
Citation: Du, K.; Wang, L.; Liu, Y.;

Niu, H.; Huang, S.; Wen, X.

Random-Delay-Corrected Deep

Reinforcement Learning Framework

for Real-World Online Closed-Loop

Network Automation. Appl. Sci. 2022,

12, 12297. https://doi.org/10.3390/

app122312297

Academic Editors: Jenhui Chen, Lei

Wang, Zhiqun Hu and Douglas

O’Shaughnessy

Received: 31 October 2022

Accepted: 29 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Random-Delay-Corrected Deep Reinforcement Learning
Framework for Real-World Online Closed-Loop
Network Automation
Keliang Du 1,2 , Luhan Wang 1,2,*, Yu Liu 1,2, Haiwen Niu 1,2, Shaoxin Huang 1,2 and Xiangming Wen 1,2

1 Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and
Telecommunications, Beijing 100876, China

* Correspondence: wluhan@bupt.edu.cn

Abstract: The future mobile communication networks (beyond 5th generation (5G)) are evolving
toward the service-based architecture where network functions are fine-grained, thereby meeting
the dynamic requirements of diverse and differentiated vertical applications. Consequently, the
complexity of network management becomes higher, and artificial intelligence (AI) technologies can
improve AI-native network automation with their ability to solve complex problems. Specifically,
deep reinforcement learning (DRL) technologies are considered the key to intelligent network au-
tomation with a feedback mechanism similar to that of online closed-loop architecture. However, the
0-delay assumptions of the standard Markov decision process (MDP) of traditional DRL algorithms
cannot directly be adopted into real-world networks because there exist random delays between the
agent and the environment that will affect the performance significantly. To address this problem, this
paper proposes a random-delay-corrected framework. We first abstract the scenario and model it as a
partial history-dependent MDP (PH-MDP), and prove that it can be transformed to be the standard
MDP solved by the traditional DRL algorithms. Then, we propose a random-delay-corrected DRL
framework with a forward model and a delay-corrected trajectory sampling to obtain samples by con-
tinuous interactions to train the agent. Finally, we propose a delayed-deep-Q-network (delayed-DQN)
algorithm based on the framework. For the evaluation, we develop a real-world cloud-native 5G core
network prototype whose management architecture follows an online closed-loop mechanism. A use
case on the top of the prototype namely delayed-DQN-enabled access and mobility management
function (AMF) scaling is implemented for specific evaluations. Several experiments are designed and
the results show that our proposed methodologies perform better in the random-delayed networks
than other methods (e.g., the standard DQN algorithm).

Keywords: SBA; network automation; AI-native management; DRL with delays; AMF scaling

1. Introduction

The beyond 5th generation (B5G) mobile communication networks are envisioned
to support Internet of Everything (IoE) applications (e.g., extended reality) with diverse
requirements (e.g., latency, reliability, and data rate) [1]; therefore, B5G will not only be a
pipeline for data transmission, but also an innovation platform with great flexibility. Service-
based architecture (SBA) is expected to become the infrastructure of B5G networks with its
modular functions, simple interfaces, and automation mechanisms [2]. After the 3rd Genera-
tion Partnership Project (3GPP) has defined a service-based 5G core network, the service-based
radio access network has attracted great attention from academic scholars [3,4]. The SBA
can leverage cloud computing resources to meet diverse and differentiated requirements
through intelligent and automated scaling.

Appl. Sci. 2022, 12, 12297. https://doi.org/10.3390/app122312297 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312297
https://doi.org/10.3390/app122312297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8416-5237
https://doi.org/10.3390/app122312297
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312297?type=check_update&version=1

Appl. Sci. 2022, 12, 12297 2 of 20

Consequently, the SBA greatly improves the management complexity because of the
large number of network function instances deploying in cloud computing. Artificial
intelligence (AI)-native management solutions by integrating AI techniques and closed-
loop architecture will play a crucial role in the SBA to enable network intelligence and
automation [5–8]. Beginning from Release 16 (R16), 3GPP introduced a new network
function (NF), namely NetWork Data Analytics Function (NWDAF (3GPP TR 23.791, Study
of Enablers for Network Automation for 5G (Release 16); 3GPP TR 23.700, Study on
enablers for network automation for the 5G System (5GS) (Release 17); 3GPP TS 23.288,
network data analytics services (Release 17))) in the 5G core network to make the AI-native
solutions practically useful. On the one hand, NFs (e.g., Access and Mobility Management
Function (AMF)) are carefully designed with an “EventExposure” service to expose the
internal raw data to NWDAF. Further, NWDAF collects system-level information (e.g., the
downlink data rate of a specific user equipment (UE)) from the Operations, Administration,
and Maintenance (OAM) system. All network-level protocol parameters are available in
NWDAF supported by the interaction architecture. On the other hand, NWDAF introduces
some AI model operations procedures, including subscription, selection, training, and so on.
NWDAF aims to provide AI models and algorithms as internal services, exposed to other
NFs or OAM to make intelligent decisions for the self-optimization of protocol parameters.
NWDAF facilitates an online monitor-analyze-plan-execute (MAPE) closed-loop process
within the 5G core network, collecting network states from NFs, training data-driven AI
models, making intelligent decisions, and executing actions for network control.

In this context, deep reinforcement learning (DRL), with its advantage of periodic
interaction with the environment, has been widely noticed and applied to the automated
management of networks. J. Yao, et al. [9] propose a virtual network function (VNF) flexible
deployment scheme based on reinforcement learning to maintain the quality-of-service
(QoS) of 5G network slicing under limited physical network resources. W. Peng, et al. [10]
propose a DRL-based optimal placement for AMF considering user mobility and the arrival
rate of user mobility management requests in a heterogeneous radio access network. H.
T. Nguyen, et al. [11] present the application of reinforcement learning technique for the
horizontal scaling of VNFCs within ETSI-NFV architecture. Z. Yan, et al. [12] combine DRL
with graph convolutional networks (GCNs) for embedding virtual networks automatically
to adapt them to the dynamic environment. P. Sun, et al. [13] propose a VNF placement
scheme, DeepOpt, which combines DRL and GNN for an efficient VNF placement and
shows good performance on different network topologies. J. Kim, et al. [14] propose a
deep-Q-network-based cloud-native network function (CNF) placement algorithm (DQN-
CNFPA) to minimize operation cost and traffic overload on edge clouds. J. Li, et al. [15]
formulate the VNF scheduling problem as a Markov decision process (MDP) problem
with a variable action set, and DRL is developed to learn the best scheduling policy by
continuously interacting with the network environment. Even though, almost all problems
solved by DRLs are evaluated in a simulation manner, so the performance in real-world
networks would be hard to know. Specifically, the state-of-the-art DRL algorithms ignore
the random delays in the real-world networks that break the 0-delay assumptions of the
standard MDPs, thereby degrading the performance.

This issue has recently received attention in the reinforcement learning field, where
delays (including observation, reward, and action delays) are taken into consideration
when modeling an MDP problem. S. Ramstedt, et al. [16] pointed out that the standard
DRLs are turn-based, because the environment pauses when the agent selects an action,
and vice versa. It assumes that the state will not change until an action is executed, which
is ill suited for real-time applications in which the environment’s state continues to evolve
while the agent selects an action [17]. Hence, the authors proposed a novel framework in
which the agent is allowed exactly one timestep to select an action. B. Chen, et al. [18]
then proposed a multi-timestep framework to improve the performance of DRLs in a
delayed system, which is enhanced from the one-timestep framework. They modeled it
as a delay-aware MDP problem that can be converted to the standard MDP solved by a

Appl. Sci. 2022, 12, 12297 3 of 20

model-based DRL algorithm; however, the assumption that the delays are constant for
several timesteps also mismatch the reality where delays are always random. To fill this
gap, S. Ramstedt, et al. [19] studied the anatomy of randomly delayed environment for
off-policy multi-timestep value estimation. The authors analyzed the influence of actions
on delayed observations in delayed environment and modeled it as a random delay MDP
problem with an augmented state space and delayed dynamics (e.g., observation delays).
A partial trajectory resampling method was proposed to collect samples to train the agent.
Without difference, these frameworks adopt the same method that augments the state space
using the latest-received observation and fixed-length action buffer. The main drawback of
this method is the exponential growth of the state space with the delay value [20].

Learning from the state-of-the-art works, we can conclude that (1) few works take
the delays between the agent and the environment into consideration to evaluate their
impact on the performance of DRL-enabled network automation; (2) DRL algorithms
considering the delays are evaluated in a controlled simulation environment (e.g., OpenAI
Gym (Gym: https://github.com/openai/gym (accessed on 2 October 2022))) and are
not really applied to real-world network automation; therefore, we are inspired to study
the random-delay-corrected deep reinforcement learning framework for real-world online
closed-loop network automation in this paper.

