
Citation: Alsulami, A.A.; Abu

Al-Haija, Q.; Tayeb, A.; Alqahtani, A.

An Intrusion Detection and

Classification System for IoT Traffic

with Improved Data Engineering.

Appl. Sci. 2022, 12, 12336. https://

doi.org/10.3390/app122312336

Academic Editors: Tarek Gaber,

Shu-Chuan Chu and

Chin-Shiuh Shieh

Received: 1 November 2022

Accepted: 30 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Intrusion Detection and Classification System for IoT Traffic
with Improved Data Engineering
Abdulaziz A. Alsulami 1 , Qasem Abu Al-Haija 2,* , Ahmad Tayeb 3 and Ali Alqahtani 4

1 Department of Information Systems, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

2 Department of Cybersecurity, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan
3 Department of Information Technology, Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah 21589, Saudi Arabia
4 Department of Networks and Communications Engineering, College of Computer Science and Information

Systems, Najran University, Najran 61441, Saudi Arabia
* Correspondence: q.abualhaija@psut.edu.jo

Abstract: Nowadays, the Internet of Things (IoT) devices and applications have rapidly expanded
worldwide due to their benefits in improving the business environment, industrial environment,
and people’s daily lives. However, IoT devices are not immune to malicious network traffic, which
causes potential negative consequences and sabotages IoT operating devices. Therefore, developing a
method for screening network traffic is necessary to detect and classify malicious activity to mitigate
its negative impacts. This research proposes a predictive machine learning model to detect and
classify network activity in an IoT system. Specifically, our model distinguishes between normal
and anomaly network activity. Furthermore, it classifies network traffic into five categories: normal,
Mirai attack, denial of service (DoS) attack, Scan attack, and man-in-the-middle (MITM) attack. Five
supervised learning models were implemented to characterize their performance in detecting and
classifying network activities for IoT systems. This includes the following models: shallow neural
networks (SNN), decision trees (DT), bagging trees (BT), k-nearest neighbor (kNN), and support
vector machine (SVM). The learning models were evaluated on a new and broad dataset for IoT
attacks, the IoTID20 dataset. Besides, a deep feature engineering process was used to improve the
learning models’ accuracy. Our experimental evaluation exhibited an accuracy of 100% recorded
for the detection using all implemented models and an accuracy of 99.4–99.9% recorded for the
classification process.

Keywords: supervised machine learning; intrusion detection; data engineering; cybersecurity;
Internet of Things

1. Introduction

Cyber-physical systems (CPS) and the Internet of Things (IoT) have considerably
expanded our capability to realize our ecosystem and the surrounding world. CPS is
frequently used when referring to large, interconnected devices, such as industrial machines
and smart cars. In contrast, IoT is frequently used to refer to small, interconnected devices,
such as those in a smart home [1]. IoT technology has touched almost every pitch of
everyday life with its widespread applications. This, in turn, has substantially improved
our life quality as a result of adopting the IoT “know-how” of several life, which have the
potential to collect, harvest, and investigate data concerning the adjoining environment [2].
This context has accelerated the improvement of smart cities by enabling communication
between things (machines) and between machines and humans. Such communications
have recently been termed machine-to-machine (M2M) and machine-to-human (M2H)
communication. IoT devices continue to expand swiftly and are being connected and
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spread through diverse applications and services. The number of IoT devices will likely
exceed 125 billion by 2030 [3].

IoT systems have been recently adopted in almost all areas of real-life applications.
Many applications have been mentioned in the literature [4]. As such, smart cities require
extensive use of technologies and connectivity resources to increase the overall quality of
people’s lives [5], as a smart environment involves multiple IoT applications like moni-
toring the snow level, fire detection, pollution monitoring, earthquakes, landslides, early
detection [6], smart grids involve applications related to different monitoring, management,
and measurements [7], smart agriculture, which includes monitoring soil moisture, humid-
ity, temperature, and selective irrigation in dry zones [8], home automation, which contains
various IoT applications such as remotely controlling electrical appliances to save energy,
systems deployed (i.e., camera based on AI) on doors and windows disclosing intruders
(hackers) [9], and security and emergencies include applications that, for example, allow
only authorized persons to enter restricted (selected) areas and safe human and robotics
interaction [10].

Even though IoT is considered a powerful technology with marvelous consequences
and potential for spread and growth, IoT devices are vulnerable to various cyber-attacks
and threats [11]. This is due to constrictions in processing capability, storage, memory
capabilities, and communication capacity for the tiny energy-aware endpoint devices that
reside within the IoT infrastructure. Indeed, confidentiality, integrity, and availability (CIA)
are among the sizeable challenges of the IoT ecosystem [12]. Figure 1 illustrates the various
cyber-attacks on IoT systems.
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Figure 1. Main types of cyber-attacks against the different layers of IoT systems.

