
����������
�������

Citation: Geng, Y.; Zhu, Y.; Li, Y.; Sun,

X.; Li, B. Multi-Feature Extension via

Semi-Autoencoder for Personalized

Recommendation. Appl. Sci. 2022, 12,

12408. https://doi.org/10.3390/

app122312408

Received: 6 November 2022

Accepted: 1 December 2022

Published: 4 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multi-Feature Extension via Semi-Autoencoder for
Personalized Recommendation
Yishuai Geng 1,2 , Yi Zhu 1,2,*, Yun Li 1,2, Xiaobing Sun 1,2 and Bin Li 1,2

1 School of Information Engineering, Yangzhou University, Yangzhou 225127, China
2 Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service,

Yangzhou 225127, China
* Correspondence: zhuyi@yzu.edu.cn; Tel.: +86-152-2150-7475

Abstract: Over the past few years, personalized recommendation systems aim to address the prob-
lem of information overload to help users achieve useful information and make quick decisions.
Recently, due to the benefits of effective representation learning and no labeled data requirements,
autoencoder-based models have commonly been used in recommendation systems. Nonetheless,
auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most
existing methods ignore the hidden relations between extended features, which significantly affects
the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension
method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxil-
iary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to
learn hidden relations on top of item features and embed them into low-dimensional feature vectors.
Finally, the resulting feature vectors, combined with the original rating matrix and side information,
are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experi-
ments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to
state-of-the-art methods.

Keywords: multi-feature extension; autoencoder; personalized recommendation; collaborative filter-
ing; knowledge graph

1. Introduction

In the past decade, due to the explosive growth of the Internet and the resulting
surge in data, people have easier access to a vast array of online products and multimedia
content. While this growth allows users to have multiple choices, it also makes it difficult
for users to choose their favorite among multiple candidates [1]. Recommendation System
(RS) can effectively help users find valuable information and make decisions quickly to
reduce information overload, which is recently utilized in e-commerce [2], e-learning [3],
and intelligence education [4].

Among all the RS methods, Collaborative Filtering (CF) aims to achieve the feature
representations of users and items and predicts new rating information with the feedback
information. Traditional model-based CF methods commonly use machine learning models
to extract hidden features between users and items and conduct appropriate recommenda-
tion models. Matrix Factorization (MF) models are the most used among these models [5].
However, the latent features learned by MF are generally inefficient, especially when the
rating matrix is highly sparse. Along this line, there has already been some effort in devot-
ing mining and exploiting hidden features of both implicit and explicit feature information
to enhance recommendation accuracy.

Motivated by the application of deep neural network in various fields, including
speech recognition and computer vision [6], deep neural network based recommendation
methods have a profound impact on practical applications due to their stronger latent
feature representation learning capability and flexible model structure. However, the most

Appl. Sci. 2022, 12, 12408. https://doi.org/10.3390/app122312408 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312408
https://doi.org/10.3390/app122312408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1034-8126
https://doi.org/10.3390/app122312408
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312408?type=check_update&version=2

Appl. Sci. 2022, 12, 12408 2 of 15

models still rely on considerable labeled data and the training time is prolonged [7]. Au-
toEncoder (AE), a type of artificial neural network, has recently observed a lot of work
performed on top of them. AEs have also been actively used in CF models due to their
superiority in non-labeled data requirements and quick convergence. While autoencoder-
based methods have had some success in predicting the correct items for users—such as in
Yelp, Netflix, or Amazon—significant challenges remain in the face of data sparsity, which
directly affects RS performance. However, some methods have utilized auxiliary informa-
tion for data sparsity [8,9]. However, two major issues still hinder the further development
of these methods. First, the auxiliary information available to users and items for feature
extension is usually limited. Second, most existing methods ignore the hidden relations
between extended features, which significantly affects the recommendation performance.

To address the above issues, we propose a multi-feature extension method via a
semi-autoencoder to improve personalized recommendation performance, called MFSAE.
Considering that Knowledge Graph (KG) can produce reliable semantic retrieval data, we
extract the auxiliary information of items through an open KG, which can be used as an
additional attribute for the recommendation. To be more precise, we first extract the feature
expansion information of items from DBpedia (an open KG based on Wikipedia). Secondly,
we leverage the LSI model based on the Latent Semantic Analysis (LSA) model to learn
hidden relations on top of item features and embed them into low-dimensional feature
vectors. Finally, the resulting feature vectors, combined with the original rating matrix
and side information, are fed into a semi-autoencoder for recommendation prediction.
MFSAE enriches the content of auxiliary information and mines the similarity between
expansion features to improve recommendation performance. Extensive experiments
on two MovieLens datasets validate the effectiveness of MFSAE. Our contributions are
outlined below in brief:

• We propose a novel semi-autoencoder based recommendation method, which in-
troduces an open KG to extend the auxiliary feature information of items, and the
captured information can be used flexibly and conveniently.

• We introduce LSI model to learn hidden relations on top of item features and embed
them into a low-dimensional feature vector, which is combined with the original
rating matrix and item attribute information to feed into a semi-autoencoder for rating
prediction. It can effectively enhance recommendation accuracy.

• We conduct extensive experiments on the MovieLens datasets to demonstrate the
superiority of MFSAE over competing for MF and deep neural network methods.

2. Related Work
2.1. Collaborative Filtering

CF is one of the most critical methods in RSs. CF-based methods find user preferences
by mining historical interaction information between users and items and recommend
potentially interesting items to users. In general, CF methods are divided into memory-
based methods and model-based methods [10]. Memory-based CF aims to compute the
similarity between users and items. This method is widely used due to its efficiency
and ease of implementation. However, as the recommendation system size and data
sparsity increase, the computation of similarity becomes more difficult. To address the
above issues, various model-based CF methods have been proposed, which aim to build
recommendation models based on extracting hidden features between users and items,
such as latent semantic models [11], clustering models [12], MF models [13], etc.