Firstly, we abstract the interaction patterns between the agent and the environment
with a delay assumption to be three different scenarios including a turn-based scenario,
a periodicity-based scenario with constant delays, and a periodicity-based scenario with
random delays. The turn-based scenario means that the agent will generate an action for
network control only if it receives an observation from the environment, which is designed
to adopt the standard DRL algorithms. The periodicity-based scenarios with constant or
random delays mean that the environment collects the state and the agent generates an
action periodically at each time step, which is considered to capture the dynamics within
the networks to improve the performance.

Secondly, we model the scenarios as a partial history-dependent Markov decision
process (PH-MDP), which extends the standard MDP with a dynamic action buffer and
the latest-received observations. The action buffer records the actions that will be executed
before the agent generates a new action at each time step. The agent in the periodicity-
based scenarios will receive none, one, or multiple observations at each time step, it will
choose a fresh or latest-received observation to generate the action. Because of the dynamic
action buffer, we propose a forward model to iteratively predict the next state using the
latest-received observation and actions in the buffer. The predicted state will be input
into the actor network of DRL algorithms to output an action. The PH-MDP is a general
model that can be adopted into the three scenarios mentioned above. In order to obtain
samples to train the agent, we propose a delay-corrected trajectory sampling method in the
interactions between the agent and the environment. Based on the framework, we propose
a delayed-DQN algorithm for further evaluation.

In order to validate our proposed methodologies, we develop a proof-of-concept (PoC)
prototype of a cloud-native 5G core network based on some open-source projects. We
build a Kubernetes-based cloud environment to deploy 5G core network function instances
packaged in docker containers. The simulated 5G network consists of the stateless 5G core
network provided by OpenAirInterface (OAI) projects and the radio access network pro-
vided by UERANSIM projects. For environment state collection, Prometheus is integrated
in Kubernetes to collect multi-level resources (e.g., physical machine, pod, and docker
resources). For network control, customized application programming interfaces (APIs) are
implemented based on the Kubernetes APIs. The agent is built based on NVIDIA Cloud
GPU that allows DRL algorithms to obtain network states from the environment, make
decisions, and control the network in an online manner. To better load customized DRL
algorithms from 3rd parties, we design and implement a customized algorithm uploading
and running procedure.

https://github.com/openai/gym

Appl. Sci. 2022, 12, 12297 4 of 20

On top of the prototype and the framework, we implement a delayed-deep-Q-network
(delayed-DQN)-enabled AMF scaling use case for the specific evaluations. Several experi-
ment scenarios are implemented including no-delay and turn-based scenarios, constant and
random-delay scenarios with the standard DQN, and constant and random-delay scenarios
with the delayed-DQN algorithms. The results show that (1) the periodicity-based pattern
can be more beneficial to capture the network dynamics than the turn-based pattern; (2)
the random-delay-corrected DRL framework can improve the performance when adopting
the DQN algorithm in the periodicity-based scenarios; (3) smaller state collection time
interval ∆T can further improve the performance of the delayed-DQN algorithm; (4) the
proposed framework is well adopted in a real-world cloud-native 5G core network to
enable AI-native network automation.

To the best of our knowledge, this is the first paper discussing DRL algorithms ap-
plications in a real-world online closed-loop network automation with random delays.
Compared with the state-of-the-art works, our contributions are concluded as follows.

• We abstract the interaction patterns between the agent and the environment and
model them to be PH-MDP, a general model that supports turn-based and one-
timestep/multi-timestep constant/random delays scenarios. With PH-MDP, it is not
necessary to know the specific delays in advance; the agent can monitor whether an
observation is received at regular intervals and obtain the delays from the time stamp
carried within the observation; therefore, the PH-MDP is able to be well-adopted in a
real-world system.

• We prove that the PH-MDP can be transformed into the standard MDP in terms of the
transmission probability. We propose a forward model instead of an augmented state
space to learn the ground-truth transmission probability from a dynamic action buffer.
Due to the uncertainty of delays, we propose a delay-corrected trajectory sampling
method to obtain samples according to the time stamps of unordered actions and
observations. The PH-MDP, forward model, and delay-corrected trajectory sampling
method make up our proposed random-delay-corrected DRL framework.

• We talk about the relationship between the time interval ∆T of state collection and
ground-truth delays d1. We discuss ways to define how long one timestep should be,
thereby supporting different scenarios (e.g., turn-based scenario) in the use case.

• We develop a PoC prototype to evaluate our proposed framework in a real-world
system. The environment is a stateless 5G core network deployed in a Kubernetes-
based cloud computing with Prometheus for state collection and envAdapter for
network control; the agent is an AI Engine (AIE) supported by NVIDIA Cloud CPU
to enable customized DRL algorithms uploading and running. We design a specific
DRL algorithm, delayed-DQN, based on the framework to enable automated scaling
of AMF and several experiments are conducted to show the performance.

• We open all source code in Gitlab (OpenXG: http://git.opensource5g.org/openxg/
openxg-aiaas (accessed on 2 October 2022)) (prototype) of Open-Source Radio Access
Network (OS-RAN (OS-RAN: http://www.openxg.org.cn/?Tutorials_66.html (ac-
cessed on 2 October 2022)) (The code is available for free for those who agree with the
License))) community and Github (delayed-DQN: https://github.com/dukl/delayed-
dqn (accessed on 2 October 2022))) (delayed-DQN algorithm).

The rest of this paper is organized as follows. Section 2 presents our proposed method-
ologies including scenario abstraction, modeling, and random-delay-corrected DRL frame-
work. Section 3 presents our developed PoC prototype including a Kubernetes-based cloud
environment and NVIDIA Cloud GPU-based AIE. Section 4 presents the implemented
use case, delayed-DQN-enabled AMF scaling in detail, including architecture, reinforce-
ment learning setting (state representation, action definition, and reward description),
experiment setup/parameters, and evaluation results. Section 5 concludes this paper.

http://git.opensource5g.org/openxg/openxg-aiaas
http://git.opensource5g.org/openxg/openxg-aiaas
http://www.openxg.org.cn/?Tutorials_66.html
https://github.com/dukl/delayed-dqn
https://github.com/dukl/delayed-dqn

Appl. Sci. 2022, 12, 12297 5 of 20

2. Methodologies

In this section, we present our core ideas on how to adapt DRL techniques to the
online closed-loop mechanism for real-world network automation. Firstly, we illustrate
several scenarios that occur during the interaction between the agent and the underlying
networks; then we abstract them to be the PH-MDP and prove that it can be transformed to
be the standard MDP solved by the state-of-the-art DRLs; finally, we propose a random-
delay-corrected DRL framework for sampling trajectories to train the agent.

2.1. Scenario Abstraction

Thanks to the efforts by 3GPP, a new network function, namely NWDAF, is designed
to support online closed-loop automation for cloud-native 5G core networks. With similar
feedback mechanisms, DRL techniques are expected to be suitable to facilitate AI-native
network automation. However, the 0-delay assumptions in the standard DRL algorithms
are not effective for the scenarios in real-world environments where observation delays
(state collection), reward delays (metrics), and action delays (action execution) exist. Con-
sidering the delay features, we summarize three different interaction scenarios, which are
illustrated in Figure 1.

Turn-based scenario (Figure 1a). In this scenario, the environment prepares and sends
observations every T time steps where T ≥ d1 + d2. The agent generates an action only
when it receives an observation. This interaction pattern will bring two-fold drawbacks:
(1) the low-efficiency sampling data cannot be used to learn the transfer probability p(s′|s, a)
thereby degrading the performance of DRL algorithms; (2) the sparse actions (action
execution time interval T′) will not meet the dynamic requirements of diversified and
differentiated vertical applications or signaling requests.

(a) Turn-based scenario

(b) Periodicity-based scenario with Constant delays (e.g., 2-time-step scenario)

(c) Periodicity-based scenario with Random delays (e.g., 1~4 time steps scenario)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

d1 d2

TT’

T T’

d1

d2

T T’

d1 d2

Figure 1. Different interaction scenarios between the agent and the underlying networks considering
different delay patterns. d1 and d2 are delays for state collection and action execution, respectively. T
denotes the time interval of state collection and T′ is the time interval of action execution. The red
symbols such as “x” (as shown in (c)) mean that the collected states will not be used to generate the
next action. The red lines are the processes for state collection, while the green lines are for action
execution. Here, we assume that the action delays are constant.

Periodicity-based scenario with constant delays (Figure 1b). In order to address the
issues of Figure 1a, we consider a periodicity-based scenario where the environment collects
the state periodically (at a smaller time interval T). This scenario is expected to capture the
time-varying dynamics when T is carefully determined; therefore, the agent will generate
an action at every time step after receiving the first observation and these actions are

Appl. Sci. 2022, 12, 12297 6 of 20

executed at each time step for near real-time network controls. The reward metrics go along
with observations to evaluate how well the last action executes on the last state. In addition,
complete trajectories samples [s, a, s′, r] can be obtained through periodical state collection
to be used to learn the transfer probability p(s′|s, a); however, because of the existence
of interaction delays, the input observation of the neural network is delayed for several
time steps and changed by the latest executed actions. If we input the delayed observation
st−d1 into the neural network, it will generate a non-optimal action. This is quite different
from that of the standard DRL algorithms assuming that the observation is immediate and
only changed by the latest one executed action (π(at|st)). Therefore, one optional solution
is to predict the current state (ŝt) using the latest observation st−d1 and latest executed
actions (at−d1, ..., at−1) for generating a new action π(at|ŝt): p(ŝt|st−d1, at−d1, ..., at−1). In
this scenario, the length of (at−d1, ..., at−1) is fixed.

