0.6333 7190 C 29 0.5000 6430 C 49 0.8233 6737 
C 10 0.6717 7275 C 30 0.4600 6380 C 50 0.6517 6793 
C 11 0.5600 6621 C 31 1.3284 6480 C 51 0.7900 6500 
C 12 0.5800 6623 C 32 1.1469 6450 C 52 0.8000 6571 
C 13 0.6000 6625 C 33 0.9653 6420 C 53 0.8100 6641 
C 14 0.6300 6627 C 34 0.7837 6390 C 54 0.8200 6711 
C 15 0.6500 6629 C 35 0.6022 6360 C 55 0.8300 6782 
C 16 0.8500 6863 C 36 1.4129 6577 C 56 1.4413 6543 
C 17 0.8700 6873 C 37 1.3158 6645 C 57 1.3726 6575 
C 18 0.8800 6883 C 38 1.2187 6712 C 58 1.3039 6608 
C 19 0.9000 6894 C 39 1.1215 6780 C 59 1.2352 6640 
C 20 0.9100 6904 C 40 1.0244 6847 C 60 1.1665 6673 
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Figure 1. Schematic diagram of LIBS. 

2.2. Statistical Analysis 
In order to use the full range of the informative data and to eliminate noise, using a 

data processing method is essential for a robust calibration model. While the LIBS has 
been used for normalizing data treated with processing method in most cases, other 
spectroscopy methods such as NIR spectroscopy have been employed for several data 
processing methods to predict qualitative and quantitative content analysis. 

In this study, Savitzkye-Golay (SG) smoothing and the multiplicative scatter 
correction (MSC) methods were used for the analysis of the concentration in the blended 
coal samples. The SG smoothing method uses linear least squares and fits sub-sets of 
adjacent data with a certain order of polynomial. The SG smoothing method can eliminate 
spectral noise effectively. It is important to properly adjust polynomial order and the 
number of smoothing points when using this method. Among this, the number of 
smoothing points in determining the degree of smoothing is very significant. If the 
number of smoothing points is too small, a calculation error will occur, resulting in poor 
model accuracy. Too many smoothing points will cause the spectral data to become too 
flat and less accurate. Therefore, it is important to test and decide what mode will produce 
the best results by changing the number of points [20]. Seven points and a third-order 
polynomial in the SG smoothing method were selected as a proper mode to avoid either 
calculation error or excessive smoothing. The MSC is another effective data processing 
method. This is used for the correction of non-uniform particle sizes, gap between 
particles, and uneven flatness of the sample surface. This method can modify the spectrum 
of each sample so that all samples have the same scattering signal regarded as an ideal 
spectrum [20]. 

2.2.1. Relative Standard Deviation (RSD) 
Figure 2a shows the entire LIBS spectrum of mixed coal samples 4 and 34 as shown 

in Table 1. The peaks for carbon (247.9 nm), sulfur (416.3 nm), hydrogen (656.3 nm), and 
oxygen (777.4 nm) are clearly distinguished because they are abundantly present in coal 
samples. However, as shown in Figure 2b, the peak (416.267 nm) for sulfur is 
indistinguishable due to its small presence in the coal samples. The composition of S is 
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1.0632 and 0.7837 wt% in samples 4 and 34, respectively. The multivariable analysis can 
be performed based on the maximal intensity of each element. 

 
(a) 

 
(b) 

Figure 2. (a) LIBS spectrum of mixed coal samples 4 and 34, (b) sulfur peak of mixed coal samples 
4 and 34. 

It is important to reduce the peak noise of the sulfur emission line to construct a 
robust PLSR line. When the reproducibility is assessed, the relative standard deviation 
(RSD) is generally used as an appropriate measure. The RSD can be calculated by using 
the following equation [21]: 

1/ 22RSD 100% ( ) / ( 1) / ,ix M n M= × − −    (1)

where n, xi, and M are the number of a set for the measurement, the result of each 
measurement, and the arithmetic mean value of the set of repeated measurements, 
respectively. As the RSD is closer to zero, this means that the reproducibility is better. 