Among various CF methods, MF is commonly used, which maps users and items to
vectors of the same dimension to represent the latent features of the user or item. The classi-
cal MF methods include Singular Value Decomposition (SVD) [14] and Probabilistic Matrix
Factorization (PMF) [15]. Compared with MF, Juan et al. introduced the feature domain
and proposed the field-aware factorization machine model to further enhance the feature
crossover ability [16]. Although the MF-based methods achieves excellent performance in

Appl. Sci. 2022, 12, 12408 3 of 15

RS, it still suffers from the severe cold-start problem, that is, what suggestions should be
given when a new user or item enters the system [17].

Recently, incorporating side information in CF is effective in dealing with the issues
with cold starts and data sparsity [18]. For example, Symeonidis and Malakoudis proposed
a multidimensional MF model using CF to predict course ratings based on external resource
information and make them available for users to reference [19]. Rashed and Grabocka et al.
proposed a Graph features-based Recommendation metohd (GraphRec) to extract generic
graph-based attribute features for both users and items to improve recommendation perfor-
mance [20]. Wang et al. proposed a method for collaborative knowledge-aware attentive
networks that use the KGs to acquire side feature information and analyze potential seman-
tic relationships [21]. To some extent, the aforementioned methods can ease the existing
difficulty, however, how to learn more effective feature representations has influenced the
further development of these methods.

2.2. Deep Learning-Based Recommendation Methods

At present, the existing methods based on deep learning have become effective re-
sources for learning feature representation and provide various methods for improving RS
performance [22]. Deep learning can disentangle the underlying explanatory factors behind
the data and has made remarkable progress in learning effective feature representations for
recommendation [23]. For example, Wei et al. offered two models to solve the incomplete
and complete cold-start problem for new items, which combine CF methods to incorporate
content features into cold-start item rating predictions [24].

With the rapid development of deep learning, various approaches, including Convo-
lutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and AE, have been
extensively utilized in the recommended system [25]. For example, Zhou et al. proposed
an integrated CNN-RNN framework to model and analyze patient-physician-generated
data [26], but the model still relies on considerable labeled data and the training time
is prolonged. In addition, Dau and Salim conducted a comprehensive and systematic
investigation of RS based on deep learning, which revealed that AE is the most widely
used deep learning framework until 2020 [27]. AEs are deep learning architectures for
unsupervised learning that can efficiently recover data from a reduced encoded repre-
sentation to the original input representation [28,29]. Due to the fast convergence rate
and the no label requirement, Sedhain et al. proposed an Autoencoder-based Recommen-
dation system (AutoRec) [30]. It encodes the user or item representation and leverages
the generalization ability of the autoencoder to make recommendations. Along this line,
several variants of autoencoder, such as denoising autoencoder [31], variational autoen-
coder [32], and stacked autoencoder [33] were proposed by later researchers and applied to
recommendation systems.

Along this line, Zhang et al. proposed a Hybrid Collaborative Recommendation model
based on Semi-Autoencoder (HCRSA) [8], which can generate personalized recommen-
dations with auxiliary information and learned nonlinear features of users and items;
the details are shown in Section 3.1. Moreover, Yang et al. proposed a Personalized Recom-
mendation method via KG (PRKG), which obtains single side information through KG [34].
These works are close to ours, but with the following two main differences: (i) Considering
less auxiliary information available, we utilize the KG to obtain more side feature infor-
mation as additional attributes for the recommendation; (ii) since the semi-autoencoder
models ignore the hidden relationships between mining features, we introduce the LSI
model for hidden relationships mining among multiple features, which can be used as a
favorable basis for the recommendation. We also transform the feature information into a
low-dimensional feature vector, which helps to reduce the sparsity of the input model data.

Appl. Sci. 2022, 12, 12408 4 of 15

3. Preliminaries
3.1. AutoEncoder and Semi-AutoEncoder

The AEs are deep learning architectures for unsupervised learning, which is mainly
characterized by learning and representing input information as an objective. Through the
reconstruction of the representation, the model seeks to minimize the discrepancy between
the input and output data [28,29]. Recently, AEs have been frequently used for feature
extraction, anomaly detection, and dimensionality reduction [35].

In light of the AE, Zhang et al. suggested to break the dimensionality restriction of the
output, and the input must be equal [8], which can design the two variants of AE. The input
layer of these variants can be longer/shorter than the output layer. The model shown
in Figure 1b can be properly trained, but it is difficult to give a reasonable interpretation
for these generated entries. The structure of semi-autoencoder is shown in Figure 1a;
compared to traditional autoencoder, semi-autoencoder models make it easier to combine
more features in the input layer, which can learn a better feature representation and mitigate
data sparsity of the rating matrix.

Similar to the autoencoder model, the structure of semi-autoencoder has three layers
as well: input layer x ∈ <S, hidden layer ξ ∈ <H and output layer x′ ∈ <D, where
H < D < S. The network is formulated as (1) and (2):

ξ = f (W · x + b) (1)

x′ = g
(
W ′ · ξ + b′

)
(2)

where W ∈ <H×S, W ′ ∈ <D×H are the weighting matrices, and b ∈ <H , b′ ∈ <D are
the bias vectors. Moreover, the nonlinear activation functions of the encode and decode
layers are represented by f and g, respectively. Unlike the traditional autoencoder model,
the subset sub(x), which is taken from the input x and has the same dimension as the
output x′, is reconstructed by the semi-autoencoder from the input. The objective function
can be formulated as (3):

min
W,W ′ ,b,b′

J =
∥∥sub(x)− x′

∥∥2
(3)

(a) (b)

Figure 1. The two variant structures of AutoEncoder. (a) The input layer is longer than the output
layer. (b) The input layer is shorter than the output layer.