With the enormous and uninterrupted growth of cyber-attack occurrences in IoT in-
frastructures [13], it has become almost ridiculous to identify and thwart such attacks using
conventional intrusion detection systems (IDSs) built based on the attack’s signature. While
the signature-based IDS can provide highly accurate and precise detection performance
for the attacks/intrusions that match the pre-stored intrusion patterns (such as patterns of
network traffic, sequences of system calls, . . . etc.), the problem occurs and even increases
when a new attack (zero-day) is discovered. This is because traditional signature-based
IDSs work depends on the pre-knowledge of a potential attack signature. Therefore, they
can only detect an attack if it is pre-deposited in their database.
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Therefore, to tackle this limitation, an anomaly-based IDS has been proposed to replace
the conventional IDS using adopting smarter and more intelligent techniques. Instead of
matching the attack’s signature with the pre-existing intrusion patterns, anomaly-based
IDS defines a profile describing “normal” behavior and then detects deviations. This can
detect potential new attacks (zero-day attacks). However, it still fails to detect all unknown
attacks accurately in a dynamic environment such as an IoT ecosystem, and the cost of the
false detection rate is still high. Thus, many zero-day attacks remain undiscovered due
to the existing limitations of IoT devices and conventional anomaly detection methods.
Such functionalities are usually facilitated through vital and essential defense means,
such as a network intrusion detection system (NIDS), which is used to examine network
traffic to identify anomalous activity [14]. Figure 2 illustrates the typical deployment of
NIDS in communication networks [15]. To obtain a trusted environment and network,
the anomaly-based-IDS can be utilized alongside conventional cyber-defense systems like
firewall systems [16] to examine the network traffic, and anomaly-IDS can distinguish the
traffic as benign or malicious by using its pre-trained models.
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Figure 2. Typical NIDS architecture.

1.1. Our Contributions

This study proposed an intrusion detection and classification system that can detect
and classify the zero-day attacks of common IoT malicious traffic using machine learning
models utilizing the sovereignty of Nvidia-Quad GPUs. Specifically, our model distin-
guishes between normal and anomaly network activity. Furthermore, it classifies network
traffic into five categories: normal, Mirai attack, DoS attack, Scan attack, and MITM attack.
Five supervised machine learning models, named Shallow Neural Networks (SNNs), Deci-
sion Trees (DT), Bagged Tree (BT), K-Nearest Neighbor (KNN), and Support Vector Machine
(SVM), were implemented to detect and classify network activity in an IoT system. In
addition, we have applied different data preprocessing and feature engineering processes
to increase the prediction accuracy of the aforementioned machine learning models. As a
result, the accuracy rates for all models have scored extremely high ratios rates between
99.40% to 100%. Such accuracy scores have outperformed the performance of all other
existing models. The main contributions of this research can be summarized as follows:

• We present a comprehensive intrusion detection and classification system that can
identify and classify the IoT traffic of an IoTID20 dataset into binary classes (normal
and anomaly) or five classes (normal, Mirai attack, DoS attack, Scan attack, and MITM
attack). In addition, we stipulate an illuminated depiction of our system modules and
the machine learning algorithms.
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• We provide an extensive feature engineering and data preprocessing framework that
significantly improves the system performance evaluation. In addition, we provide a
thorough development, validation environment, configurations, and extensive simu-
lation results to better perceive the proposed solution methodology. The system has
been evaluated using standard performance indicators of machine learning models
such as confusion matrix, accuracy, precision, recall, F-score, and specificity.

• We compare our findings with other related state-of-the-art works, machine-learning-
based intrusion detection systems (ML-IDSs), and intrusion classification systems
(ML-ICSs) employing the same dataset. We show that our proposed system is superior.

1.2. Paper Organization

This paper is organized as follows. Section 2 presents a systematic summary of the
current related state-of-the-art research. Section 3 revisits and reviews the machine learning
algorithm employed in this study. In Section 4, dataset collection and data engineering are
discussed and elaborated on in this section. It also represents and justifies the dataset used
by our system. Detailed information about the proposed method architecture, development,
and data preprocessing is shown in Section 5. The experiments and results of this research
are discussed in Section 6. Finally, Section 7 presents the conclusion of the research findings
and future work.