2.2.2. Partial Least Square Regression (PLSR) 
The PLSR model was adopted by using a full cross-validation method on the average 

recorded spectra [22]. The full spectrum range was employed in the model. In this study, 
the coefficient of determination, R2, root mean square error of calibration (RMSEC), and 
root mean square error of cross-validation (RMSECV) were employed as the testing 
parameters for investigating the performance of PLSR. The RMSEC and RMSECV can be 
calculated by the following equation [10]: 
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(2)

where n, 𝑥ො௜, and xi are the number of samples for calibration and validation, the reference 
concentration of the ith sample, and the predicted concentration of the ith sample, 
respectively. The RMSEC and RMSECV obtained from PLSR were used to accurately 
predict the sulfur concentration and calorific value of coal from the unknown samples. If 
these values are zero, they match the measured values. The closer the RMSE values are to 
zero, the better the model. 

As a kind of multivariate analysis method, PLSR can provide a relationship between 
a set of predictor variables, X, and a set of response variables, Y. When the LIBS data is 
processed with PLSR, the predictor variables are the LIBS spectra intensities, and the 
sulfur concentrations are the response variables. The PLSR line is obtained in order to 
minimize the sum of the squared values of the differences between the measured value 
and the function value. Based on the PLSR model created in this part, the validity of the 
unknown sample prediction will be verified. As mentioned above, too many smoothing 
points and too high a polynomial order can cause loss of information. Since the even 
number-ordered polynomial was not different from the original due to the symmetric 
shape, an odd number-ordered polynomial was used. In order to obtain optimal results, 
results were compared by increasing the polynomial order and smoothing points. 
Therefore, in addition to the third-order polynomial, the fifth-order polynomial was 
tested by increasing the number of smoothing points to determine the proper SG 
smoothing mode that produces the best performance of the PLSR. 

2.2.3. Root Mean Square Error (RSME) Average 
To compare the RMSE quantitatively, the RMSE average concept was employed by 

the following equation [23]: 

RMSE
RMSE(avg.)(%) 100

Average of Property
= × . (3)

The RMSE average is calculated by dividing the RMSE by the average of reference values. 
The average of property means the average value of measured reference data that was 
used for the Y value in the PLSR model. 

3. Results and Discussion 
3.1. Sulfur Analysis 
3.1.1. Relative Standard Deviation (RSD) 

Figure 3 represents the RSD results of the original and processed data by the two 
different methods for the major wavelength of sulfur, by using a bar chart. The major peak 
wavelength of sulfur (416.3 nm) line was selected for data analysis. This is because the 
signal to background ratio was the lowest at 416.3 nm. Fifteen out of the sixty samples 
showed the smallest RSD value when applying the MSC data processing method. The 
original data showed the smallest RSD value in only two samples. However, forty-three 
out of the sixty samples showed the lowest RSD value when the SG smoothing method 
was applied. Some samples showed a too large RSD value when the MSC method was 
applied. The SG smoothing-processed data show RSD values with relatively small 
fluctuation. 
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Figure 3. RSD result for the major wavelength of sulfur emission line. 

3.1.2. Partial Least Square Regression (PLSR) 
Figure 4a represents the PLSR of original data. The coefficients of determination, R2, 

for calibration and cross-validation were 0.9265 and 0.8981, respectively. They are larger 
than or very close to 0.90, which shows a good agreement between calibration and cross-
validation. The RMSEC and RMSECV were calculated as 0.0746 and 0.0893, respectively. 
As shown in Figure 4b, the R2 for calibration, the R2 for cross-validation, the RMSEC, and 
the RMSECV were improved slightly when the third-order polynomial with five points 
was used in the SG smoothing method. The R2 of calibration, the R2 of cross-validation, 
the RMSEC, and the RMSECV were 0.9357, 0.9085, 0.0698, and 0.0847, respectively. 