3.2. Knowledge Graph

As a representation of information as a semantic graph, KG has attracted extensive
research both in industry and academia [36]. The KG aims to describe the knowledge and
establish the relationship between various things with a graph model. The KG consists
of nodes and edges. Nodes can be entities, such as a person, a book, etc., or abstract

Appl. Sci. 2022, 12, 12408 5 of 15

concepts, such as artificial intelligence, KGs, etc. Edges can be attributes of entities, such as
names and book titles, or relationships between entities, such as friends and spouses [37].
The users can easily obtain precise information from the KG and also obtain assistance
in understanding the relationships between various items. They have led to significant
possible solutions for numerous tasks, including question answering, personalized recom-
mendation, and information retrieval.

DBpedia (https://www.dbpedia.org/ (accessed on 12 September 2022)) is a crowd-
sourced community that is an early semantic web project and a linked dataset extracted
from Wikipedia. It provides a way to gather, organize, share, search, and use information
while storing knowledge in a machine-readable format. After several years of continuous
evolution, DBpedia now contains 3 billion resource description frameworks, of which
0.58 billion are extracted from the English Wikipedia and 2.46 billion are taken from other
language editions, collected in DBpedia Commons, Wikidata, and other databases. Un-
til 2017, DBpedia has become one of the largest representatives of linked open data, which
is used in URI lookup services, query generators, etc. [34]. In this paper, we introduce DB-
pedia to obtain auxiliary feature information for items and analyze the hidden relationships
between features, which can effectively mitigate data sparsity.

4. Methodology
4.1. Feature Representation Method Based on LSI Model

In traditional feature representation learning algorithms, One-Hot coding is mostly
applied to process discrete feature data. However, when there are numerous types of data,
the generated vectors are highly sparse, which is called “dimension explosion” [38]. Vector
mapping is an effective approach to address this problem, which has the capability of
learning a low-dimensional continuous vector representation of items, and the mapping
results for items with similar actual meanings in the vector space have similar distances.
Vector mapping methods reduce noise and redundant information and preserve structural
information between data. Common vector mapping methods include MF, random walk
algorithms, and deep neural network models. Alternatively, vector mapping methods can
use dense low-dimensional numerical feature vectors to represent high-dimensional sparse
features [39]. This method also supports subsequent network processing tasks, including
node classification [40], node clustering [41], and network visualization [42].

LSA belongs to the topic model, which is constructed by SVD. It relies on a statistical
analysis of a large set of texts to extract the semantics of words hidden in the context from
the analyzed data. Figure 2 depicts the basic structure of the LSA model. First, the text
dataset is analyzed and then the vocabulary text matrix corresponding to the text dataset
is established. The resulting lexical text matrix is then decomposed into singular values
with SVD. The process aims to map the vocabulary and text into the same vector space.
The decomposed matrix is then dimensionally reduced and the processed low-dimensional
data is used to construct the final latent semantic space. Compared to the traditional vector
spaces, the semantic space constructed by the LSA principle has a smaller dimension,
which effectively addresses the negative effects of synonyms and enhances the semantic
relationship between words. LSA is a classic bag-of-words model and neglects word order.
However, the main task of LSA in our method is to implement a vectorized mapping of
the collected item features; the involved item features do not exist sequentially and do not
affect the accuracy of the recommendation results.

In our proposed method, we introduce the LSI model from Gensim (http://pypi
.python.org/pypi/gensim, accessed on 20 September 2022), which is a python library
for automatically extracting semantic topics from documents to complete the vectorized
mapping of features. LSI model first builds a dictionary according to the vocabulary
data set and generates the corresponding bag of words model. It calculates the weight
of words based on Term Frequency-Inverse Document Frequency (TF-IDF) [43]. TF-IDF
refers to the larger the weight, the greater the importance of the word to the document.
Finally, it reduces the dimensionality through the LSA algorithm to filter out word noise.

https://www.dbpedia.org/
http://pypi.python.org/pypi/gensim
http://pypi.python.org/pypi/gensim

Appl. Sci. 2022, 12, 12408 6 of 15

The processed results are used as auxiliary information for the items, which effectively
solves the sparsity problem in the personalized recommendation.

Figure 2. The whole framework of the LSA model.

4.2. MFSAE for Personalized Recommendation

The overall framework and detailed description of MFSAE are illustrated in Figure 3.
Considering that the rating matrix R ∈ <n×m in real-world scenarios is usually extremely
sparse, we introduce the own attributes information of items such as the genres and release
date in the movie datasets, which is denoted as <k1 , and Ai ∈ <k1 denote the attributes
information for item i, AI ∈ <m×k1 is denoted as the attributes information vectors of all m
items. In addition, considering the limitation of extensible feature information, the DBpedia
is introduced to obtain all movie languages as auxiliary information for the model. The LSI
model is introduced to embed language feature information into a low dimensional vector
R ∈ <k2 , where k2 represents the output dimension of LSI model data in the model,
Li ∈ <k2 denote the movie language vector of item i, and we denote LI ∈ <m×k2 as the
language vectors of all m items. MFSAE is first introduced to incorporate the rating vector
Ri, the attributes vector Ai and the extended language features Li. The model’s input can
be formulated as con

(
Ri, Ai, Li):
con
(

Ri, Ai, Li
)

def
= connection o f Ri Ai and Li (4)