2. Related Research

Consequently, over the past decade, there have been large endeavors in handling
security concerns related to intrusion/cyber-attacks detection in the IoT system. Most of
these anomaly-based IDS systems were developed by employing the techniques of machine
learning (ML) and deep learning (DL) techniques to provide intelligent cybersecurity
decision-making. Since ML/DL techniques operate using datasets of records and features
that are used to train and test the predictive IDS models, it should be noted that not
all of the features/records in a dataset are relevant or significant while training/testing
classification/detection models.

Therefore, data engineering and feature preprocessing have formulated a core phase of
every ML/DL-based IDS model that played a major role in making the raw data collected
from the IoT ecosystem usable for further analysis and predictions. In anomaly detection
challenges, for example, feature/data engineering is more significant in the IoT ecosystem
since the features may include null or zero features. Relevant features, in some cases, are
more difficult to extract by only ML/DL algorithms without using feature/data engineering
approaches. Techniques of relevant features to identify attacks have been made to classify
the data by industrial companies and researchers.

Several auspicious state-of-the-art models for anomaly intrusion detection mod-
els have been implemented for IoT cybersecurity using machine and deep learning ap-
proaches [17–32]. Table 1 summarizes the reviewed research models for anomaly-based IDS
using machine/deep learning approaches to solve cybersecurity concerns of cyber-attacks
on IoT systems.

Table 1. Summary of surveyed related research articles of supervised ML-based anomaly IDS.

Ref. Learning Models Datasets Number of Features/Number of Records Cyber-Attacks

[17]

Auto-Encoder, random forest
(RF), naïve Bayes (NB),

Linear/Quadratic
Discriminator

CICIDS2017 83 Features/
2,830,540 records

Distributed DoS (DDoS), Heartbleed,
structured query language (SQL)

Injection, Botnet.

[18] Particle Swarm (PSO),
XG Boost, RF IoTID20 83 Features/

450,00 records Mirai, DoS, Scan, MITM

[19] Auto-Encoders (AEs) NSL-KDD/IoTID20/
N-BaIoT

43 Features/140,000
83 Features/450,000

114 Features/612,000

Norm, DoS, Probe, R2L, U2R
/Mirai, DoS, Scan, MITM
/Normal, Bashlite, Mirai
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Table 1. Cont.

Ref. Learning Models Datasets Number of Features/Number of Records Cyber-Attacks

[20]

Convolutional neural
network (CNN), long

short-term memory (LSTM),
CNN-LSTM

NSL-KDD/IoTID20/ 43 Features/140,000
83 Features/450,000

Norm, DoS, Probe, root to local
(R2L), user to root (U2R), /Mirai,

DoS, Scan, MITM

[21]
LightGBM, Optimized
Adaptive and Sliding
Windowing (OASW)

NSL-KDD/IoTID20/ 43 Features/140,000
83 Features/450,000

Norm, DoS, Probe, R2L, U2R
/Mirai, DoS, Scan, MITM

[22] Shallow CNN NSL-KDD 43 Features/
150,000 Records Norm, DoS, Probe, R2L, U2R

[23]
Bagging, J48, KNN,

Multilayer Perceptron (MLP),
Ensemble.

NSL-KDD/
IoTID20

11–60 Features/
150,00–450,00

Norm, DoS, Probe, R2L, U2R
/Mirai, DoS, Scan, MITM

[24] Adaboost, DT KDDCUP99, UNSW-NB15,
NSL-KDD, CICIDS2017

43–100 Features/
140,000–612,000 DDoS, flooding, U2R, Jamming

[25]
Gradient Boosting Machines,

RF, NB, Deep Neural
Networks (DNN)

ToN_IoT 7 Features/
1,300,000 records

Normal, DoS, DDoS, Injection,
MITM, Password, Scan, Cross-site

scripting (XSS), Backdoor, Ransome.

[26] SVM, NB, SNN, RF N_BaIoT, Bot_IoT 114 Features/
612,000 records Normal, Bashlite, Mirai

[27] Adaboost, RusBoost,
Bagging, Ensemble

WUSTL_IIOT-2018,
N_BaIoT, and Bot_IoT

100–114 Features/
100,000–612,000

Normal, Bashlite, Mirai,
Port/Address Scanner.

[28] AdaBoost CICIDS 2019. 88 Features/
4,201,795 Records

DDoS, Heartbleed, SQL Injection,
Botnet.