The most widely used third-order polynomial with seven points mode is shown in 
Figure 4c. More precise values can be seen and compared in Figure 4a,b. The R2s for 
calibration and cross-validation were 0.9408 and 0.9146, respectively. The RMSEC and 
RMSECV decreased to 0.0670 and 0.0818, respectively. This means that there is close 
correlation between the reference data and the estimated data. In Figure 4d, both the R2 
for calibration and cross-validation decrease slightly. The R2 of calibration, the R2 of cross-
validation, the RMSEC, and the RMSECV were 0.9384, 0.9107, 0.0683, and 0.0837, 
respectively. This shows that smoothing with many points does not always produce more 
accurate results. The third-order polynomial with seven points removes only noise but at 
more points, the information related to the PLSR as well as the noise is lost due to 
excessive smoothing. Therefore, the estimated Y variance dropped below 95% in the nine 
points mode. The Y variance value means how well the variables fitted in the PLSR model 
and how well they predict new data. Therefore, with regard to the prediction of sulfur 
content, the SG smoothing mode with third-order polynomial and seven points provided 
the best result among the above-mentioned four cases. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4. PLSR model results (a) original data (b) the third-order polynomial with five points (c) 
the third-order polynomial with seven points (d) the third-order polynomial with nine points. 

The cases for the fifth-order polynomial are represented in Figure 5a–d. The R2 of 
calibration, the R2 of cross-validation, the RMSEC, and the RMSECV for the fifth-order 
polynomial with seven points were 0.9357, 0.9091, 0.0698, and 0.0844, respectively. In 
Figure 5b, the R2 of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV 
for the fifth-order polynomial with nine points were 0.9352, 0.9072, 0.0701, and 0.0853, 
respectively. In case of the fifth-order polynomial with eleven points, the R2 of calibration, 
the R2 of cross-validation, the RMSEC, and the RMSECV were 0.9408, 0.9146, 0.067, and 
0.0818, respectively. Figure 5d depicts slightly lower values than the data presented in 
Figure 5c. The R2 of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV 
for the fifth-order polynomial with thirteen points were 0.9392, 0.9121, 0.0679, and 0.0830, 
respectively. From the fifth-order mode, the results were improved successively up to the 
eleven points mode and deteriorated after the thirteen points mode, which caused the R2 
value to decrease and the RMSE values to increase. The explained Y variance fell below 
95% from the thirteen points mode. Since the third-order polynomial with seven points 
and the fifth-order polynomial with eleven points yielded similar results, the third-order 
polynomial with seven points was selected as an appropriate data processing mode. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. PLSR model results (a) the fifth-order polynomial with seven points (b) the fifth-order 
polynomial with nine points (c) the fifth-order polynomial with eleven points (d) the fifth-order 
polynomial with thirteen points. 

Compared with the PLSR results obtained from the original data, PLSR from 
processed data by the SG smoothing method produced better results in terms of the R2 
and the RMSE values. The R2 value of ideal target line is one. This means that the 
correlation between the predicted value and spectral data is robust as the R2 is close to 
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unity. The RMSE is reduced by approaching the ideal target line. As the RMSE is smaller, 
the correlation is closer to the ideal target line. A zero RMSE value means that the 
predicted value with spectral variables obtained by LIBS exactly matches the measured 
value by other conventional analysis methods. Therefore, the prediction ability of LIBS 
can be verified when the RMSE value is close to zero. The R2 values for calibration and 
cross-validation were improved from 0.9265 to 0.9408 and from 0.8981 to 0.9146, 
respectively. The RMSEC and RMSECV values were decreased from 0.0746 to 0.0670 and 
0.0893 to 0.0818, respectively. 