The con
(

Ri, Ai, Li) ∈ <n×(m+k1+k2) refers to the connection of RI , AI and LI , where
RI ∈ <n×m represents the rating vectors, AI ∈ <n×k1 represents the attribute information
vectors of all items and LI ∈ <n×k2 represents the language vectors of all items. Then,
the model learns the compressed reconstructed output from the input con

(
RI , AI , LI);

the encoding stage can be formulated as (5):

ξ = f
(

con
(

RI , AI , LI
)
·W + b

)
(5)

where W ∈ <(m+k1+k2)×h is the weight matrix, b ∈ <n×h is bias vector and f is the sigmoid
function for nonlinear activation. The decoding stage can be formulated as (6):

R′ = g
(
ξ ·W ′ + b′

)
= g

(
f
(

con
(

RI , AI , LI
)
·W + b

)
·W ′ + b′

) (6)

where W ′ ∈ <h×m and b′ ∈ <n×m represent the decoding layer’s weight matrix and bias
vector, respectively, and g stands for the identity function for nonlinear activation. Notably,
the Stochastic Gradient Descent (SGD) method is used for model optimization in the semi-
autoencoder. Furthermore, the weight matrix W and W ′ of the `2 norm regularization are
added to the objective function for avoiding overfitting, which can be formulated as (7):

J = ‖W‖2
2 +

∥∥W ′
∥∥2

2 (7)

Similar to the autoencoder, we compute the loss function of the weight matrix of
the encoding and decoding stages, which can enhance the auxiliary information for the

Appl. Sci. 2022, 12, 12408 7 of 15

reconstruction of RI and improve prediction accuracy. Thus, the objective function can be
formulated as (8):

Jitem =
∥∥∥(R′ − RI)

∥∥∥2
+α · J (8)

where α is the trade-off parameter that controls the balance of the regularization terms.
The best recommendation result is obtained by minimizing the error between input R
and output R′. When the model converges, the matrix R′, the output layer of the semi-
autoencoder, is used for prediction. The details of MFSAE are summarized, as follows
Algorithm 1.

Algorithm 1 Multi-feature extension via semi-autoencoder for personalized recommendation

Require: The rating matrix R ∈ <m×n, trade-off parameter α, the dimension of hidden
layers h.

Ensure: The predicated rating matrix R′.
1: Get the original attribute information vector Ai for each item;
2: Apply DBpedia to obtain the language of the movie, and use LSI model to obtain

low-dimensional feature vectors Li for each item;
3: Input the concatenation vectors con

(
RI , AI , LI) of the item’s rating vector RI and

extended information AI , LI into the semi-autoencoder;
4: Initialize W, b and W ′, b′ randomly, respectively;
5: Minimize

∥∥RI − R′
∥∥2

2 with SGD method until convergence;
6: return The predicated rating matrix R′;

Figure 3. The whole framework of the MFSAE.

5. Experiments
5.1. Datasets

In this paper, we conduct experiments using three movie datasets, MovieTweetings
(https://github.com/sidooms/MovieTweetings (accessed on 27 September 2022)) (10 K)
and MovieLens (http://files.grouplens.org/datasets/movielens (accessed on 29 September
2022)) (100 K and 1 M). Each dataset is highly sparse and contains information about users,
movies, movie features, and ratings. Table 1 displays details about the three datasets.

MovieTweetings: This dataset is a collection of movie data from Twitter that has been
widely used over the past decade [44]. Each rating is rated on a scale of 1 to 10, the higher

https://github.com/sidooms/MovieTweetings
http://files.grouplens.org/datasets/movielens

Appl. Sci. 2022, 12, 12408 8 of 15

the rating, the more the user prefers the item. For our experiments, we select a 10 K
snapshot of MovieTweetings and retained only users who rated at least 10 movies.

MovieLens: It is a well-known and frequently used recommendation dataset. Each
user has rated at least 20 movies, with a rating being an integer between 1 and 5. Moreover,
the 1 M dataset is sparser than the 100 K dataset.

Table 1. Details of three datasets.

Dataset #Users #Items Ratings Sparsity% Item Features

MovieTweetings 10 K 123 3096 2233 99.41% Release date; Genres

MovieLens 100 K 943 1682 100,000 93.70% Release date; Genres

MovieLens 1 M 6040 3900 1,000,209 95.74% Release date; Genres

5.2. Compared Methods

To evaluate the performance of MFSAE, we compare it with MF, deep neural networks,
and graph methods. Details of these baseline recommendation methods are listed below:

• SVD++ [14]. SVD++ combines latent factors and neighborhood models into a single
recommendation model by leveraging both explicit and implicit user feedback.

• I-AutoRec [30]. Item-based AutoRec (I-AutoRec) model learns effective feature repre-
sentations of items for recommendation using an autoencoder.

• HCRSA [8]. HCRSA breaks the restriction that the dimensions of the autoencoder’s in-
put and output layers be equal and introduces auxiliary information for representation
learning.

• GraphRec [20]. GraphRec co-embeds users and items into a shared latent space and
utilizes the Laplacian of the user–item interaction graph to extract generic graph-
based attribute features. This model only needs the rating matrix and all attribute
information is extracted from the structure of the graph.

• PRKG [34]. PRKG extracts side information from DBpedia and encodes it into a low-
dimensional representation with an autoencoder and introduces a semi-autoencoder
to fuse the side information for the recommendation.

5.3. Implementation Details

In all experiments, we set the regularization parameter α = 0.05 and the learning rate = 0.001
for all datasets. For all AE-based methods, we choose Identity and Sigmoid as the nonlin-
ear activation functions of the encode and decode layers, respectively. The optimization
method is the Adam method of SGD, epoch = 65, batch size = 300. Notably, in this paper,
all results are acquired by averaging five repetitions of the experiment. Moreover, we also
clearly list the other implementation details of all methods, as follows:

• SVD++: This method is implemented through the Personalized Recommendation
Algorithms (PREA) toolkit [45].