[29] SNN, SVM, NB, RF,
Self-organizing map

NSL-KDD, KDDCup99,
ADFA-LD12, UNSWNB15

43–100 Features/
140,000–612,000 DDoS, flooding, U2R, Jamming

[30]

Ensembles:(Boosted DT,
Subspace kNN, RUSBoosted

DT), SNN, Bilayered NN,
Logistic Regression Kernel

Distilled-Kitsune-
2018/NSL-KDD

dataset

43 Features/
145,00–150,000

Mirai, operating system (OS) Scan,
Fuzzing, Video Injection, Address

Resolution Protocol (ARP), Wiretap,
simple service discovery protocol
(SSDP), Synchronous DoS, secure

sockets layer(SSL)/DoS, Probe, R2L,
U2R

[31] Beta Mixture Model BoT-IoT 21 12 Features/
3,000,000 records

DoS, DDoS, Keylogging, OS and
Service Scan, and Data exfiltration

attacks

[32] AdaBoost DT TON_IoT_2020 datasets 7 Features/
1,300,000

DoS, DDoS, Injection Attacks, MITM,
Password Attacks, Scanning, XSS

Attacks, Backdoor attacks, and
Ransomware attacks.

3. Machine Learning Algorithms-Revisited

In this research, machine learning was used to detect and classify network activity
attacks, as was mentioned above. Varieties of supervised machine learning classifiers were
used: Shallow Neural Networks (SNNs), Decision Trees (DT), Bagged Trees (BT), K-Nearest
Neighbor (KNN), and Support Vector Machine (SVM).

SNNs are feedforward neural networks that use multilayer perceptron (MLP) [33].
Classification and regression problems can be solved using SNNs based on supervised
learning. Two SNNs models were developed; the first model predicts two classifications
(label feature), and the second predicts five classifications (category feature). Figure 3
depicts the second model. The input layer contains 71 input nodes, the hidden layer has
ten nodes, and the output layer has five. The 71 features from the dataset were fed to the
SNNs model and then processed by ten hidden nodes. The dot in the figure means there are
71 nodes. Finally, the model predicts the five categories. For the detection procedure, we
have a similar SNN model; however, the model has two output nodes instead of five nodes.
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Decision Trees (DT) are widely used machine learning methods in various fields, such
as image processing, pattern recognition, and classification [33]. Figure 4 shows a generic
model of the DT, and continuously, the data are divided into subset nodes based on a
particular parameter [7].
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Bagged Trees (BT) is a machine learning algorithm that can be used as a classifier and
solve the variance issue of a dataset with a noisy sample. Figure 5 depicts an overview of
the BT process. In the beginning, the dataset is divided into samples to be prepared for
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training. Next, each sample is trained independently with a classifier. Finally, the most
frequent class predicted by the classifiers is selected [7].
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SVM is used for solving classification, regression, and linear and nonlinear prob-
lems [33]. The training data is classified based on hyperplanes (lines). The training process
of SVM is shown in Figure 6, the dataset is first subsetted into k training subsections, and
each subsection is assigned to an independent SVM for training. In the end, the training
result is aggregated [7].
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KNN is a machine-learning method that can be used as a classifier [33]. It classifies
dataset points based on similarity; therefore, data points with similarities are close to each
other. Figure 7 [33] illustrates the KNN algorithm’s procedure, which includes three figures,
a, b, and c. First, in (a), the new item, which has the star shape, needs to be classified as
class 1 (has a blue color circle) or class 2, which has a yellow color. Then, in (b), the distance
between the new item and the neighbors is calculated. Finally, in (c), based on the K value
and class popularity, the new item is categorized. Therefore, in our case, when K = 4, the
new item is classified as class 2 (because 2 of class 1 vs. 3 of class 2). In addition, the new
item is still classified as class 2 when K = 7 (because 3 of class 1 vs. 4 of class 2).
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stage for computing the distance between neighbors. (c) shows the classification stage based on
the K value.

4. Data Collection and Engineering

This section discusses the dataset used in this research to evaluate the anomaly-based
IDS for the IoT system and the data engineering performed over the dataset to improve the
learning and validation processes.

4.1. Dataset of IoT System

IoT devices can operate in many domains, such as smart cities, healthcare systems,
education systems, smart homes, smart grids, and transportation systems [34]. Our research
concentrates on a smart home IoT system; therefore, the IoTID20 dataset [35] was used to
test and evaluate the performance of our proposed model. The environment used to collect
the IoTID20 dataset consists of IoT devices connected through an access point network [35].
The IoT devices comprise a laptop, smartphone, EZVIZ camera, and SKT NUGU speaker.
The laptop and the smartphone were used to establish intrusion attacks, and Wireshark
monitors the IoT traffic. The security camera and the AI speaker are the victims, as shown
in Figure 8. A detail about the experiment can be found in this reference [35].
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The dataset was collected from a real-time scenario using IoT devices, as shown in
Figure 8. The original IoTID20 dataset includes 86 columns and 625,783 rows. Each row
in the dataset is labeled with the type of network activity. We preprocessed the dataset
to increase the classification accuracy of the label, category, and sub-category features.
However, we focused our study on label and category features and will express the reason
in the Features Engineering section (Section 4.2). Label features include binary classification,
which is normal, and anomaly. Category features have five classifications: normal, Mirai
attack, DoS attack, Scan attack, and MITM attack [35].