Periodicity-based scenario with random delays (Figure 1c). Different from Figure 1b,
this scenario is more realistic because the delays for state collection and transmission are
usually random, which brings greater challenges for trajectory sampling and agent training.
In this scenario, the environment still prepares and sends the state at each time step, while
the agent may receive none, one, more, or outdated state (the earlier-collected state arrives
at the agent after the later-collected state arrives) because of the random state collection
delays. Therefore, the length of the latest executed actions (at−n, ..., at−1) is dynamic, which
limits the adaptation to predict the current state (ŝt). In addition, the trajectories recorded in
the agent are dynamic, which increases the difficulty of sampling to train the DRL agents.

In order to adapt to the dynamics of future networks (e.g., time-varying computing
resource utilization) and meet the rapid requirements of vertical applications (e.g., frequent
signaling requests), the interaction pattern of Figure 1c is more suitable. In order to make
this happen, a new model and DRL algorithm are significant.

2.2. Modeling: Partial History-Dependent Markov Decision Process

A standard MDP is characterized by a tuple with (S, A, µ, p, r) where S is the state
space (collected from the environment), A is the action space (network control decision),
µ : S→ R is the initial state distribution, p : S× A→ R is the transition distribution, and
r : S× A → R is the reward function (metrics from the environment). As illustrated in
Figure 1, the new decision process may be enhanced from the standard MDP, which is
defined as a PH-MDP characterized by a tuple with (X , A, µ, p, r) in this paper.

State space X . Figure 1b,c shows that the current state xt is decided by the lat-
est received state st−d1max and latest executed actions (also called partial history action
buffer) (at−d1max , ..., at−1). As d1 may vary randomly within a certain range so that the
length of partial history action buffer is dynamic; therefore, we can define the state space
X = S× An, where n is a dynamic variable. Then, we can obtain

xt = (s(t)c , a
Id(s(t)c)

, a
Id(s(t)c)+1

, ..., at−1) (1)

where s(t)c ∈ (st−d1max ,...,st−1) is the latest received state from the environment before time t,
Id(∗) is the time step when a state s or an action a is generated (e.g., Id(s0) = 0, Id(a1) = 1),
and (a

Id(s(t)c)+1
, ..., at−1) ⊆ (at−d1max , ..., at−1).

Action space A = A. The PH-MDP shares the same action space with standard MDP
for network control.

Initial state distribution µ(x0) where x0 = (s(0)c , a−1) , then we can obtain

µ(x0) = µ(s(0)c , a−1) = µ(s(0)c)δ(a−1 − c−1) (2)

where s(0)c = s−1 is a random-chosen state at time t = 0 because the collected state s0 is still
on the road toward the agent; a−1 is a random-chosen action at time t = 0 because the agent
has not received any state; δ(∗) is the Dirac delta distribution and if y ∼ δ(· − x) then y = x

Appl. Sci. 2022, 12, 12297 7 of 20

with probability one. Equation (2) reveals that the initial state x0 in PH-MDP is independent
with respect to s0 in the standard MDP and transferred to be x1 by a random-chosen action a−1.

Transition distribution p(xt+1|xt, at). The PH-MDP extends the transition distribution
of the standard MDP p(st=1|st, at) with the help of a partial history action buffer, whose
definition is presented as follows:

p(xt+1|xt, at) = p(s(t+1)
c , a(t+1)

Id(s(t+1)
c)

, ..., a(t+1)
t−1 , a(t+1)

t |s(t)c , a(t)
Id(s(t)c)

, ..., a(t)t−1, at)

= δ(s(t+1)
c − s(t)c)

t−Id(s(t)c)

∏
i=1

δ(a(t+1)
t−i − a(t)t−i)δ(a(t+1)

t − at)

+
Id(s(t+1)

c)−Id(s(t)c)

∏
i=1

p(s(i)|s(i−1), a(t)
Id(s(i−1))

)

× δ(s(0) − s(t)c)δ(st+1
c − s(Id(s(t+1)

c)−Id(s(t)c)))

×
t+1−Id(st+1

c)

∏
i=1

δ(a(t+1)
t−i − a(t)t−i)δ(a(t+1)

t − at)

(3)

where s(t)c represents the latest received observation by the agent at time t; the superscript
of a(t2)t1 means that the action is one element of partial history action buffer at time t2 and the
subscript t1 represents the time when this action is generated; at ∈ A is a newly generated
action at time t. Equation (3) reveals that there are two cases on how to record the transition
distribution at the agent because of the uncertainty caused by the random delay d1 as
shown in Figure 1b,c.

• No fresh state is received by the agent at time t. In this case, the agent updates s(t+1)
c

to be the last fresh state s(t)c using δ(s(t+1)
c − s(t)c). Then, the agent adds the newly

generated action at into the partial history action buffer to be (a
Id(s(t)c)

, ..., at−1, at) using

∏
t−Id(s(t)c)
i=1 δ(a(t+1)

t−i − a(t)t−i)δ(a(t+1)
t − at).

• Fresh state is received by the agent at time t. In this case, the agent updates s(t+1)
c

to be the fresh state so that s(t+1)
c 6= s(t)c , Id(sc)(t+1) > Id(s(t)c); therefore, there

will be multiple transition processes from s(t)c to s(t+1)
c using p(s(i)|s(i−1), a(t)

Id(s(i−1))
)

where s(0) = s(t)c and s(t+1)
c = s(Id(s(t+1)

c)−Id(s(t)c)). In addition, the partial history
action buffer is cut off and also added with the newly generated action at to be

(a
Id(s(t+1)−1

c
, ..., at−1, at) using ∏

t+1−Id(st+1
c)

i=1 δ(a(t+1)
t−i − a(t)t−i)δ(a(t+1)

t − at).

Reward function. The PH-MDP shares the same reward function as the standard MDP
and the reward metrics are randomly delayed along with state collection; therefore, there is
a partial history reward buffer to help to sample trajectories. An action will be executed
and a state will be collected at each time step (e.g., at, st) so that there will be a reward
(e.g., rt) showing how good the last executed action (e.g., at−1) on the last collected state
(e.g., st−1), that is rt = r(st−1, at−1).

2.3. Random-Delay-Corrected DRL Framework

The goal of DRL algorithms with PH-MDP is to find an optimal policy π∗(at|xt) to
maximize the discounted accumulated reward (Gt).

Gt = rt + γrt+1 + γ2rt+2 + ... (4)

where γ is the discount factor used to evaluate the importance of future estimates. As is
learned from the transition distribution of PH-MDP, the problem can be transformed to

Appl. Sci. 2022, 12, 12297 8 of 20

be the standard MDP solved by the state-of-the-art DRL algorithms. The random-delay-
corrected DRL framework with a forward model and a novel trajectory sampling method
is expected to make the transformation happen.

Forward Model. Equation (3) reveals that the current state (ŝt) used to generate an
action at at time t can be predicted using latest-received observation s(t)c and latest-executed
actions (a

Id(s(t)c)
, ..., at−1) whose length is dynamic because of the random delay d1; therefore,

we propose a forward model to iteratively predict the next state using ground-truth state
s and action a. The forward model is a neural network weighted by parameters θ and is
presented by gθ(·); therefore, we can obtain

ŝ = gθ(s, a) (5)

Then, the state ŝt can be predicted by Equation (6) as follows.

s(0) = gθ(s
(t)
c , a

Id(s(t)c)
)

s(1) = gθ(s(0), a
Id(s(t)c)+1

)

...

ŝt = s(t−Id(s(t)c)) = gθ(s(t−Id(s(t)c)−1), at−1)

(6)

The forward model takes the collected state and generated action as inputs and outputs
the predicted state so that it can be trained using samples such as (si, ai, si+1). The loss
function can be presented as the minimum mean square error as shown in Equation (7).