• I-AutoRec: We choose the item-based autoencoder recommendation model and set
the hidden neuron = 500.

• HCRSA: We performed the source code of HCRSA (https://github.com/cheungdav
en/semi-ae-recsys (accessed on 2 October 2022)). The side information includes the
release date and genres of movies.

• GraphRec: We performed the source code of GraphRec (https://github.com/ahm
edrashed-ml/GraphRec (accessed on 4 October 2022)). We choose GraphRec with
extended side feature for comparison.

• PRKG: According to the source paper, we obtained the language of all movies via
DBpedia. We reproduce the model in the experiment with all parameter settings
consistent with the source paper.

• MFSAE: For fairness, we introduce the same item extension feature information as
HCRSA, GraphRec and PRKG.

https://github.com/cheungdaven/semi-ae-recsys
https://github.com/cheungdaven/semi-ae-recsys
https://github.com/ahmedrashed-ml/GraphRec
https://github.com/ahmedrashed-ml/GraphRec

Appl. Sci. 2022, 12, 12408 9 of 15

5.4. Evaluation Metrics

We use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in the
experiments to evaluate the performance of all methods in this paper. These formulas of
metrics are defined as (9) and (10). Significantly, smaller MAE and RMSE values indicate
higher performance.

MAE =

∑
ru,i∈TestSet

∣∣∣ru,i − r′u,i

∣∣∣
|TestSet| (9)

RMSE =

√√√√√ ∑
ru,i∈TestSet

(
ru,i − r′u,i

)2

|TestSet| (10)

where ru,i represent the original rating matrix and r′u,i represent the predication matrix from
the semi-autoencoder.

5.5. Experimental Results

For each dataset, a sample of 50%, 60%, 70%, 80%, and 90% is utilized for training,
while the remainder is used for testing. The experimental results of MAE and RMSE on
two MovieLens datasets are presented in Tables 2–4 and Figures 4 and 5. With different
numbers of training samples, the values in bold in the Tables indicate the best among all
methods and the following observations can be drawn from the experimental results:

• The histograms in Figures 4 and 5 reflect that the RMSE and MAE values of all methods
decrease periodically as training data increases, indicating that the performance of all
methods improves as training data increases.

• Traditional models based on MF (such as SVD++) perform poorly due to data sparsity.
Compared with this method, deep neural network methods (such as I-AutoRec,
HCRSA, PRKG, and MFSAE) can achieve better performance, showing deep neural
networks’ powerful ability to learn personalized feature representations.

• In the autoencoder-based methods, the performance of MFSAE is better than the
I-AutoRec, HCRSA, and PRKG models. The HCRSA method solves the data sparsity
problem on top of I-AutoRec by introducing additional attribute information and the
PRKG adds side information by introducing additional features via a KG. However,
MFSAE introduces external extended feature information via DBpedia and uses LSI
model to learn hidden relations. This shows the superiority of effective side informa-
tion in improving personalized recommendation performance and the advantage of
feature representation learning.

• Moreover, GraphRec achieves excellent recommendation performance on the Movie-
Lens dataset due to the introduction of item and user graph features. GraphRec
performs better than MFSAE when the training rate is 0.5 or 0.6, which means that
the graph feature representation is more efficient when the data is sparse. Moreover,
MFSAE outperforms GraphRec when the training data is large, reflecting the strong
advantage of deep learning feature representations. Notably, the model structure of
MFSAE is simpler.

• Typically, data sparsity has been an essential factor for recommendation performance.
As shown in Table 1, MovieTweetings 10 K, with tiny rating data, is the sparsest
and MovieLens 1 M is more sparse than MovieLens 100 K. From the results, we can
conclude that the performance of RS methods, especially deep learning models, will
be considerably affected by the amount of training data.

• Overall, MFSAE performs better than most methods. Due to its simple structure for
learning the latent features of the side information introduced by DBpedia through
LSI model, MFSAE achieves stable and better performance.

Appl. Sci. 2022, 12, 12408 10 of 15

Table 2. The performance of MAE and RMSE on MovieTweetings 10 K dataset.

Metrics Methods
Proportion of Training Data

50% 60% 70% 80% 90%

MAE

SVD++ 1.472 1.392 1.231 1.227 1.140
I-AutoRec 1.496 1.448 1.323 1.366 1.298

HCRSA 1.230 1.174 1.123 1.086 1.015
PRKG 1.018 0.976 0.931 0.891 0.886

MFSAE 0.892 0.887 0.852 0.836 0.817

RMSE

SVD++ 1.768 1.624 1.529 1.498 1.452
I-AutoRec 1.731 1.668 1.607 1.584 1.542

HCRSA 1.471 1.349 1.288 1.219 1.177
PRKG 1.217 1.126 1.072 1.034 1.012

MFSAE 1.084 1.043 1.007 0.989 0.952
Tip: The bolder ones mean better.

Table 3. The performance of MAE and RMSE on MovieLens 100 K dataset.

Metrics Methods
Proportion of Training Data

50% 60% 70% 80% 90%

MAE

SVD++ 0.752 0.747 0.741 0.726 0.722
I-AutoRec 0.729 0.723 0.714 0.704 0.698

HCRSA 0.727 0.724 0.713 0.711 0.703
GraphRec 0.721 0.714 0.709 0.703 0.701

PRKG 0.729 0.723 0.714 0.704 0.698
MFSAE 0.723 0.715 0.706 0.700 0.692

RMSE

SVD++ 0.979 0.965 0.949 0.932 0.924
I-AutoRec 1.021 1.003 0.979 0.964 0.953

HCRSA 0.927 0.921 0.907 0.891 0.897
GraphRec 0.916 0.905 0.899 0.893 0.887

PRKG 0.928 0.917 0.913 0.899 0.895
MFSAE 0.917 0.907 0.899 0.890 0.882

Tip: The bolder ones mean better.