4.2. Features Engineering

Features engineering removes unnecessary features or extracts new features from
existing features to increase the accuracy of the machine learning models [34]. Duplicated
records were removed from the original dataset, and there were 164,087 duplications
of records. As a result, the dataset had 461,696 records. Table 2 represents statistical
information about this research dataset. Moreover, the dataset has the source IP address
(Src_IP) and destination IP address (Dst_IP) as features. However, machine learning
models cannot sufficiently handle the format of IP addresses, such as “192.168.0.13” [36].
Therefore, to solve this issue and help the machine learning models obtain the most use
of IP address information, we split the four IP address parts, octet numbers, into features,
e.g., Src_IP_oct1: 192 Src_IP_oct2: 168, Src_IP_oct3: 0, and Src_IP_oct4: 13. By doing so, the
machine learning model can understand and distinguish between the network and host
portions. Furthermore, the IoTID20 dataset has a timestamp as a feature. Therefore, we
extracted the following information from the timestamp feature and included them in the
dataset as new features: day of the week, hour, and am or pm to use it more efficiently.
According to our experiment, those new features helped increase detection accuracy and
machine learning classification. Finally, we converted the label and category string values
to numerical values. For example, we mapped the values of the label feature normal to
0 and anomaly to 1, as shown while the numerical conversion of the category feature was
normal (0), Mirai (1), DoS (2), Scan (3), and MITM (4). Table 3 outline the features that are
included in the dataset. The table lists the feature, feature description, and feature data
type (Integer: INT or Double: DBL), comprising 71 features.

Table 2. IoTID20 dataset statistics.

Labels Number of Records Category Number of Records

Normal 38,598 Normal 38,598

Anomaly 423,098

Mirai 281,102
DoS 59,390
Scan 56,744

MITM 25,862

By looking at Figure 9, we can observe that intrusion attacks occurred every day of the
week except Monday. In addition, most of the intrusion attacks took place on Thursdays.
Figure 10 illustrates whether the network traffic occurred in the morning or evening. It
is worth saying that most of the network traffic recorded in the morning was intrusion
attacks, and a few pieces of traffic were normal network packets. However, some network
traffic occurred in the evening—intrusion activities.
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Table 3. Dataset feature description.

Features Description Type

Src_Port Source port number INT
Dst_Port Destination port number INT
Protocol Protocol type assigned number INT

Flow_Duration Flow duration in seconds INT
Tot_Fwd_Pkts Total number of forwarding packets INT
Tot_Bwd_Pkts Total number of backward packets INT

TotLen_Fwd_Pkts The total length of forwarding packets INT
TotLen_Bwd_Pkts The total length of backward packets INT

Fwd_Pkt_Len_Max Max length of forwarding packets INT
Fwd_Pkt_Len_Min Min length of forwarding packets INT

Fwd_Pkt_Len_Mean Mean length of forwarding packets DOB
Fwd_Pkt_Len_Std Stander deviation length of forwarding packets DOB

Bwd_Pkt_Len_Max Max length of backward packets INT
Bwd_Pkt_Len_Min Min length of backward packets INT

Bwd_Pkt_Len_Mean Mean length of backward packets DOB
Bwd_Pkt_Len_Std Stander deviation length of backward packets DOB

Flow_Byts/s Flow bytes in seconds INT
Flow_Pkts/s Flow packets in seconds INT

Flow_IAT_Mean Mean of the flow inter-arrival time (IAT) DOB
Flow_IAT_Std Stander deviation of the flow IAT DOB

Flow_IAT_Max Max of the flow IAT INT
Flow_IAT_Min Min of the flow IAT INT
Fwd_IAT_Tot Total of the forwarding IAT INT

Fwd_IAT_Mean Mean of the forwarding IAT DOB
Fwd_IAT_Std Stander deviation of the forwarding IAT DOB

Fwd_IAT_Max Max of the forwarding IAT INT
Fwd_IAT_Min Min of the forwarding IAT INT
Bwd_IAT_Tot Total of the backward IAT INT

Bwd_IAT_Mean Mean of the backward IAT DOB
Bwd_IAT_Std Stander deviation of the backward IAT DOB

