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Abstract: In the simulation of compressible turbulent flows via a high-order flux reconstruction
framework, the artificial viscosity model plays an important role to ensure robustness in the strongly
compressible region. However, the impact of the artificial viscosity model in under-resolved regions
on dissipation features or resolving ability remains unclear. In this work, the performance of a dilation-
based (DB) artificial viscosity model to simulate under-resolved turbulent flows in a high-order flux
reconstruction (FR) framework is investigated. Comparison is conducted with results via several
typical explicit subgrid scale (SGS) models as well as implicit large eddy simulation (iLES) and
their impact on important diagnostic quantities including turbulent kinetic energy, total dissipation
rate of kinetic energy, and energy spectra are discussed. The dissipation rate of kinetic energy is
decomposed into several components including those resulting from explicit SGS models or Laplacian
artificial viscosity model; thus, an explicit evaluation of the dissipation rate led by those modeling
terms is presented. The test cases consist of the Taylor-Green vortex (TGV) problem at Re = 1600,
the freely decaying homogeneous isotropic turbulence (HIT) at Mat0 = 0.5 (the initial turbulent
Mach number ), the compressible TGV at Mach number 1.25 and the compressible channel flow
at Reb = 15,334 (the bulk Reynolds number based on bulk density, bulk velocity and half-height
of the channel), Mach number 1.5. The first two cases show that the DB model behaves similarly
to the SGS models in terms of dissipation and has the potential to improve the insufficient dissipation
of iLES with the fourth-order-accurate FR method. The last two cases further demonstrate the ability
of the DB method on compresssible under-resolved turbulence and/or wall-bounded turbulence.
The results of this work suggest the general suitability of the DB model to simulate under-resolved
compressible turbulence in the high order flux reconstruction framework and also suggest some
future work on controlling the potential excessive dissipation caused by the dilation term.

Keywords: artificial viscosity; dissipation rate; high order method

1. Introduction

The past several decades have witnessed the rapid progress of the ability to simulate
aerodynamic flows via computational fluid dynamics (CFD), which is believed to bring fun-
damental changes to the process of aerospace design [1]. However, the application of CFD
in industry is still limited by the incapacity to simulate complex turbulent flows accurately.
With the evolution of computing equipment, large eddy simulation (LES), though still
largely confined in academia or research and development departments of industry, has
proven to be increasingly useful in a wide range of applications in recent years such as air-
craft engines flow, turbine combustor flame, and flows involving turbulent transition [2–4].
The LES approach stands between the Reynolds Averaged Navier-Stokes (RANS) and
the Direct Numerical Simulation (DNS) methods in terms of accuracy and computational
cost and has shown promising feasibility for vortex dominated flows found in various
aerospace applications. In an LES computation, the large scale flow structures are directly
simulated while the scales below a certain resolution are approximated by an explicit
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subgrid scale (SGS) model or represented implicitly by the inherent numerical dissipation.
The explicit SGS models are commonly categorized into three types [5,6]: the functional
models, which are designed to model the action of the subgrid terms and are expected
to approximately dissipate energy in the smallest scales; the structural models, which are
aimed at making the best approximation of the modeled terms and are focused on repre-
senting energy transfer between various length scales; and the mixed models, which are
developed by combining a functional model and a structural model together as the latter
alone is generally not dissipative enough.

For the LES research a critical problem is to prevent subgrid scale models from being
overwhelmed by discretization errors, if the numerical methods are not handled carefully.
Previous investigation on finite volume method (FVM) concluded that the small scales
of the flow might suffer from high numerical damping [7]. In terms of wave resolving,
it was claimed that waves with wave lengths less than 10 times the filter width cannot be
adequately resolved with a 2nd order FVM because of the large truncation error of the mesh
resolution, under the assumption that the filter width corresponds to the cell size [8].