Table 4. The performance of MAE and RMSE on MovieLens 1 M dataset.

Metrics Methods
Proportion of Training Data

50% 60% 70% 80% 90%

MAE

SVD++ 0.683 0.678 0.674 0.668 0.666
I-AutoRec 0.729 0.723 0.714 0.704 0.698

HCRSA 0.692 0.687 0.681 0.675 0.668
GraphRec 0.683 0.679 0.673 0.668 0.664

PRKG 0.705 0.696 0.690 0.684 0.679
MFSAE 0.684 0.677 0.672 0.667 0.662

RMSE

SVD++ 0.879 0.866 0.859 0.851 0.848
I-AutoRec 0.914 0.905 0.896 0.888 0.881

HCRSA 0.892 0.885 0.879 0.871 0.863
GraphRec 0.870 0.866 0.857 0.851 0.847

PRKG 0.898 0.888 0.881 0.874 0.868
MFSAE 0.872 0.863 0.857 0.851 0.847

Tip: The bolder ones mean better.

Appl. Sci. 2022, 12, 12408 11 of 15

(a) (b) (c)

Figure 4. The performance of MAE for all methods on the three datasets. (a) In MovieTweetings 10 K.
(b) In MovieLens 100 K. (c) In MovieLens 1 M.

(a) (b) (c)

Figure 5. The performance of RMSE for all methods on the three datasets. (a) In MovieTweetings
10 K. (b) In MovieLens 100 K. (c) In MovieLens 1 M.

5.6. Parameter Sensitivity
5.6.1. The Number of Hidden Layer Neurons and Epochs

We explore the performance of MFSAE under different numbers of hidden layer neu-
rons and epochs. Before that, we choose the number of hidden layer neurons to be sam-
pled in {100, 200, 300, 400, 500, 600, 700, 800} and the number of epochs to be sampled in
{20, 30, 40, 50, 60, 70, 80, 90, 100}, all the experiments are conducted under the train ratio = 0.8.
When one parameter in the experiment is altered, the others remain constant.

In the main experiments, with train ratio = 0.8 and hidden neuron = 200, we find that
the model performs close to optimal in both RMSE and MAE. Therefore, for fairness, we
set train ratio = 0.8 and hidden neuron = 200 to investigate the impact of the number of
epochs on the three datasets, and Figure 6 shows the experimental results. When MFSAE
achieves the best performance, the epoch values are set to 60, 70 and 60 on the three datasets,
respectively. Moreover, by comparing experiments on the three datasets, we discover that
the more sparse the datasets, the faster the model converges.

To compare the above experiments, we select the results of the above experiments
to investigate the impact of the number of hidden neurons. The experimental results in
Figure 7 reveal that when the number of hidden layer neurons is adjusted to 500, 400 and
200, respectively, MFSAE performs best.

Appl. Sci. 2022, 12, 12408 12 of 15

(a) (b) (c)

Figure 6. The parameter impact of the different numbers of epochs. (a) In MovieTweetings 10 K.
(b) In MovieLens 100 K. (c) In MovieLens 1 M.

(a) (b) (c)

Figure 7. The parameter impact of the different numbers of hidden layer neurons. (a) In MovieTweet-
ings 10 K. (b) In MovieLens 100 K. (c) In MovieLens 1 M.

5.6.2. The Setting of K2

As shown in the above experiments, we use the LSI model to embed language feature
information into the low dimensional vector R ∈ <k2 , where k2 represents the output
dimension of the LSI model data in the model. In this part, we explore the impact of the
k2 setting on the model’s overall performance. Before that, we determine the dimension
of language vector k2 to be sampled in {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70}.
As shown in Figure 8, we discovered that MFSAE has the best performance when k2 = 45
on the MovieLens dataset and when k2 = 30 on MovieTweeting 10 K.

(a) (b) (c)

Figure 8. The parameter impact of the different dimensions of language vector k2. (a) In MovieTweet-
ings 10 K. (b) In MovieLens 100 K. (c) In MovieLens 1 M.

Appl. Sci. 2022, 12, 12408 13 of 15

6. Conclusions

In this paper, we propose a multi-feature extension method via a semi-autoencoder
to improve recommendation performance, called MFSAE. Because of the advantages of
semi-autoencoders in information fusion, MFSAE may utilize auxiliary information derived
from DBpedia to obtain effective feature representations of items for reducing data sparsity.
In addition, we introduce LSI model to embed the language extension feature information
into a low-dimensional vector, which obtains the hidden relations between the items
effectively and improves the recommendation accuracy. Experiments on the Movielens
dataset validate that MFSAE outperforms the state-of-the-art models.

In future works, first, we will employ graph networks to discover additional critical
feature information between users and items, and strengthen the combination of multi-
source features by using attention mechanisms. Second, we will also introduce additional
deep learning models to learn the relationships of implicit features.

Author Contributions: Conceptualization, Y.G. and Y.Z.; methodology, Y.G. and Y.Z.; software, Y.G.;
validation, Y.L. and X.S.; formal analysis, Y.G. and B.L.; investigation, Y.Z.; resources, Y.G.; data
curation, Y.Z.; writing—original draft preparation, Y.G. and Y.Z.; writing—review and editing, Y.L.,
X.S. and B.L.; visualization, Y.L.; supervision, X.S.; project administration, B.L.; funding acquisition,
Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by the Yangzhou University Interdisciplinary Research
Foundation (yzuxk202008, yzuxk202015), National Natural Science Foundation of China under grants
(61906060), and Open Project Program of Joint International Research Laboratory of Agriculture and
Agri-Product Safety (JILAR-KF202104).