Bwd_IAT_Max Max of the backward IAT INT
Bwd_IAT_Min Min of the backward IAT INT

Fwd_Header_Len Length of the forwarding header INT
Bwd_Header_Len Length of the backward header INT

Fwd_Pkts/s Forward packet in seconds INT
Bwd_Pkts/s Backward packet in seconds INT
Pkt_Len_Min Min of packet length INT
Pkt_Len_Max Max of packet length INT

Pkt_Len_Mean Mean of packet length DOB
Pkt_Len_Std Stander deviation of packet length DOB
Pkt_Len_Var The variance in packet length DOB

ACK_Flag_Cnt Acknowledgment flag Cnt INT
Down/Up_Ratio Down or up ratio INT

Pkt_Size_Avg Average packet size DOB
Fwd_Seg_Size_Avg Average forward segment size DOB
Bwd_Seg_Size_Avg Average backward segment size DOB
Subflow_Fwd_Pkts Subflow forward packet INT
Subflow_Fwd_Byts Subflow forward bytes INT
Subflow_Bwd_Pkts Subflow backward packet INT
Subflow_Bwd_Byts Subflow backward bytes INT
Init_Bwd_Win_Byts Initial backward window bytes INT
Fwd_Act_Data_Pkts Forward acknowledgment data packets INT

Active_Mean Mean active time DOB
Active_Std Stander deviation active time DOB
Active_Max Max active time INT
Active_Min Min active time INT
Idle_Mean Mean idle time DOB

Idle_Std Stander deviation idle time DOB



Appl. Sci. 2022, 12, 12336 11 of 19

Table 3. Cont.

Features Description Type

Idle_Max Max idle time INT
Idle_Min Min idle time INT

Src_IP_oct1 Source IP octet number part 1 INT
Src_IP_oct2 Source IP octet number part 2 INT
Src_IP_oct3 Source IP octet number part 3 INT
Src_IP_oct4 Source IP octet number part 4 INT
Dst_IP_oct1 Destination IP octet number part 1 INT
Dst_IP_oct2 Destination IP octet number part 2 INT
Dst_IP_oct3 Destination IP octet number part 3 INT
Dst_IP_oct4 Destination IP octet number part 4 INT

Timestamp_DayOfWeek Timestamp day of the week INT
Timestamp_Hour Timestamp in hour INT

Timestamp_AmPm_n Timestamp AM or PM INT
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5. System Development and Specifications

This section will discuss the data models and preprocessing used in this research by
explaining the IoT system’s architecture and a detailed explanation of the development and
implementation of machine learning models used for detection and classification. Finally,
it discusses the conducted simulation experiments, training, testing, and validation of the
results. Classification is an intelligent technique to place a particular data set into a specific
category based on predefined criteria [36]. In our case, the machine learning models are
supposed to detect and classify IoT intrusion attacks by prediction procedure based on
71 selected features. The detection and classification machine learning models used in this
research are supervised learning, so the models estimate the target output based on the
chosen features [37]. This paper used machine learning models to predict the label and
category features of the IoTID20 dataset. Figure 11 shows the architecture of the proposed
research model.
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5.1. Data Pre-Processing

Data preprocessing is a technique to prepare the dataset to be fed to a machine learning
model [38]. Figure 12 depicts the preprocessing step. Initially, the dataset was stored in a
Comma-Separated Value (CSV) format. Next, any string value of the matrix was converted
to a numerical record, as discussed in the Feature Engineering section (Section 4.2). Then,
the CSV file was converted to a MAT file (Matlab matrix). After that, the dataset was
normalized, so each matrix value had a value between 0 and 1. For the data partitioning
procedure, data were randomly divided into parts 70% for training, 25% for testing, and
5% for validation. We used an across-validation technique as a validation scheme for our
research. Finally, data were fed to the machine learning model, which will be discussed next.
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5.2. Detection and Classification Procedures

The detection procedure generates the label feature, which consists of two classifica-
tions, and the output is either normal or an anomaly using the machine learning models
mentioned earlier. The classification procedure generates the category feature, which con-
sists of five classifications. The output is either normal, Mirai attack, DoS attack, Scan
attack, or MITM attack using the earlier machine learning models.

5.3. Implementation and Validation Environment

The IoTID20 dataset was used to train, validate, and test our proposed detection and
classification models. The aforementioned machine learning classifiers (i.e., SNN, DT, NB,
SVM, and KNN) were trained, tested, and validated using the IoTID20 dataset. MATLAB®

version 2022a [39] developed, tested, and validated the five-machine learning based on the
MATLAB classification learner. Classification learner is an application that can be used by
the MATLAB platform to easily train, test, and validate numerical datasets by various of
the most common machine learning algorithms [40]. Table 4 briefly describes the hardware
and software environment the authors used to experiment [41].