L(θ) =
N

∑
i=1

(gθ(si, ai)− si+1)
2 (7)

Relationship Between ∆T and Delays d1. In the PH-MDP, we assume that the ob-
servation delay d1 between the agent and the environment varies randomly in the range
(dmin, dmax) and we denote ∆T as the time interval for state collection. Considering the
relationship between ∆T and d1, there may exist three interaction scenarios illustrated in
Figure 1. With the turn-based interaction pattern, ∆T is supposed to be greater than the
maximum value of d1, that is ∆T ≥ dmax. In this scenario, the PH-MDP is exactly the same
as the standard MDP so that the agent can generate an action with the received state, which
will not be affected by other actions. As discussed above, the turn-based pattern will not be
suitable for real-time network control, especially when the environment is changing over
time. The periodicity-based pattern with constant delays is an optional solution but with
some constraints. We assume that the number of delayed time steps is n (n ≥ 1, n ∈ Z) and
then it will meet the constraints in Equation (8).

n∆T ≤ dmin

(n + 1)∆T ≥ dmax
(8)

Then, we can obtain

dmax

n + 1
≤ ∆T ≤ dmin

n

⇒ dmax

n + 1
≤ dmin

n

(9)

As n is supposed to be an integer that is bigger than one, therefore, we can obtain the
constraints of the range of d1 as follows:

dmax =]i=1(1 +
1
i
)dmin = {2

1
dmin,

3
2

dmin,
4
3

dmin, ...} (10)

Appl. Sci. 2022, 12, 12297 9 of 20

Equation (10) reveals that not all scenarios can be transformed to be the periodicity-
based pattern with constant delays, which may limit the applications of the PH-MDP.
Therefore, a periodicity-based pattern with random delays is supposed to be the common
interaction method between the agent and the environment. In this scenario, the collected
state will be delayed for a maximum ceil(d1

∆T) number of time steps.
Delay-Corrected Trajectory Sampling. To obtain useful and efficient samples from the

PH-MDP with an uncertain number of delayed time steps to train the agent to make the
right decisions with delayed observations, we propose a unified delay-corrected trajectory
sampling (DCTS) method. We denote O and R as the possible set of received observations
and rewards by the agent, respectively, at time t, which are defined in (11).

O ⊆ {st−nmin , st−nmin−1, ..., st−nmax}
R ⊆ {rt−nmin , rt−nmin−1, ..., rt−nmax}

(11)

where nmin = ceil(dmin
∆T) and nmax = ceil(dmax

∆T). We further define a valid observation set
Oavai to remove outdated observations from O, which is shown in (12).

Oavai = {s|s ∈ O, Id(s) > Id(sc)} (12)

where sc is the latest received observation by agent and Id(s) reveals the time when
observation s was generated. It means that the outdated observation s was generated
earlier but arrived at the agent later than sc, in which case the outdated observation shall
not be used to predict a future state.

Similarly, we define an action buffer A to record actions generated at each time step
and an available action buffer Aavai to record actions meeting the requirements in (13).

Aavai = {a|a ∈ A, Id(sc) ≤ Id(a) < ts} (13)

where Id(a) is the time when action a was executed. At the very beginning, the agent
does not receive any ground-truth observation from the environment; therefore, the agent
initializes a random-generated state sc with Id(sc) = −1 and random-chosen action a−1 = ε,
where ε ∈ [0, 1]. Over time, the agent may receive one, multiple, none, or outdated
observations at each time step.

• One observation. There is only one element in O and Oavai. This observation s ∈ Oavai
is then the latest received observation sc in agent, that is sc = s. Then, with action
buffer A, the agent resets Aavai that meets Equation (13). This observation s ∈ O and
reward r ∈ R are stored in the raw trajectory T for training the agent.

• Multiple observations. There are multiple elements in Oavai. These observations are
later than sc but arrive at the agent in the same time step. In this case, the newest
observation is chosen to be the latest observation, that is sc = arg maxs∈Oavai Id(s).
Accordingly, Aavai can be reset. All observations in O and all rewards in R are stored
in the raw trajectory T for training the agent.

• None observation. There are no observations received by the agent at someone’s time
step. Therefore, sc stays the same but Aavai will be updated by adding executed action
at the last time step.

Afterward, we can predict the state (ŝt) on which action at is executed with sc and
Aavai, which is based on forward model defined in (6). Hence, action at can be determined
by the actor policy network π(at|ŝt). In order to better explore the state of the environment,
random noise is added to the generated action. Then, at will be put into action buffer A and
raw trajectory T. Through continuous interactions between agent and env, a raw trajectory
T may be as shown in (14).

T = {a0, s0, r0, a1, a2, s1, r1, a3, s2, r2, s3, r3, a4, a5, a6, s4,

r4, s5, r5, s6, r6, a7, a8, s8, r8, a9, s7, r7, s9, r9, a10, ...}
(14)

Appl. Sci. 2022, 12, 12297 10 of 20

As we can see from (14), the trajectory T of the PH-MDP is different from the standard
MDP. Between two adjacent actions, the agent may receive 0, 1, multiple, or outdated
observation(s) from the environment. For example, there is only one observation s0 received
by the agent between a0 and a1; there is no observation between a1 and a2; there are two
observations s2 and s3 between a3 and a4; there is one outdated observation s7 between a9
and a10 because newer observation s8 is received by the agent between a8 and a9. Despite
this, the PH-MDP can be transformed into the standard MDP. The state of the environment
is also changed by the executed action, but what is different is that the changed state will
be received with a random observation delay. Therefore, the DRL algorithms with this
framework and DCTS are off-policy algorithms that can train neural networks by sampling
the trajectory T. Therefore, we can re-sample T and generate two buffer D f m and Ddrl to
train the forward model and the actor/critic of DRL algorithms. The two buffers can be
defined as shown in (15).

D f m = {si, ai, si+1}
Ddrl = {si, ai, ri+1, si+1}

(15)

Example DRL algorithm: Delayed-DQN. This algorithm integrates the deep Q network
(DQN) and the random-delay-corrected DRL framework to help improve the performance
in a delayed environment. Delayed-DQN consists of three neural networks, including a
forward model, evaluation network, and target network parameterized by θ, ω, and ω′,
respectively. Delayed-DQN firstly predicts the state ŝt following Equation (6) and then
outputs an action at = arg maxa Qω(ŝt) with a probability 1− ε. Enabled by the DCTS, the
DQN networks can be trained with the loss function as follows:

L(ω) = (r + γ max
a′

Qω′(ŝ
′, a′)−Qω(ŝ, a))2 (16)

The complete random-delay-corrected DRL framework with DCTS is illustrated in
Algorithm 1 and an example delayed-DQN is proposed.

Algorithm 1 Random-Delay-Corrected DRL Framework with DCTS (e.g., delayed-DQN)

1: Initialize the environment (env) and the agent (agent)
2: Initialize the evaluation network and target network of DQN with weights ω and ω′

3: Initialize the Forward Model with weights θ
4: Initialize the action buffer A (FIFO-Queue): A = ∅ and Aavai = A
5: Initialize the latest observation sc randomly (Id(sc) = −1)
6: Initialize the received observations O = ∅, available Oavai = ∅, and rewards R = ∅ by

agent
7: Initialize the raw trajectory T = ∅, samples for Forward Model D f m = ∅, and samples

for DRLs Ddrl = ∅
8: for ep ≤ EPISODE do
9: Reset env, agent, A, Aavai, sc, O, R, T, D f m, and Ddrl

10: for ts ≤ T do
11: env sends the State sts and reward rts
12: agent sets O ⊆ {sts−dmin

, sts−dmin−1, ..., sts−dmax}; Oavai = {s|s ∈ O, Id(s) >
Id(sc)}

13: agent sets R ⊆ {rts−dmin
, rts−dmin−1, ..., rts−dmax}

14: if Id(sc) == −1 and A == ∅ then
15: agent adds action a−1 = ε into A: A.put(a−1) → A = {a−1} and sets

Aavai = A
16: else

Appl. Sci. 2022, 12, 12297 11 of 20

Algorithm 1 Cont.

17: agent adds observations and rewards into T: T = T
⋃
O
⋃
R

18: if Oavai! = ∅ then
19: agent resets sc = arg maxs∈Oavai Id(s)

20: agent resets Aavai = {a|a ∈ A, Id(sc) ≤ Id(a) < ts}
21: agent predicts State ŝts = f (sc, Aavai) and then executes action ats =

arg maxa Qω(ŝts) with a probability 1− ε
22: agent adds ats into A: A.put(ats)→ A = {..., ats−1, ats}
23: agent adds ats into T: T = {..., ats}
24: if ∃s, s′ ∈ T and Id(s) + 1 == Id(s′) then
25: agent adds sample 〈s, aId(s), rId(s′), s′〉 into Ddrl and sample 〈s, aId(s), s′〉 into

D f m
26: agent removes elements s, aId(s), and rId(s′) from T
27: if len(Ddrl) > Nmem then
28: agent samples a random minibatch of Nmem samples 〈si, ai, ri+1, si+1〉 from

Ddrl
29: agent updates weights ω with a gradient step on ((r + γ maxa′ Qω′(ŝ′, a′)−

Qω(ŝ, a))2)
30: Every C steps, reset ω′ = ω

31: if len(D f m) > M then
32: agent samples a random minibatch of M samples 〈si, ai, si+1〉 from D f m
33: agent updates the Forward Model by minimizing the loss: L(θ) =

∑M
i=1(gθ(si, ai)− si+1)

2

3. PoC Prototype: Real-World Cloud-Native 5G Core

In order to evaluate our proposed methodologies, we develop a PoC prototype based
on some open-source projects, such as OAI. This prototype aims at managing a cloud-native
5G core network in an online manner automatically, which consists of a Kubernetes-based
cloud environment and an AIE for deploying DRL algorithms. The AIE collects network
state data from the environment to make an intelligent decision and then executes it in the
environment via Kubernetes APIs.