To reduce the numerical error, plenty of high order methods such as discontinuous
Galerkin (DG) [9], spectral difference (SD) [10] and flux reconstruction (FR) [11] or cor-
rection procedure via reconstruction (CPR) [12] methods have been developed in the last
decades and have shown great potential in LES thanks to their lower numerical dissi-
pation as well as their capacity of handling complex geometries. These methods have
multiple degrees of freedom (DOFs) defined in their computing element according to the or-
der of accuracy and are able to reduce truncation error if the order is set high enough,
it is also possible for these methods to resolve shorter waves in the LES solution since
their DOFs per wave (DPW) increase [8]. Plenty of successful and encouraging works
including wall-modeled turbulence and transition have appeared in the literature [6,13–20].
Among the aforementioned high order methods, the FR method provides a general high-
order framework, which recovers the collocation-based nodal DG and SD methods in case
of linear fluxes and also sets a path for new schemes. The FR approach is further developed
into a family of energy-stable flux reconstruction (ESFR) schemes [21], whose stability has
been proved for multiple types of elements [22–24]. It has been found that the FR approach
is more computationally efficient than conventional lower order methods [25]. For simula-
tions of turbulent flows, implicit LES using the FR approach on canonical testcases such
as isentropic vortex advection [26], the Taylor-Green vortex, turbulent channel flow and
transitional flow [6] has presented satisfying results, while explicit SGS models may be still
in need for under-resolved flows, where the aliasing error can impact the robustness [27].

For simulation of compressible turbulence via high order methods, another compu-
tational challenge is to resolve shock waves. Shock-capturing schemes, which are mostly
relied on to represent shock waves, can be generally classified into two types. The first
approach involves a nonlinear limiter to detect shock waves and control oscillations near
them, such as total variation bounded (TVB) type slope limiters [28,29], moment lim-
iters [30–32] and the weighted essentially non-oscillatory (WENO) type schemes [33,34].
Another approach is adding to the governing equations an artificial diffusion term, which
is expected to smear the shocks at discontinuities over a numerically resolvable scale and
vanish in the smooth region. The advantages of the artificial diffusion term is the simple
formulation, ease of implementation, and low computational cost.

In the context of LES, an adaptive approach was proposed by Cook et al. [35] to han-
dle shocks and turbulence simultaneously by employing an artificial bulk viscosity and
an artificial shear viscosity. A simple modification was proposed by Mani et al. [36], which
replaced the strain rate tensor based artificial bulk viscosity by a dilation based counterpart.
The modified version by Mani et al. [36] also applied a switch function to further localize
the bulk viscosity to regions surrounding the shocks. Recently a simplified form of the ar-
tificial bulk viscosity model was presented by Yu et al. [37] and was shown to achieve
good balance between accuracy and robustness. In this paper, this simplified form, referred
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to as dilation-based (DB) model, is adopted to take advantage of its analytical form in
governing equations.

An important issue about LES method is that the computations are not well resolved,
in other word, under-resolved because the scales smaller than the resolution, which is
associated to Nyquist wavenumber of the grid, cannot be captured [38]. Thus for LES
of compressible turbulence the following essential under-resolved features may arise [5].
First, for flows free from shocks, the turbulent structures under subgrid scales (SGS) are
accounted for by implicit or explicit SGS models, which may be originally designed for in-
compressible flows and then directly extended to variable-density cases. This extension
is expected to be sufficient for their respective original purpose, though the underlying
dynamic mechanism about the nonlinear transfer of kinetic energy between the scales of mo-
tion may be altered by the compressibility effects. Second, for flows with shocks or other
sharp features [39], additional numerical dissipation is required for stability purposes,
which reduces the range of well-resolved scales in LES [40]. Such shock-capturing methods
may also bring unphysical dissipation into the smooth turbulent regions and thus should
be handled carefully. Moreover, for under-resolved computation, the behavior of high order
methods is not as clear as that for the well resolved cases because the order of convergence
is defined as cell size tending to zero, while under-resolved computation means relatively
larger cell size [41]. To sum up, despite the tremendous works on LES of compressible tur-
bulence via high order methods, the relative roles of the SGS models, the shock-capturing
schemes and the high order spatial discretization methods on dissipation property and
resolving ability remain unclear.

In this study, we focused on the performance of the DB artificial viscosity in the context
of LES on compressible turbulence via high order flux reconstruction method and com-
pared the DB model with several typical explicit SGS models as well as implicit LES. First,
two test cases, the Taylor-Green vortex (TGV) problem at Re = 1600 and freely decaying
homogeneous isotropic turbulence (HIT) at Mat0 = 0.5, are weakly compressible to demon-
strate the performance of the DB model in largely smooth regions. The effects of simulation
methodology on concerning diagnostic quantities such as the turbulent kinetic energy,
the total dissipation rate of kinetic energy and so on are discussed. The exact dissipation
resulting from explicit SGS models or Laplacian artificial viscosity model is derived, pre-
senting a detailed decomposition of the total dissipation rate of kinetic energy. For a further
investigation of the DB model in flows with stronger compressible effects, the compressible
TGV problem at Ma = 1.25 simulated by Lusher et al. [42] and the compressible channel
flow at Mb = 1.5 and Reb = 15,334 based on height of the channel are investigated on high
order method with coarse meshes. General agreement with the DNS results is observed.