Table 4. Hardware and software description.

Hardware/Software Description

MATLAB Version 2022a
CPU Intel® Core™ i7-9750H CPU @ 2.60 GHz
Memory 16.0 GB
GPU NVIDIA GeForce RTX 2070 GDDR6 @ 8 GB

6. Results and Discussion

This research proposes predictive models based on machine learning to detect and
classify network activity. Ten models were trained, tested, and validated, five for detection
and the remaining for classification purposes. For the detection model, network activities
were classified into two groups (normal and anomaly). Meanwhile, for the classification
model, network activities were classified into five groups (Normal, Mirai attack, DoS attack,
Scan attack, and MITM attack)

6.1. Accuracy Evaluation

We evaluated our machine learning models based on the confusion matrix illustrated
in Figure 13. The confusion matrix utilizes the True Positive Rate (TPR) and False Negative
Rate (FPR). First, TPR and FPR were calculated using Equation (1) and Equation (2),
respectively. Then the accuracy was calculated using Equation (3) [42].

TPR = TP/(TP + FN) (1)

FPR = FP/(FP + TN) (2)

Accuarcy = (TP + TN)/(TP + TN + FP + FN) (3)
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TP is the true positive, meaning that the number of normal traffic is correctly classified
as normal. FN is the false negative, meaning that the number of anomaly traffic is classified
as normal traffic. Likewise, FP is the false positive, meaning that the number of normal
traffic is classified as anomaly traffic. Finally, TN is the false negative, meaning the anomaly
traffic is correctly classified as anomaly traffic. In addition, we have evaluated our models
in terms of other standard metrics, including precision, recall, F1-Score, and specificity, as
represented in Table 5 [43].

Table 5. Accuracy evaluation results.

ML Model Detection/Classification Precision Recall F1-Score Specificity

SSNs Detection 100% 100% 100% 100%
SSNs Classification 100% 99.99% 99.99% 100%
DT Detection 100% 100% 100% 100%
DT Classification 99.99% 99.99% 99.99% 100%
BT Detection 100% 100% 100% 100%
BT Classification 100% 99.99% 99.99% 100%

SVM Detection 100% 100% 100% 100%
SVM Classification 99.78% 99.81% 99.79% 99.96%
KNN Detection 100% 100% 100% 100%
KNN Classification 98.88% 99.36% 99.12% 99.84%

Table 5 shows that our detection ML models achieved 100% accuracy in the four
metrics (Precision, recall, F1-Score, and specificity). In addition, we accomplished between
99.12% to 99.99% for classification ML models. The reason is that the comprehensive and
enhanced data engineering as we have thoroughly investigated the dataset to come up with
optimal (best) features that led to almost optimal performance of (precision, recall, F1-Score,
and specificity) in the case of detection ML models. We discussed the data engineering
process in Section 4.2.

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1 − Score = 2 × (Precision × Recall)/(Precision + Recall) (6)

Specificity = TN/(TN + FP) (7)

The confusion matrices for the detection model (binary classification) of all ML tech-
niques were equal for all and are shown in Figure 14a; thus, there was no need for them to
be repeated.
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6.2. Our Results

Figure 14b illustrates the confusion matrix of the classification model using SNNs. In
the case of the detection model, our SNNs have no mislabeled traffic, and the total network
traffic classified as normal is 38,596. However, 423,096 of the traffic is classified as anomaly
traffic. In the case of the classification model, only twelve of the traffic in the total network
traffic were mislabeled. Therefore, the overall accuracy of the two models reached 100%.

The performance of DT is shown in Figure 14c, which shows the confusion matrix of
the DT classification model. There are no misclassified traffic in the detection model, and
only thirteen network activities were misclassified in the classification model. Therefore,
the overall accuracy of the two models reached 100%.

The evaluation performance of BT is represented in Figure 14d, which shows the
confusion matrix of the BT classification model. There was no misclassified traffic using the
detection model, and only sixteen traffic samples were misclassified using the classification
model. In brief, the accuracy of the detection and classification models is 100%.

The performance response of SVM is shown in Figure 14e, which illustrates the
confusion matrixes of the SVM classification model. There was no misclassified traffic
using the detection model, and only 487 out of 461,696 network activities were misclassified
using the classification model. In summary, the accuracy of the detection model is 100%,
and the overall accuracy of the classification model reached 99.80%.