3.1. The Kubernetes-Based Cloud Environment Deploying 5G Core Network Functions

The development target of the environment of the PoC prototype is to support online
state collection and network controls, thereby providing samples for the agent to make intel-
ligent decisions and APIs for executing these decisions. For this purpose, the environment
is composed of the following components.

Stateless 5G Core. The stateless design of the 5G core network is envisioned to be
an essential approach to better deploy 5G core network functions in a cloud environment
without signaling message loss [21]. This prototype aims to scale 5G core network resources
automatically to process the time-varying signaling messages simulated by UERANSIM
(UERANSIM: simulators for 5G gNBs and UEs without air–interface protocols) so that a
message-level stateless 5G core network is set up with a set of OpenXG-5GCore projects
(http://git.opensource5g.org/dashboard/projects (accessed on 2 October 2022)). As is
shown in Figure 2, the stateless 5G core network consists of RAN Service Integrated
Enabler (RISE), AMF, SMF, UDM, AUSF, UDR, UDSF, and UPF. RISE is a middleware
between UERANSIM and AMF, responsible for the mutual conversion of HTTP1.1 and
SCTP protocols to discover AMF instances. The SCTP protocol within AMF is replaced by
HTTP1.1 to send/receive non-access-stratum (NAS) messages. Further, the communication
contexts within AMF are removed to the unified data storage, UDSF, to make AMF stateless.
When receiving one NAS message by AMF, it will try to obtain the corresponding contexts
associated with someone’s identifier (e.g., SUPI) first. The processing results will also be
updated in UDSF to ensure information consistency. UDSF maintains an MYSQL database

http://git.opensource5g.org/dashboard/projects

Appl. Sci. 2022, 12, 12297 12 of 20

storing contexts such as gnb_context, ue_ngap_context, and so on. With these network
functions, the stateless 5G core network is able to inter-operate with open-source gNB/UE
(e.g., UERANSIM) and also some commercial gNBs (e.g., Baicell, Amarisoft gNB) and UEs
(e.g., Huawei Mate 30 5G Pro, Hongmi K30). Therefore, some high-level features such
as UE-initiated registration and PDU session establishment procedures can be supported
for real 3GPP-defined signaling messages. In order to collect the network-domain and
service-domain data within the cloud-native 5G core network, some modifications are
made to the state-of-the-art open-source projects. The “EventExposure” service within
AMF and SMF is implemented to expose network-domain data, such as UEs’ SUPI, IP
address UEs’ location, and so on. For UPF, we implement a non-3GPP-defined interface for
UPF to expose the service-domain data such as uplink and downlink data rate of a certain
UE because 3GPP has not designed the service-based interfaces for UPF.

ApiServer

Scheduler Controller-manager
etcd

kubectl

master

node

pod

cadvisornfState

pod

cadvisornfState

kubelet

node_export
service discovery

controlPod

ubuntu 18.04

NF

 (e.g. amf)

Python FlaskgetNFServiceStatus

getNFStatus

CPU/Mem...

getPodNetworkStatus

Fault InjectionRunning Processes

PodPoolServer

discoveryAllPod

envAdapter

Stateless 5G Core

AMF
AMF

AMF

AMF Pool

UDSF

UDR

SMF

AUSF UDM

UPF

RISE

UERANSIM

SUPI KEY OPC

SubscriptionData

amfdata
gnb_context

ue_ngap_context

ue_context

nas_context

pdu_session_context

kubernetes-based cloud environment

Figure 2. Kubernetes-based cloud environment.

Kubernetes-based Cloud Environment. The stateless 5G core network is implemented
to be adaptable in the cloud environment with instances packaged in Docker containers.
Kubernetes, an open-source cloud environment, is chosen to orchestrate all NF instances
in this PoC prototype. As is shown in Figure 2, we integrate Prometheus into Kubernetes
to collect the resource-domain data automatically. Prometheus is an open-source monitor
for resource utilization of physical machines, virtual machines, Kubernetes nodes, and
Kubernetes Pods deploying NF instances. To make this happen, each Kubernetes worker
node is equipped with node_export, each Pod is equipped with cadvisor, and Prometheus
should be configured to support the service discovery procedure within Kubernetes.

There exists one situation that one Pod may be alive while the NF instance deployed
in this Pod may crash because of some bugs. In this context, we customize a Python
service named nfState.py that will work after one Pod is instantiated. It implements three
interfaces to collect network-domain and service-domain data of NFs and control the
resource utilization (e.g., CPU, memory); therefore, we can check if the Python service is
alive to judge if the NF instance is available. getNFStatus is used to obtain the running-time
process identity (PID), CPU, memory, traffic load information, and/or static capacity of NF

Appl. Sci. 2022, 12, 12297 13 of 20

instances. getNFServiceStatus is used to obtain the signaling status of UE and/or running-
time downlink/uplink traffic data. getPodNetworkStatus is used to obtain the delay and
packet loss rate information of the NF instances.

On top of the basic environment, we implement the envAdapter to provide unified
APIs for data collection and network control. Three Python services are implemented to
reach this target, including controlPod, discoveryAllPod, and PodPoolServer. The controlPod
service exposes the capabilities of horizontal or vertical scaling of NF instances (e.g., adding
a new Pod instance). The discoveryAllPod service is used to obtain the IP addresses of
all available network function instances to support network-domain service discovery
procedures. The PodPoolServer service integrates network data from different domains (e.g.,
network-domain, resource-domain, and service-domain) together, facilitating graph-based
association and then exposing them to the AIE.

3.2. The Artificial Intelligence Engine Deploying DRL Algorithms

In order to provide AI-native functionalities for the agent to learn from the collected
state of the underlying networks, we consider that there will be a scalable and effective
engine running multiple and customized DRL algorithms in real-world systems.

For this purpose, we develop an AIE referring to NVIDIA Cloud GPU solutions and
implement a procedure for customized AI algorithms uploading, parsing, and running,
which is illustrated in Figure 3. As is shown, the procedure includes “Apps Uploading”,
“Apps Configuration”, and “Apps Running” in order. The model designer first uploads
the application package (app.tar) that consists of the AI models/algorithms and require-
ments for running environment/network data. The application package will be stored
in the “apps” database, waiting to be parsed and allocated with one or more NVIDIA
Docker instances.

Apps Uploading Apps Configuration Apps Running

Nvidia Cloud GPU Graph Process Units (GPUs)

CUDA: 8.x/9/10/11
Running Environment Configure Runing Env

Apps Storage

Apps Parsing env.yaml

model.pb

procedure.py

api.yaml

app.tar

upload the customized

models/algorithms

Applications

Configuration

locally

Cloud AI

Platform

API

model

Running Entity

remotely

data collection

network control

Figure 3. The procedure for uploading and running customized AI models/algorithms.

During “Apps Configuration”, the application package is decompressed with four
files that are “api.yaml”, “env.yaml”, “model.pb”, and “procedure.py”, respectively. The
“api.yaml” indicates the required network data for training the uploaded AI model and
the network control interfaces for executing generated actions (or decisions). The AIE
maintains all APIs for network data retrieval and network control and opens them all to
ensure their availability for model designers. Moreover, different AI models/algorithms
may be written with a different version of Python and neural networks so that the running
environment requirements should be indicated specifically in “env.yaml”. For example,
one AI model/algorithm may run with Python 3.6 and Tensorflow 2.0 supporting GPU,
while another one may run with Python 3.5 and Pytorch. The model designer may upload
a pre-trained model optionally that is in the format of “model.pb”. The main logic of
the AI model/algorithm, including data retrieval, model training, model inference, and

Appl. Sci. 2022, 12, 12297 14 of 20

decision-making, is written in “procedure.py”. With the four files, NWDAF then assigns the
AI model/algorithm with one or more compliant NVIDIA Docker instances for running.

Afterward, the AI model/algorithm running in NVIDIA Docker obtains the network
data from the “data” database following the configured data APIs. The generated results
can be used for network control following the configured network control APIs; therefore,
the MAPE closed-loop architecture is implemented in the AIE, which facilitates the online
network automation for a cloud-native 5G core network.