This paper is organized as follows. In Section 2 the numerical methods are presented,
including a brief introduction of the governing equations, the FR/CPR method, the explicit
SGS models and the artificial viscosity model. The numerical results for each testcase
are discussed in Sections 4.1–4.4, respectively. Then the conclusions are summarized
in Section 5.

2. Numerical Methods
2.1. Governing Equations

This work solves the compressible Navier-Stokes equations of an ideal gas in 3D, with
Laplacian artificial viscosity and zero bulk viscosity, which are written in Favre filtered
form as follows:
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∂ρ

∂t
+∇ · (ρũ) = ∇ · (µav∇ρ) , (1)

∂(ρũ)
∂t

+∇ · (ρũũ) +∇p−∇ · σ̂ = ∇ · (µav∇(ρũ))−∇ · τsgs +∇ · (σ − σ̂) , (2)

∂ρẽ
∂t

+∇ · (ρũẽ) +∇ · (pũ)−∇ · (σ̂ · ũ) +∇ · q̂

= ∇ · (µav∇(ρẽ))−∇ · qsgs +∇ · (σ · u− σ̂ · ũ)−∇ · (q− q̂) , (3)

with

p = (γ− 1)
(

ρe− 1
2

ρũ · ũ
)

,

σ̂ = 2µ̃S̃− 2
3

µ̃δ(∇ · ũ) ,

S̃ =
1
2

(
∇ũ + (∇ũ)T

)
,

µ̃(T̃) = µre f

(
T̃

Tre f

)3/2(Tre f + Ts

T̃ + Ts

)
,

q̂ = −k̃∇T̃ , T̃ =
p

ρR
, k̃ =

µ̃CP
Pr

,

(4)

where ¯(·), ˜(·) stand for a low-pass filtering operator and the Favre-filter operator
(ϕ̃ = ρϕ/ρ̄, for any quantity ϕ), respectively, ρ is density, u the velocity vector, e the total
energy per unit mass, the filtered pressure p is computed by the usual ideal gas equation
of state, γ = CP/CV is the ratio between specific heat capacities at constant pressure and
constant volume, σ̂ is the resolved viscous stress tensor with S̃ being the Favre-filtered
strain-rate tensor, δ is the unit tensor, q̂ is the resolved heat fluxes dominated by Fourier’s
law, µ̃ and k̃ are the corresponding dynamic viscosity and thermal conductivity of the fluid
at the filtered temperature T̃, Pr is the Prandtl number and R is the gas constant, in this
paper, γ = 1.4 and Pr = 0.72.

The first terms in the right-hand side of Equations (1)–(3) are the Laplacian artificial
viscosity terms and are presented in detail in Section 2.4. In the right-hand side of mo-
mentum equation, τsgs = ρ(ũu− ũũ) is the Favre-averaged subgrid scale stress. Note that
the difference between σ and σ̂ is usually neglected [43]. In the right-hand side of energy
equation, qsgs is the subgrid total energy flux vector defined as

qsgs = (ρe + p)u− (ρe + p)ũ . (5)

The third and fourth terms in the right-hand side of the energy Equation (3) are
viscous dissipation and heat diffusive subgrid contributions which can be neglected [44].
The explicit SGS modeling of τsgs and qsgs is presented in detail in Section 2.3.

In this study, the explicit SGS models and the artificial viscosity are not applied
simultaneously, leading to three types of methodologies for a single simulation: LES with
explicit SGS models, LES with artificial viscosity and implicit LES (iLES) without any model
at all.

2.2. Flux Reconstruction Method

In the FR approach, first the computational domain Ω is divided into N non-overlapping
elements Ωh, h = 1, . . . , N. Taking non-uniformity into consideration, a coordinate trans-
formation is applied to map the physical coordinates x = (x, y, z) to the computational
coordinates ξ=(ξ, η, ζ) in a standard hexahedral computational element Ωh = [−1, 1)3.
The transformation Jacobian matrix J is defined as Jij = ∂xi/∂ξ j. Then for the following
governing equations:
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∂U
∂t

+∇ · F = 0 , (6)

the transformed governing equations take the following form:

∂Û
∂t

+ ∇̂ · F̂ = 0 , (7)

where
Û = |J|U ,

F̂ = |J|J−1F ,

∇̂ = (∂/∂ξ, ∂/∂η, ∂/∂ζ) .