To compare the degree of improvement, the predicted error of sulfur concentration 
between the PLSR for original data and SG smoothing-processed data is shown in Figures 
6 and 7, respectively. The relative error was calculated individually from the reference 
value and predicted value. As shown in Figure 6, it was found that the maximum relative 
error value for PLSR of the original data was 24.61%. The error is quite high even though 
the absolute error was quite low; with a value of 0.1604%. As a result of the sulfur 
concentration in the coal being so small, even a small change can cause large variation. 
Therefore, a slight decrease in the error causes a significant improvement in the precision. 
Compared with the original data, the largest relative error value in processed data with the 
SG smoothing was 20.44%, as shown in Figure 7. When the data processing method is applied, 
the largest relative error value could be reduced by 4.174%. Therefore, the accuracy can be 
improved by processing data in a real-time sulfur concentration measurement system. 

 
Figure 6. Relative error between measured and predicted sulfur concentration for the PLSR of the 
original data. 

 
Figure 7. Relative error between measured and predicted sulfur concentration for the PLSR of the 
SG smoothing-processed data. 

3.1.3. Prediction of Unknown Samples 
Prediction plots can be created to evaluate the prediction ability for the unknown 

samples on the basis of the PLSR results, these are shown in Figure 8. The UO1 and UO2 
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samples were regarded as an unknown sample even though the sulfur concentration was 
known to be 0.8800% by air-dried analysis. The UO1 produced a concentration of 0.8878%. 
This value is calculated as the specifically predicted value from multivariate statistical 
analysis. There is only 0.0078% difference between the reference value and predicted 
value in absolute error terms. The relative error value is as small as 0.8864%. In the case 
of the UO2 sample, the absolute error and relative error values were 0.0998 and 11.341%, 
respectively. Furthermore, the predictability of unknown blended coal samples was 
tested. The unknown original sample and another coal sample were mixed to make five 
blended samples named from UB1 to UB5. Sulfur concentrations in the unknown blended 
samples are listed in Table 2. The absolute errors and relative errors were calculated by 
the PLSR model and are indicated in Table 2. Compared to the original unknown sample 
prediction, the prediction of the blended unknown samples produced similar error values. 
The produced absolute errors varied from 0.0999 to 0.1492% and the relative errors ranged 
from 8.8619 to 11.4769%. 

 
Figure 8. Prediction plot of sulfur analysis for the unknown samples. 

Table 2. Prediction results of sulfur analysis for the unknown samples. 

Sample Number  Measured Value 
(%) 

Predicted Value 
(%) 

Absolute Error 
(%) 

Relative Error 
(%) 

UO1 0.880 0.8878 0.0078 0.8864 
UO2 0.880 0.9798 0.0998 11.3409 
UB1 0.985 0.8851 0.0999 10.1421 
UB2 1.090 1.2115 0.1215 11.1468 
UB3 1.195 1.3009 0.1059 8.8619 
UB4 1.300 1.4492 0.1492 11.4769 
UB5 1.405 1.2706 0.1344 9.5658 

3.1.4. Root Mean Square Error (RSME) Average 
The calculated RMSEC and RMSECV averages for both the original data and the SG 

smoothing-processed data are indicated in Table 3. These values are used for comparisons 
between properties of unequal size. The values in this study can be compared with the 
results of previous studies [4,5]. The RMSEC average for the original data was calculated 
at 7.6019%. For the RMSECV average value, a slightly higher value was produced, at 
9.1453%. In the case of SG smoothing-processed data, improved values were calculated. 
The RMSEC average in this case was 7.5097% and the RMSECV average was 9.0301%. 
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Table 3. The RMSE average values of the sulfur analysis for the original and SG smoothing 
processed data. 