3.3. Implementation

The prototype runs on four virtual machines (VMs) deployed on one SANGFOR
(https://www.sangfor.com.cn/ (accessed on 2 October 2022)) server, including three VMs
for deploying a Kubernetes (One master and two work nodes: 8-cores CPU, 8G memory,
Ubuntu 18.04; Kubernetes version: 1.17.4)-based cloud environment and one VM (AIE:
32-cores CPU; 32G memory; Ubuntu 18.04; GPU version: NVIDIA A100-PCI; NVIDIA-SMI
470.141.03; CUDA version 11.4; cuDNN version: v8.2.4; installation tutorials for NVIDIA
Cloud GPU: https://zhuanlan.zhihu.com/p/406815658 (accessed on 2 October 2022)) for
deploying an AIE. The communication between Kubernetes nodes is via a Flannel plugin
with which a Calico (https://www.cnblogs.com/xin1006/p/14989365.html (accessed on
2 October 2022)) plugin is integrated to maintain the IP addresses of Pods. Each NF is
packaged in one Docker instance via one specific Dockerfile shown in Figure 4b to be
deployed in a Pod on one work node.

• @PREFIX@: The unique name of deployment of the Docker instance, e.g., amf.
• @NFNAME@: The unique name of Pod when deploying different instances, e.g., amf.
• @IP@: The unique IP address of Pod is set supported by the Calico plugin, e.g.,

10.244.1.19.
• @NODE@: The selected node to deploy a new Pod instance, e.g., node2.
• @NFCONTAINER@: The name of newly created container, e.g., amf-1.
• @NFIMAGE@: The selected image file to create a new Pod instance (the image file

shall be available on the selected node), e.g., amf:cmcc.
• @CPU@: The required CPU resource, e.g., 50 m. If the available CPU resource of the

selected node is lower than the required one, the Pod instance cannot be created suc-
cessfully.

• @COMMAND@: The commands to run the scripts (nfState.py for opening the states of
the Pod instance) and the executable file of NF (e.g., /amf/build/amf/build/amf –c
/home/amf.conf -o).

• @PATH@: The file sharing path between the container and the host, e.g., /home/.

The whole procedure is illustrated in Figure 4a. Firstly, users upload their 3rd-party
applications packaged in compressed files (e.g., app.tar). The AIE unzips these files to
obtain four elements including “env.yaml”, “api.yaml”, “procedure.py”, and “model.pb”.
An example “env.yaml” is shown in Figure 4e, which indicates the requirements of the
running environment; an example “api.yaml” is shown in Figure 4d, which indicates the
APIs for data collection and network control. With the “env.yaml” file, the AIE creates a new
NVIDIA Docker instance to the application with “procedure.py” (logic of the algorithms)
and “model.pb” (non-trained or trained neural network). The data manager within the
AIE periodically collects state data from the underlying environment and provides many
fine-grained APIs for data openness. The example data collected by Prometheus are shown
in Figure 4c, which can also be displayed graphically via Grafana.

https://www.sangfor.com.cn/
https://zhuanlan.zhihu.com/p/406815658
https://www.cnblogs.com/xin1006/p/14989365.html

Appl. Sci. 2022, 12, 12297 15 of 20

Begin

Unzip 3
rd

 -party application

files (app.tar)

Parse env.yaml to obtain the

running settings of algorithms

Initialize an Docker

instance to run an algorithm

model.pb

Parse api.yaml to obtain the

APIs for data collection and

network control

api.yaml

Read data from the database

via data collection APIs

Send data to the Docker

instance running the

algorithm for training and

inferencing

Output decisions for

network control via APIs

(a) Procedure (b) Example yaml file for NFs

(d) Example api.yaml (e) Example env.yaml

(c) Example data collected by Prometheus

(f) Data display by Grafana

Figure 4. Procedure, example configuration file, and example data.

4. Use Case: Delayed-DQN-Enabled AMF Scaling

On top of the PoC prototype, we implement a use case to evaluate our proposed
random-delay-corrected DRL framework. In the 5G core network, AMF is of vital im-
portance for connecting the radio access networks and core networks, which may result
in performance bottlenecks. Our previous work [21] has designed and implemented a
message-level stateless AMF that helps to realize signaling-no-loss and UE-unaware scaling;
therefore, we choose to implement a delayed-DQN-enabled AMF scaling use case for the
validation. The architecture is illustrated in Figure 5.

Within the environment, multiple AMF instances collaborate together to process sig-
naling messages. RISE performs as a middle box between the radio access networks and the
5G core networks, which inherit the SCTP server from AMF. RISE receives all signaling mes-
sages and mixes them without considering the procedures or UEs that individual message
belongs to. Moreover, stateless AMF is implemented by decoupling the communication
contexts from the functional procedures. In this context, RISE can distribute all signal-
ing messages into multiple AMF instances to be processed, thus supporting UE-unaware
message-level load balancing.

We abstract the working model as the left figure of Figure 5. Each component
(e.g., RISE, AMF) is with a message queue for caching unprocessed signaling messages. For
example, the purple rectangle named “msgInRISE” is the message queue within RISE to
cache the upcoming signaling request messages with the Poisson distribution. Addition-
ally, “msgUpOnRoad” and “msgDnOnRoad” represent the uplink/downlink signaling
messages that are still on the road to the peer entities for simplification. The service rate
of “msgInRISE” and “msgInAMFInst” is related to the processing capabilities of RISE and
AMF instances, while that of “msgUpOnRoad” and “msgDnOnRoad” is related to the
uplink and downlink delays between RISE and AMF instances. Moreover, the signaling
messages from RISE are distributed to the AMF instance that has a minimum number of
unprocessed messages one by one to be balanced among multiple AMF instances. The
target is to allocate an adaptive number of stateless AMF instances to process the upcoming
request messages at a low cost.

Appl. Sci. 2022, 12, 12297 16 of 20

RISE

AMF-1

AMF-2

AMF-3

AMF-n

...

Note: msgInRISE msgUpOnRoad msgDnOnRoad msgInAMFInst

e
n

v
A

d
ap

te
r

A
rt

if
ic

ia
l

In
te

ll
ig

e
n
c
e
 E

n
g

in
e

forward modeldata
state

state prediction

Q-EvalQ-Target

state

DQN Loss Function (MSE)

update network

parameters

every N steps

collect data

network controlStateless AMF in Cloud-

Native 5G Core

Figure 5. Architecture: Delayed-DQN-enabled AMF scaling.

4.1. Reinforcement Learning

For this purpose, the problem is modeled as a MDP, including state representation,
action definition, and reward description that are illustrated as follows:

State Representation: The state is represented as S = (N, D, Cam f , Nam f). N is de-
fined as the vector of a number of messages in “msgInRISE” (Nrise), “msgUpOnRoad”
(Nup), and “msgDnOnRoad” (Ndn) message queues, that is N = (Nrise, Nup, Ndn). D
donates the vector of uplink (Dup) and downlink (Ddn) delays between RISE and AMF
instances, that is D = (Dup, Ddn). Cam f represents the vector of the number of CPU
cores of AMF instances, that is Cam f = (Cam f−1, Cam f−2, ..., Cam f−Nmax) and Nam f repre-
sents the vector of number of the unprocessed messages within AMF instances, that is
Nam f = (Nam f−1, Nam f−2, ..., Nam f−Nmax), where Nmax is the maximum number of AMF
instances supported in the system. For AMF instances that are not instantiated, the corre-
sponding number of CPU cores and unprocessed messages is 0.

Action Definition: An action is a valid decision on the number of AMF instances,
which may be “−1”, “0”, or “1”. “−1” means that envAdapter deletes one AMF instance
if the number of AMF instances is more than 1. The unprocessed messages in the to-be-
deleted AMF instance are equally distributed among other live AMF instances. The AMF
instance can accept these messages unless the number of unprocessed messages itself does
not exceed its 90% of maximum capacity (Cmax) so some messages may be discarded. “0”
means that the environment keeps running without any change in the number of AMF
instances. “1” means that a new AMF instance will be instantiated if the number of AMF
instances is less than Nmax.

Reward Description: A reward is a signal telling the agent how good the current action
is doing. The reinforcement learning agent aims to maximize the estimation of discounted
accumulative rewards to obtain better long-term performance. In this use case, the agent is
envisioned to learn an optimal policy for deploying an adaptive number of AMF instances
under UE signaling requests lasting for certain time steps with a Poisson distribution. The
reward function is defined as (20). Firstly, the current number of AMF instances Na f t is
calculated as (17), where Ncnt denotes the number of AMF instance before executing an
action. Then, the average capacity (Cavg) of unprocessed signaling messages among all
AMF instances is calculated as (18), where Ntotal denotes the total number of unprocessed
signaling messages in the system, Scp denotes the processing capability of AMF instances
(messages per second), and T denotes the running time before arriving at next time step.
When Cavg exceeds the 0.9 times maximum capacity Cmax, we set Cavg = 2Cmax to calculate
a negative reward value to punish such actions. Then, the basic reward value Rbase is
calculated as (19), considering the QoS for processing signaling messages and the costs for
deploying AMF instances at the same time. In order to limit the reward value in each step
to [0, 1], the reward value is normalized as defined in (20); therefore, we obtain the final
reward value R f inal .