The performance of KNN models is shown in Figure 14f, which illustrates the con-
fusion matrix of the KNN classification model. The accuracy of the detection model was
100%, and the overall accuracy of the classification model reached 99.40%. Overall, SSNs,
DT, and BT recorded 99.99% better performance than SVM and KNN.
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6.3. Comparing Our Findings with Existing Results

To our knowledge, Table 6 lists the recent machine models that researchers have devel-
oped to detect or classify the IoTID20 dataset. The table lists two types of classification used
by researchers: detection (binary classification) and classification (multiclass classification).
For machine learning, it is generally simpler to perform binary classification than multiclass
classification [44]. The reason is that in binary classification, the ML needs to select from
two decisions, i.e., 0 or 1; however, with multiclass classification, ML needs to choose from
more than two decisions and perform sub-binary classification.

Table 6. Comparing our ML models’ accuracy with existing ML models’ accuracy.

Research Detection/Classification ML Model Accuracy

Sarwar et al. [18] Detection Random Forest 98%
Sarwar et al. [18] Classification Random Forest 83%
Song. et al. [19] Classification Auto-Encoders 94.50%

Alkahtani et al. [20] Classification Convolutional Neural Networks + Long Short-Term Memory 98.40%
Yang et al. [21] Detection LightGBM + Optimized Adaptive Sliding Windowing 99.9%

Al-Haija et al. [22] Classification Convolutional Neural Networks 98.2%
Reddy et al. [45] Classification XGBoost 99.7%

Proposed Method Classification Shallow Neural Networks 100%
Proposed Method Detection Shallow Neural Networks 100%
Proposed Method Classification Decision Trees 99.9%
Proposed Method Detection Decision Trees 100%
Proposed Method Classification Bagged Trees 99.9%
Proposed Method Detection Bagged Trees 100%
Proposed Method Classification Support Vector Machines 99.80%
Proposed Method Detection Support Vector Machines 100%
Proposed Method Classification K-Nearest Neighbor (KNN) 99.40%
Proposed Method Detection K-Nearest Neighbor (KNN) 100%

We can observe that our results slightly exceed other results due to the comprehensive
data engineering process conducted in this research, as stated earlier in Features Engi-
neering subsection (Section 4.2). Additionally, it is worth saying that in this research [35],
the authors used several machine learning classifiers such as DT, SVM, and ensemble to
detect and classify network activities in the IoTID20 dataset. They claimed they reached
100% using DT for detection and classification models. However, they accomplished low
accuracy using SVM (less than 80% in the detection model and less than 50% in the case
of the classification model); we reached an accuracy of 100% for the detection model
and 99.80% for the classification model using SVM due to the feature engineering we
discussed earlier.

6.4. Limitations of the Study

The Minimum Redundancy and Maximum Relevance (MRMR) algorithms were used
for the feature selection procedure [46]. Each feature was ranked based on minimum
redundancy and maximum relevance and assigned an importance score [47]. Therefore,
a feature with a high score is more important than a less-score feature. In addition, a
large drop in the rank between features will ease the feature selection. However, a small
drop will make the feature selection more challenging. Thus, this research discarded the
sub-category feature because, after performing the MRMR algorithm on the sub-category
feature, we observed that the drop in score between the 11th and the 72nd was relatively
small, as shown in Figure 15.
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7. Conclusions and Future Work

This research presents a new automated and intelligent intrusion detection system
which was modeled, implemented, and evaluated. The proposed predictive IDS utilizes
machine learning techniques to detect and classify network activity in an IoT system.
Particularly, five supervised learning models have been used, including shallow neural
networks (SNNs), decision trees (DT), bagged trees (BT), support vector machine (SVM),
and k-nearest neighbor (kNN). The developed models were evaluated on a recent broad
dataset known as the IoTID20. Additionally, the features’ engineering approach was used
with the dataset to increase the accuracy of the machine learning models. We used the
confusion matrix metric to evaluate our models. As a result, our detection models recorded
100% for all machine learning models mentioned above. Furthermore, our classification
models recorded 100% for the SNNs, DT, and BT, while KNN and SVM recorded 99.80%
and 99.40%, respectively.

Moreover, we will evaluate our predictive models with multiple IoT system datasets.
In the future, we will seek to incorporate more datasets to develop a comparative study
that compares the selected ML algorithms using several datasets. This will enrich the
detection ability to detect more attack vectors in addition to those mentioned in this paper.
Additionally, we believe that real-world deployment of the proposed IDS and ICS in
various IoT or CPS networks (such as the internet of autonomous vehicles) is essential for
more precise implementation representation and practical investigations. Furthermore,
one can employ the deep neural networks or the log-linear neural networks [48]-based
intrusion detection system to provide deeper detection for the sub-categories of the stated
attack vectors.
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