Property Data Process RMSEC Average (%) RMSECV Average (%) 

Sulfur concentration Original 7.6019 9.1453 
SG smoothing 7.5097 9.0301 

3.2. Calorific Value Analysis 
3.2.1. Partial Least Square Regression (PLSR) 

From Dulong’s equation, it can be found that carbon, hydrogen, oxygen, and sulfur 
are the main elements contributing to the higher heating value of coal. Higher heating 
value, HHV can be theoretically estimated by the following equation [24]: 

HHV(kcal/kg)=8080C+34460H-4308O+2250S . (4)

The elemental concentration is by weight percent on a dry basis. The PLSR is a linear 
combination of spectral data and can be used in regression equations. Thus, redundant 
variables can be removed from data with numerous variables and only the most relevant 
variants of the spectrum are used in regression analysis. The effect of each variable on the 
PLSR model can be presented in the form of a regression coefficient plot. The regression 
coefficient summarizes the relationship between all predictors and the given response. In 
the LIBS analysis, spectral data is summarized as variables, mainly seven factors. The 
regression coefficients for these seven factors condense the relationship between the 
predictors and the response, as a model with seven components approximates it. The 
information at the wavelength corresponding to the element that greatly influences the 
property estimation plays an important role. In this study, calorific value will be predicted 
only using the reference calorific value by PLSR instead of predicting the value for each 
element and substituting it into Equation (4). Although the use of segments within the full 
range of the spectrum has been proposed for a better elemental analysis [25], the full range 
of spectra data was used to preserve informative data when creating the PLSR model. This 
is because the wavelengths of the elements that significantly affect the calorific value lie 
in the entire spectral range. The data processing method is essential for a robust 
calibration model. In the case of sulfur concentration measurements, the third-order 
polynomial with seven points in the SG smoothing method was used to eliminate noise. 

Figure 9a,b represents the PLSR results obtained from the original data for calorific 
values and the PLSR results of the data processed by SG smoothing, respectively. When 
compared with the PLSR obtained from the original data, the PLSR of the data processed 
by the SG smoothing produced better results in terms of the R2 and the RMSE values in 
the calorific value estimation. A better result can be found in Figure 9b compared to Figure 
9a. The R2s for calibration and cross-validation in Figure 9a were 0.9359 and 0.9000, 
respectively. The RMSEC and RMSECV in Figure 9a were 52.6233 and 66.8441, 
respectively. In the case of Figure 9b, the R2s for calibration and cross-validation were 
improved to 0.9472 and 0.9182, respectively. The RMSEC and RMSECV values were 
decreased to 47.8026 and 60.4917, respectively. 
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(a) 

 
(b) 

Figure 9. PLSR model results (a) original data (b) the third-order polynomial with seven points SG 
smoothing method applied. 

To compare the degree of improvement, the predicted error of the calorific value 
between the PLSR for original data and the SG smoothing-processed data are shown in 
Figures 10 and 11, respectively. The relative error was calculated individually from the 
reference value and predicted value. There was no dramatic improvement as shown in 
the case of sulfur concentration estimation, but the error was reduced. The maximum 
relative error value for PLSR of the original data was 2.3525%. This value is relatively 
small compared to the error in sulfur concentration analysis. In the case of the processed 
data with SG smoothing, the largest relative error value was 2.1265%. If the concentration 
of elements in coal can be accurately predicted in real-time, it can contribute to complete 
combustion and reduce unburned carbon content by estimating the appropriate amount 
of combustion air. 
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Figure 10. Relative error of calorific value between measured and predicted value for the PLSR of 
original data. 

 
Figure 11. Relative error of calorific values between measured and predicted values for the PLSR of 
SG smoothing-processed data. 

3.2.2. Prediction of Unknown Samples 
Using the spectral data of an unknown sample, the calorific value can be predicted 

by the PLSR model. As shown in Figure 12, seven samples were tested. UO1 and UO2 are 
the unknown samples that were not used in the calibration of the previous PLSR model. 
The samples named from UB1 to UB5 are the blended unknown samples. The predicted 
error in calorific values for the unknown samples are listed in Table 4 using the reference 
calorific value. The calorific values of UO1 and UO2 were known to be 6350 kcal/kg from 
air-dried basis analysis. As indicated in Table 4, the relative errors range from 0.0663% to 
2.7629%. The relative error values of all samples were less than 3%. 

 
Figure 12. Prediction plot of calorific value analysis for the unknown samples. 

Table 4. Prediction results of calorific values for the unknown samples. 