Appl. Sci. 2022, 12, 12297 17 of 20

(Na f t, Rpunish) =

(Ncnt + 1, 0) a = 1 and Ncnt < Nmax
(Ncnt,−0.5) a = 1 and Ncnt = Nmax

(Ncnt, 0) a = 0
(Ncnt,−0.5) a = −1 and Ncnt = 1
(Ncnt − 1, 0) a = −1 and Ncnt > 1

(17)

Cavg =

{
Ntotal/Na f t − Scp × T Cavg ≤ 0.9Cmax

2Cmax Cavg > 0.9Cmax
(18)

Rbase = α(0.9− Cavg/Cmax)/0.9− Na f t/Nmax + Rpunish (19)

R f inal = (Rbase − (−3.3))/(1− Na f t/Nmax − (−3.3)) (20)

4.2. Experiment Setup and Parameters

In this experiment, three types of signaling requests including RegistrationRequest,
ServiceRequest, and PDUSessionEstablishmentRequest were simulated by UERANSIM fol-
lowing the sin(·)-like flow pattern (that is 500 sin(x) + 500). There are flows varying from
[0, 1000] in 10 time steps. Each type of signaling request is processed via a service function
chain (e.g., RegistrationRequest is processed via a 〈AMF-AUSF-UDM-UDR〉 chain). Further,
each type of signaling request has different resource (e.g., CPU) requirements in different
network functions and has different ttl. The detailed parameters for signaling requests are
shown in Table 1.

Table 1. Parameters for signaling requests.

Signaling Request Chain CPU Requirements (Cycles/s) ttl (Time Steps)

RegistrationRequest 〈 AMF-AUSF-UDM-UDR 〉 〈100, 200, 400, 500〉 3000

ServiceRequest 〈 AMF-AUSF-UDM-UDR 〉 〈200, 300, 100, 400〉 2800

PDUSessionEstablishmentRequest 〈 AMF-SMF-UDM-UPF 〉 〈315, 246, 177, 63〉 4000

In addition, we deploy four instances for each network function except AMF and
maximum Nmax = 30 AMF instances in this use case to process these signaling requests.
In the beginning, there is only one AMF instance available and the agent will decide to
add/delete/maintain the number of AMF instances according to the received state time
by time. For each instance, the maximum capacity and CPU are set to be Cmax = 5000 and
300 cycles/s. Neural networks’ parameters are shown in Table 2.

Table 2. Parameters for neural networks.

Neural Networks Architecture Learning Rate Training Index Updating Index Batch Size

Evaluation/Target Q 128 (relu) - 64 (relu) - 3 (linear) 0.0001 10 20 32

Forward Model 128 (relu) - 64 (relu) - 8 (sigmod) 0.0001 10 None 32

The experiment will run for EPISODE = 500 episodes and 20,000 time steps for each
one. In order to explore the possible states in the environment, we set the maximum epsilon
and epsilon decay to be εmax = 0.9 and εdecay = 0.99996, respectively. At each time step,
the agent will randomly choose an action with a probability ε and then ε will be changed
to be ε = ε× εdecay until it reaches εmax.

4.3. Benchmark Scenarios

To evaluate the performance and feasibility of our proposed random-delay-corrected
DRL framework (delayed-DQN in this use case), we design the following scenarios:

Appl. Sci. 2022, 12, 12297 18 of 20

• No-delay scenario. This is an idle scenario with the assumption that the collected state
will arrive at the agent immediately without delays; therefore, delayed-DQN works
the same as the standard DQN.

• Turn-based scenario. There are constant or random delays between the agent and the
environment, but the agent will only generate an action when it receives the collected
state, whose interaction pattern is shown in Figure 1a.

• Constant-delay scenario with the standard DQN. In this scenario, the delays are
transformed to be constant delays by carefully choosing the time interval ∆T as
presented in Section 2.3. Then, the interaction pattern works as shown in Figure 1b.
The standard DQN (DQN algorithm with the standard MDP) is used to try to learn an
optimal policy for better AMF scaling.

• Random-delay scenario with the standard DQN. We design a scenario where the
standard DQN tries to learn an optimal policy in a random-delay environment.

• Constant-delay scenario with delayed-DQN. Different from the above scenario, this
scenario adopts our proposed delayed-DQN to learn an optimal policy.

• Random-delay scenario with delayed-DQN. This agent is equipped with the delayed-
DQN algorithm to learn from delay-corrected trajectories sampling in a random-
delay scenario.

4.4. Evaluation Results

The evaluation results are shown in Figure 6. As we can see from Figure 6a, the
no-delay scenario shows the optimal training results compared to others while the turn-
based scenario shows the worst performance, which proves that the turn-based pattern
cannot adapt to the dynamics in the real-world networks. However, we can still figure
out that the periodicity-based pattern shown in Figure 1b,c cannot train an optimal agent
when the standard DQN algorithms are used, especially for the random-delay scenario.
Although the constant-delay scenario with the standard DQN trains a near-optimal agent,
the reward has high fluctuation that can affect the final decisions. Moreover, the random-
delay scenario with the standard DQN even has little improvement compared to the
turn-based scenario. The results tell us we can not adopt the standard DQN algorithm
to the periodicity-based scenarios directly, which cannot guarantee performance. After
that, our proposed delayed-DQN based on the random-delay-corrected DRL framework is
integrated with the periodicity-based pattern for the validation. The results show that the
performance of the delayed-DQN algorithm is very close to the optimal value of the no-
delay scenario for both constant-delay and random-delay scenarios. Figure 6b–f evaluate
the impact of the state collection time interval ∆T on the performance of DQN algorithms.
For the evaluation, we set three different ∆T values, which are 20, 10, and 5 time steps,
respectively. Generally, we can see that it performs better when for ∆T = 5 than the other
two scenarios no matter what interaction pattern is chosen. The results prove that frequent
state collection with smaller time intervals ∆T can better adapt to network dynamics.

In summary, Figure 6 proves that (1) the periodicity-based pattern can be more benefi-
cial to capture the network dynamics than the turn-based pattern; (2) the random-delay-
corrected DRL framework can improve the performance when adopting the DQN algorithm
in the periodicity-based scenarios; (3) smaller state collection time interval ∆T can further
improve the performance of the delayed-DQN algorithm.

Appl. Sci. 2022, 12, 12297 19 of 20

0 20 40 60 80 100
Scale Episode

30

40

50

60

70

80

Av
er
ag

e
Re

wa
rd
 fo

r E
ac

h
10

 E
pi
so

de
s

RD-DQN
CD-DQN
ND-DQN
RD-Delayed-DQN
CD-Delayed-DQN
TN

(a) Overall performance

0 20 40 60 80 100
Scale Episode

50

60

70

80

90

Av
er
ag
e
Re
wa
rd
 fo
r E
ac
h
10
 E
pi
so
de
s

ND-20-TS
ND-10-TS
ND-5-TS

(b) ND scenario

0 20 40 60 80 100
Scale Episode

30

40

50

60

70

80

90

Av
er
ag

e
Re

wa
rd
 fo

r E
ac

h
10

 E
pi
so

de
s

RD-DQN-20-TS
RD-DQN-10-TS
RD-DQN-5-TS

(c) RD-DQN scenario

0 20 40 60 80 100
Scale Episode

50

60

70

80

90

Av
er
ag

e
Re

wa
rd
 fo

r E
ac

h
10

 E
pi
so

de
s

CD-DQN-20-TS
CD-DQN-10-TS
CD-DQN-5-TS

(d) CD-DQN scenario

0 20 40 60 80 100
Scale Episode

50

55

60

65

70

75

80

85

90

Av
er
ag

e
Re

wa
rd
 fo

r E
ac
h
10

 E
pi
so
de

s
RD-Delayed-DQN-20-TS
RD-Delayed-DQN-10-TS
RD-Delayed-DQN-5-TS

(e) RD-Delayed-DQN scenario

0 20 40 60 80 100
Scale Episode

50

60

70

80

90

Av
er
ag

e
Re

wa
rd
 fo

r E
ac

h
10

 E
pi
so

de
s

CD-Delayed-DQN-20-TS
CD-Delayed-DQN-10-TS
CD-Delayed-DQN-5-TS

(f) CD-Delayed-DQN scenario

Figure 6. Evaluation results. “TN”, “ND”, “CD”, and “RD” mean turn-based, no-delay, constant-
delay, and random-delay scenarios, respectively. “20-TS”, “10-TS”, and “5-TS” mean ∆T is set to
20, 10, and 5, respectively. For example, “CD-DQN-5-TS” means a constant-delay scenario where
states are collected every 5 time step and the agent adopts the DQN algorithm to make decisions.
The results are the average rewards for each 10 episodes.