Data Availability Statement: The experimental data in the paper can be obtained from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, C.; Kang, P.; Wu, B.; Wang, Q.; Liu, X. Gated attentive-autoencoder for content-aware recommendation. In Proceedings of the

Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 11–15 February 2019; pp. 519–527.
2. Khoali, M.; Laaziz, Y.; Tali, A.; Salaudeen, H. A Survey of One Class E-Commerce Recommendation System Techniques. Electronics

2022, 11, 878. [CrossRef]
3. Rahayu, N.W.; Ferdiana, R.; Kusumawardani, S.S. A systematic review of ontology use in E-Learning recommender system.

Comput. Educ. Artif. Intell. 2022, 3, 100047. [CrossRef]
4. García-Peñalvo, F.J.; Corell, A.; Abella-García, V.; Grande-de Prado, M. Recommendations for mandatory online assessment in

higher education during the COVID-19 pandemic. In Radical Solutions for Education in a Crisis Context; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 85–98.

5. Zhang, L.; Luo, T.; Zhang, F.; Wu, Y. A recommendation model based on deep neural network. IEEE Access 2018, 6, 9454–9463.
[CrossRef]

6. Alam, M.; Samad, M.; Vidyaratne, L.; Glandon, A.; Iftekharuddin, K. Survey on Deep Neural Networks in Speech and Vision
Systems. Neurocomputing 2020, 417, 302–321. [CrossRef] [PubMed]

7. Geng, Y.; Xiao, X.; Sun, X.; Zhu, Y. Representation learning: Recommendation with knowledge graph via triple-autoencoder.
Front. Genet. 2022, 13, 891265. [CrossRef]

8. Shuai, Z.; Yao, L.; Xu, X.; Wang, S.; Zhu, L. Hybrid Collaborative Recommendation via Semi-AutoEncoder. In Neural Information
Processing. ICONIP 2017; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; pp. 185–193.

9. Wu, Y.; Macdonald, C.; Ounis, I. A hybrid conditional variational autoencoder model for personalised top-n recommendation.
In Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval, New York, NY, USA,
14–17 September 2020; pp. 89–96.

10. Zhong, S.T.; Huang, L.; Wang, C.D.; Lai, J.H.; Philip, S.Y. An autoencoder framework with attention mechanism for cross-domain
recommendation. IEEE Trans. Cybern. 2020, 52, 5229–5241. [CrossRef]

11. Wang, X.; Wang, R.; Shi, C.; Song, G.; Li, Q. Multi-component graph convolutional collaborative filtering. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6267–6274.

12. Cui, Z.; Xu, X.; Fei, X.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. Personalized recommendation system based on collaborative filtering
for IoT scenarios. IEEE Trans. Serv. Comput. 2020, 13, 685–695. [CrossRef]

13. Pujahari, A.; Sisodia, D.S. Pair-wise preference relation based probabilistic matrix factorization for collaborative filtering in
recommender system. Knowl.-Based Syst. 2020, 196, 105798. [CrossRef]

http://doi.org/10.3390/electronics11060878
http://dx.doi.org/10.1016/j.caeai.2022.100047
http://dx.doi.org/10.1109/ACCESS.2018.2789866
http://dx.doi.org/10.1016/j.neucom.2020.07.053
http://www.ncbi.nlm.nih.gov/pubmed/33100581
http://dx.doi.org/10.3389/fgene.2022.891265
http://dx.doi.org/10.1109/TCYB.2020.3029002
http://dx.doi.org/10.1109/TSC.2020.2964552
http://dx.doi.org/10.1016/j.knosys.2020.105798

Appl. Sci. 2022, 12, 12408 14 of 15

14. Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 426–434.

15. Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Proceedings of the 21th Annual Conference on Neural
Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1257–1264.

16. Juan, Y.; Zhuang, Y.; Chin, W.S.; Lin, C.J. Field-aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems, New York, NY, USA, 15–19 September 2016; pp. 43–50.

17. Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender system application developments: A survey. Decis. Support Syst.
2015, 74, 12–32. [CrossRef]

18. Truong, Q.T.; Salah, A.; Lauw, H.W. Bilateral variational autoencoder for collaborative filtering. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, Virtual Event, 8–12 March 2021; pp. 292–300.

19. Symeonidis, P.; Malakoudis, D. Multi-modal matrix factorization with side information for recommending massive open online
courses. Expert Syst. Appl. 2019, 118, 261–271. [CrossRef]

20. Rashed, A.; Grabocka, J.; Schmidt-Thieme, L. Attribute-aware non-linear co-embeddings of graph features. In Proceedings of the
13th ACM Conference on Recommender Systems, Copenhagen, Denmark, 16–20 September 2019; pp. 314–321.

21. Wang, Z.; Lin, G.; Tan, H.; Chen, Q.; Liu, X. CKAN: Collaborative knowledge-aware attentive network for recommender systems.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New
York, NY, USA, 25–30 July 2020; pp. 219–228.

22. Naumov, M.; Mudigere, D.; Shi, H.J.M.; Huang, J.; Sundaraman, N.; Park, J.; Wang, X.; Gupta, U.; Wu, C.J.; Azzolini, A.G.; et al.
Deep learning recommendation model for personalization and recommendation systems. arXiv 2019, arXiv:1906.00091.

23. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.
Int. J. Comput. Vis. 2020, 128, 261–318. [CrossRef]

24. Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z. Collaborative filtering and deep learning based recommendation system for cold start
items. Expert Syst. Appl. 2017, 69, 29–39. [CrossRef]

25. Zhu, Y.; Wu, X.; Qiang, J.; Yuan, Y.; Li, Y. Representation learning with collaborative autoencoder for personalized recommendation.
Expert Syst. Appl. 2021, 186, 115825. [CrossRef]

26. Zhou, X.; Li, Y.; Liang, W. CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2020, 18, 912–921. [CrossRef]

27. Da’u, A.; Salim, N. Recommendation system based on deep learning methods: A systematic review and new directions. Artif.
Intell. Rev. 2020, 53, 2709–2748. [CrossRef]

28. Cao, S.; Yang, N.; Liu, Z. Online news recommender based on stacked auto-encoder. In Proceedings of the 2017 IEEE/ACIS 16th
International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; pp. 721–726.

29. Nurmaini, S.; Darmawahyuni, A.; Sakti Mukti, A.N.; Rachmatullah, M.N.; Firdaus, F.; Tutuko, B. Deep learning-based stacked
denoising and autoencoder for ECG heartbeat classification. Electronics 2020, 9, 135. [CrossRef]

30. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web, New York, NY, USA, 18–22 May 2015; pp. 111–112.

31. Pan, Y.; He, F.; Yu, H. A correlative denoising autoencoder to model social influence for top-N recommender system. Front.
Comput. Sci. 2020, 14, 143301. [CrossRef]

32. Shenbin, I.; Alekseev, A.; Tutubalina, E.; Malykh, V.; Nikolenko, S.I. Recvae: A new variational autoencoder for top-n recommen-
dations with implicit feedback. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston,
TX, USA, 3–7 February 2020; pp. 528–536.

33. Yu, M.; Quan, T.; Peng, Q.; Yu, X.; Liu, L. A model-based collaborate filtering algorithm based on stacked AutoEncoder. Neural
Comput. Appl. 2022, 34, 2503–2511. [CrossRef]

34. Yang, Y.; Zhu, Y.; Li, Y. Personalized recommendation with knowledge graph via dual-autoencoder. Appl. Intell. 2022, 52,
6196–6207. [CrossRef]

35. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
36. Zou, X. A survey on application of knowledge graph. J. Phys. Conf. Ser. 2020, 1487, 012016. [CrossRef]
37. Guan, L.; Zhang, J.; Geng, C. Diagnosis of Fruit Tree Diseases and Pests Based on Agricultural Knowledge Graph. J. Phys. Conf.

Ser. 2021, 1865, 042052. [CrossRef]
38. Sunil Datt, M. The information explosion: Trends in technology 2011 review. J. Gov. Financ. Manag. 2011, 60, 46.
39. Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R.

Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 2020, 33,
7537–7547.

40. Ullah, F.; Naeem, M.R.; Naeem, H.; Cheng, X.; Alazab, M. CroLSSim: Cross-language software similarity detector using hybrid
approach of LSA-based AST-MDrep features and CNN-LSTM model. Int. J. Intell. Syst. 2022, 37, 5768–5795. [CrossRef]

41. Senthil, G.; Raaza, A.; Kumar, N. Internet of Things Energy Efficient Cluster-Based Routing Using Hybrid Particle Swarm
Optimization for Wireless Sensor Network. Wirel. Pers. Commun. 2022, 122, 2603–2619. [CrossRef]

http://dx.doi.org/10.1016/j.dss.2015.03.008
http://dx.doi.org/10.1016/j.eswa.2018.09.053
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1016/j.eswa.2016.09.040
http://dx.doi.org/10.1016/j.eswa.2021.115825
http://dx.doi.org/10.1109/TCBB.2020.2994780
http://dx.doi.org/10.1007/s10462-019-09744-1
http://dx.doi.org/10.3390/electronics9010135
http://dx.doi.org/10.1007/s11704-019-8123-3
http://dx.doi.org/10.1007/s00521-021-05933-8
http://dx.doi.org/10.1007/s10489-021-02647-1
http://dx.doi.org/10.1088/1742-6596/1487/1/012016
http://dx.doi.org/10.1088/1742-6596/1865/4/042052
http://dx.doi.org/10.1002/int.22813
http://dx.doi.org/10.1007/s11277-021-09015-9

Appl. Sci. 2022, 12, 12408 15 of 15

42. Kalepalli, Y.; Tasneem, S.; Teja, P.D.P.; Manne, S. Effective comparison of lda with lsa for topic modelling. In Proceedings of the
2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020;
pp. 1245–1250.

43. Mimura, M.; Ohminami, T. Using LSI to detect unknown malicious VBA macros. J. Inf. Process. 2020, 28, 493–501. [CrossRef]
44. Dooms, S.; De Pessemier, T.; Martens, L. Movietweetings: A movie rating dataset collected from twitter. In Proceedings of the

Workshop on Crowdsourcing and Human Computation for Recommender Systems, CrowdRec at RecSys, Hongkong, China,
12 October 2013; p. 43.

45. Lee, J.; Sun, M.; Lebanon, G.; Sonnenburg, S. PREA: Personalized recommendation algorithms toolkit. J. Mach. Learn. Res. 2014,
13, 2699–2703.

http://dx.doi.org/10.2197/ipsjjip.28.493

	Introduction
	Related Work
	Collaborative Filtering
	Deep Learning-Based Recommendation Methods

	Preliminaries
	AutoEncoder and Semi-AutoEncoder
	Knowledge Graph

	Methodology
	Feature Representation Method Based on LSI Model
	MFSAE for Personalized Recommendation

	Experiments
	Datasets
	Compared Methods
	Implementation Details
	Evaluation Metrics
	Experimental Results
	Parameter Sensitivity
	The Number of Hidden Layer Neurons and Epochs
	The Setting of K2

	Conclusions
	References