Sample Number Measured Value 
(kcal/kg) 

Predicted Value 
(kcal/kg) 

Absolute Error 
(kcal/kg) 

Relative Error (%) 

UO1 6350.000 6284.033 65.967 1.0389 
UO2 6350.000 6279.933 70.067 1.1034 
UB1 6376.667 6248.880 127.787 2.0040 
UB2 6403.333 6315.346 87.987 1.3741 
UB3 6430.000 6434.265 4.265 0.0663 
UB4 6456.667 6450.932 5.735 0.0888 
UB5 6483.333 6449.053 34.280 0.5287 
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3.2.3. Root Mean Square Error (RSME) Average 
To quantitatively compare the RMSE of the sulfur results, the RMSE averages were 

calculated by dividing the RMSEC and RMSECV by the average of reference calorific 
values. The calculated RMSEC and RMSECV averages for both the original data and the 
SG smoothing-processed data are indicated in Table 5. These values allow comparisons 
between properties of unequal size. Therefore, the calculated values for calorific values 
can be compared with the sulfur concentration measurement results. The RMSEC average 
for the original data and the RMSECV average value for the original data were calculated 
as 0.7826 and 0.9941%, respectively. This is slightly higher than the RMSEC average value 
for the original data. In the case of SG smoothing-processed data, more reduced values 
were calculated. The RMSEC and RMSECV averages were 0.7109 and 0.8997%, 
respectively. In the case of sulfur analysis, the RMSEC and RMSECV average values of SG 
smoothing-processed data were calculated as 7.5097 and 9.0301%, respectively. These 
values are almost ten times higher than the calorific value results. The sulfur content in 
coal is so small; therefore, the error value tends to increase even with small changes in 
sulfur concentration. In the case of the calorific value, it can be seen that it is mainly 
influenced by carbon, referring to Dulong’s formula, since the carbon concentration of the 
coal samples used in this experiment is from 60 to 75%. As a result of the large proportion 
of carbon in the coal, the prediction errors of calorific value are lower than in the sulfur 
concentration analysis. 

Table 5. The RMSE average values of calorific values for the original and SG smoothing-processed 
data. 

Property Data Process RMSEC Average (%) RMSECV Average (%) 

Calorific value Original 0.7826 0.9941 
SG smoothing 0.7109 0.8997 

4. Conclusions 
In this study, LIBS was used to determine the sulfur concentrations and calorific 

values of blended coals. The PLSR with data processing method helped to reduce the 
RMSE values and predict the unknown samples. In the RSD calculation, the SG smoothing 
method showed the lowest value in the largest number of samples and was determined 
to be an appropriate data processing method. Regarding the relative error, the highest 
relative error of original data in PLSR for sulfur concentration analysis was 24.61% and 
this could be reduced to 20.43% as a result of the SG smoothing method. Coal contains a 
small amount of sulfur compared to other elements; therefore, its concentration is hard to 
predict accurately and large errors are obtained. Even a slight improvement can be 
considered to be meaningful in predicting sulfur concentration. In the case of the calorific 
value analysis, the highest relative error of original data in the PLSR analysis was 2.35% 
and for the SG smoothing-processed data in the PLSR analysis it was 2.13%. The 
prediction ability for the unknown samples was evaluated by PLSR analysis. The relative 
errors in the unknown original sample prediction of sulfur concentration were 3.06% and 
4.13%. In addition, the relative errors of the unknown blended sample prediction 
produced an error value ranging from 5.8 to 14.39%. For the prediction of the calorific 
value, all relative errors were lower than 3%. When comparing the lowest value found in 
the reference studies with the largest value of this study, there is only 0.45% difference. 
The RMSE average values for calorific value measurement were smaller than 1%, which 
were much smaller than the results of the sulfur concentration measurement. Therefore, 
this approach will be effective to improve detection ability of the sulfur content in coal for 
in situ monitoring in a coal-fired power plant. Furthermore, this technique combined with 
the data processing method is expected to contribute to reducing environmental pollution. 
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