5. Conclusions

This paper proposes a random-delay-corrected deep reinforcement learning frame-
work to address the challenges for DRL algorithms application in real-world networks
where random delays exist between the agent and the environment. Firstly, the interaction
patterns are abstracted to be three scenarios including turn-based, periodicity-based with
constant delays, and periodicity-based with random-delays scenarios. Secondly, these inter-
action patterns are modeled as a partial history-dependent Markov decision process, which
extends from the standard Markov decision process. Thirdly, a random-delay-corrected
deep reinforcement learning framework with a forward model and delay-corrected tra-
jectory sampling is presented to transform the PH-MDP to the standard MDP, thereby
training the agent using the state-of-the-art DRL algorithms. Fourthly, an example DRL
algorithm, namely delayed-DQN, based on the framework is proposed. For the evalu-
ation, a PoC prototype for a cloud-native 5G core network is developed and a use case,
namely delayed-DQN-enabled AMF (one network function in 5G core network) scaling,
is implemented. The evaluation results show that the proposed methodologies perform
better in the random-delay networks than others. This paper makes good contributions to
DRL-enabled online closed-loop management for real-world networks thereby enabling
AI-native network automation towards 6G.

Author Contributions: Conceptualization, K.D., L.W. and X.W.; methodology, K.D.; software, K.D.,
Y.L. and H.N.; validation, L.W. and S.H.; formal analysis, K.D.; investigation, L.W.; writing—original
draft preparation, K.D.; writing—review and editing, L.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China under Grant 2019YFB1803300 and Beijing Natural Science Foundation (L202002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 12297 20 of 20

Data Availability Statement: Our developed PoC prototype is open to the OS-RAN community
(http://git.opensource5g.org/openxg/openxg-aiaas (accessed on 2 October 2022)) for anyone who
agrees with the License.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, L.U.; Saad, W.; Niyato, D.; Han, Z.; Hong, C.S. Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future

Directions. IEEE Commun. Mag. 2022, 60, 74–80. [CrossRef]
2. Taleb, T.; Aguiar, R.L.; Grida Ben Yahia, I.; Chatras, B.; Christensen, G.; Chunduri, U.; Clemm, A.; Costa, X.; Dong, L.; Elmirghani,

J.; et al. White Paper on 6G Networking. 2020. Available online: https://biblio.ugent.be/publication/8668820 (accessed on
30 October 2022).

3. Li, N.; Liu, G.; Zhang, H.; Zhao, Q.; Zhao, Y.; Tong, Z.; Wang, Y.; Sun, J. Micro-service-based radio access network. China Commun.
2022, 19, 1–15. [CrossRef]

4. Zeydan, E.; Mangues-Bafalluy, J.; Baranda, J.; Requena, M.; Turk, Y. Service Based Virtual RAN Architecture for Next Generation
Cellular Systems. IEEE Access 2022, 10, 9455–9470. [CrossRef]

5. Liu, G.; Huang, Y.; Li, N.; Dong, J.; Jin, J.; Wang, Q.; Li, N. Vision, requirements and network architecture of 6G mobile network
beyond 2030. China Commun. 2020, 17, 92–104. [CrossRef]

6. Shen, X.; Gao, J.; Wu, W.; Li, M.; Zhou, C.; Zhuang, W. Holistic Network Virtualization and Pervasive Network Intelligence for
6G. IEEE Commun. Surv. Tutorials 2021, 24, 1–30. [CrossRef]

7. Samdanis, K.; Taleb, T. The road beyond 5G: A vision and insight of the key technologies. IEEE Netw. 2020, 34, 135–141. [CrossRef]
8. Wu, J.; Li, R.; An, X.; Peng, C.; Liu, Z.; Crowcroft, J.; Zhang, H. Toward native artificial intelligence in 6G networks: System

design, architectures, and paradigms. arXiv 2021, arXiv:2103.02823.
9. Yao, J.; Chen, M. A Flexible Deployment Scheme for Virtual Network Function Based on Reinforcement Learning. In Proceedings

of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December
2020; pp. 1505–1510. [CrossRef]

10. Jin, H.; Pang, W.; Zhao, C. AMF Optimal Placement based on Deep Reinforcement Learning in Heterogeneous Radio Access
Network. 2020. Available online: https://www.researchsquare.com/article/rs-14323/v1 (accessed on 2 October 2022).

11. Nguyen, H.T.; Do, T.V.; Hegyi, A.; Rotter, C. An Approach to Apply Reinforcement Learning for a VNF Scaling Problem. In
Proceedings of the 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France,
19–21 February 2019; pp. 94–99. [CrossRef]

12. Yan, Z.; Ge, J.; Wu, Y.; Li, L.; Li, T. Automatic Virtual Network Embedding: A Deep Reinforcement Learning Approach With
Graph Convolutional Networks. IEEE J. Sel. Areas Commun. 2020, 38, 1040–1057. [CrossRef]

13. Sun, P.; Lan, J.; Li, J.; Guo, Z.; Hu, Y. Combining Deep Reinforcement Learning With Graph Neural Networks for Optimal VNF
Placement. IEEE Commun. Lett. 2021, 25, 176–180. [CrossRef]

14. Kim, J.; Lee, J.; Kim, T.; Pack, S. Deep Reinforcement Learning based Cloud-native Network Function Placement in Private 5G
Networks. In Proceedings of the 2020 IEEE Globecom Workshops GC Wkshps, Taipei, Taiwan, 7–11 December 2020; pp. 1–6.
[CrossRef]

15. Li, J.; Shi, W.; Zhang, N.; Shen, X. Delay-Aware VNF Scheduling: A Reinforcement Learning Approach With Variable Action Set.
IEEE Trans. Cogn. Commun. Netw. 2021, 7, 304–318. [CrossRef]

16. Ramstedt, S.; Pal, C. Real-time reinforcement learning. In Advances in Neural Information Processing Systems 32; 2019. Avail-
able online: https://proceedings.neurips.cc/paper/2019/hash/54e36c5ff5f6a1802925ca009f3ebb68-Abstract.html (accessed on
30 October 2022).

17. Travnik, J.B.; Mathewson, K.W.; Sutton, R.S.; Pilarski, P.M. Reactive Reinforcement Learning in Asynchronous Environments.
Front. Robot. AI 2018, 5, 79. [CrossRef] [PubMed]

18. Chen, B.; Xu, M.; Li, L.; Zhao, D. Delay-aware model-based reinforcement learning for continuous control. Neurocomputing 2021,
450, 119–128. [CrossRef]

19. Ramstedt, S.; Bouteiller, Y.; Beltrame, G.; Pal, C.; Binas, J. Reinforcement Learning with Random Delays. arXiv 2020, arXiv:2010.02966.
20. Vittal, S.; Franklin A., A. Self Optimizing Network Slicing in 5G for Slice Isolation and High Availability. In Proceedings

of the 2021 17th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 25–29 October 2021;
pp. 125–131.

21. Du, K.; Wang, L.; Wen, X.; Liu, Y.; Niu, H.; Huang, S. ML-SLD: A message-level stateless design for cloud-native 5G core network.
Digit. Commun. Net. 2022. [CrossRef]

http://git.opensource5g.org/openxg/openxg-aiaas
http://doi.org/10.1109/MCOM.001.21143
https://biblio.ugent.be/publication/8668820
http://dx.doi.org/10.23919/JCC.2022.03.001
http://dx.doi.org/10.1109/ACCESS.2022.3144534
http://dx.doi.org/10.23919/JCC.2020.09.008
http://dx.doi.org/10.1109/COMST.2021.3135829
http://dx.doi.org/10.1109/MNET.001.1900228
http://dx.doi.org/10.1109/ICCC51575.2020.9344881
https://www.researchsquare.com/article/rs-14323/v1
http://dx.doi.org/10.1109/ICIN.2019.8685866
http://dx.doi.org/10.1109/JSAC.2020.2986662
http://dx.doi.org/10.1109/LCOMM.2020.3025298
http://dx.doi.org/10.1109/GCWkshps50303.2020.9367481
http://dx.doi.org/10.1109/TCCN.2020.2988908
https://proceedings.neurips.cc/paper/2019/hash/54e36c5ff5f6a1802925ca009f3ebb68-Abstract.html
http://dx.doi.org/10.3389/frobt.2018.00079
http://www.ncbi.nlm.nih.gov/pubmed/33500958
http://dx.doi.org/10.1016/j.neucom.2021.04.015
http://dx.doi.org/10.1016/j.dcan.2022.04.026

	Introduction
	Methodologies
	Scenario Abstraction
	Modeling: Partial History-Dependent Markov Decision Process
	Random-Delay-Corrected DRL Framework

	PoC Prototype: Real-World Cloud-Native 5G Core
	The Kubernetes-Based Cloud Environment Deploying 5G Core Network Functions
	The Artificial Intelligence Engine Deploying DRL Algorithms
	Implementation

	Use Case: Delayed-DQN-Enabled AMF Scaling
	Reinforcement Learning
	Experiment Setup and Parameters
	Benchmark Scenarios
	Evaluation Results

	Conclusions
	References