(8)

In the standard computational element, a set of points (solution points, SPs) are defined,
on which the values of the flow field are stored and updated by solving the equations
above. In this paper, the SPs are located at the Legendre-Gauss points. By adopting Np
solution points, for example, in ξ direction, the 1-D Lagrange basis polynomial of Np − 1
degree is

li(ξ) =
Np

∏
j=1,j 6=i

(
ξ − ξ j

ξi − ξ j

)
, i = 1, . . . , Np . (9)

Once given the values at the SPs, the solution Û in the standard computational
element Ωh is approximated by Ûh, which is reconstructed by a tensor product of the three
polynomials in ξ, η and ζ direction, respectively:

Ûh(ξ, η, ζ) =
Np

∑
k=1

Np

∑
j=1

Np

∑
i=1

Ûh|i,j,k · li(ξ) · lj(η) · lk(ζ) , (10)

where Ûh|i,j,k is the current value of the approximation function of solution at SP located
by (i, j, k) in the computational element Ωh.

Next, the polynomials of fluxes are constructed for time advancement of the solution
in element Ωh. First, the discontinuous polynomials of fluxes in each element are constructed:

F̂D
h = { f̂ D

h , ĝD
h , ĥD

h } ,

f̂ D
h (ξ, η, ζ) =

Np

∑
k=1

Np

∑
j=1

Np

∑
i=1

f̂h|i,j,k · li(ξ) · lj(η) · lk(ζ) ,

ĝD
h (ξ, η, ζ) =

Np

∑
k=1

Np

∑
j=1

Np

∑
i=1

ĝh|i,j,k · li(ξ) · lj(η) · lk(ζ) ,

ĥD
h (ξ, η, ζ) =

Np

∑
k=1

Np

∑
j=1

Np

∑
i=1

ĥh|i,j,k · li(ξ) · lj(η) · lk(ζ) ,

(11)

where superscript D denotes discontinuous, f̂h|i,j,k, ĝh|i,j,k, ĥh|i,j,k are the current value
of the approximation fuction of flux at SP located by (i, j, k) in the computational ele-
ment Ωh, along ξ, η and ζ direction, respectively. Note that the polynomials f̂ D

h , ĝD
h , ĥD

h
are piecewise and might not be continuous across the interfaces between the elements.
In the FR approach, the discontinuous polynomials of fluxes are then made continuous
by introducing correction functions. The corrected fluxes are then defined as:
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F̂C
h = { f̂ C

h , ĝC
h , ĥC

h } ,

f̂ C
h (ξ, η, ζ) = ( f̂ L

h (η, ζ)− f̂ D
h (−1, η, ζ))gL(ξ) + ( f̂ R

h (η, ζ)− f̂ D
h (1, η, ζ))gR(ξ) ,

ĝC
h (ξ, η, ζ) = (ĝL

h (ξ, ζ)− ĝD
h (ξ,−1, ζ))gL(η) + (ĝR

h (ξ, ζ)− ĝD
h (ξ, 1, ζ))gR(η) ,

ĥC
h (ξ, η, ζ) = (ĥL

h (ξ, η)− ĥD
h (ξ, η,−1))gL(ζ) + (ĥR

h (ξ, η)− ĥD
h (ξ, η, 1))gR(ζ) ,

(12)

where ˆ(·)L
h and ˆ(·)R

h denote the interface fluxes via a Riemann solver, gL and gR are left
and right correction functions satisfying boundary conditions that

gL(−1) = 1 , gL(1) = 0 , (13)

and
gR(−1) = 0 , gR(1) = 1 . (14)

In this paper, the left and right Radau polynomials are chosen as correction functions
gL and gR, respectively. Those correction functions are denoted by gDG [11] because they
recover the standard DG scheme. This scheme is referred to as FR-DG. In terms of Riemann
solver, the 3D Roe-Pike [45] method and the compact DG ( CDG ) [46] method are applied
to calculate inviscid and viscous common interface fluxes, respectively. The strong stability
preserving five-stage fourth-order Runge-Kutta (SSPRK54) [47] is adopted for explicit time
integration in the numerical experiments in this paper.

2.3. Subgrid Scale Models

In this work, two explicit subgrid-scale (SGS) models are employed: the standard
Smagorinsky model [48] and the Similarity model [49]. These explicit SGS models are
briefly presented by categories for clarity as follows.

2.3.1. Functional Models

The functional SGS models focus on modeling the action of the subgrid terms and
bringing a similar effect [5]. Based on the eddy-viscosity concept, the subgrid stress tensor
and the subgrid total energy flux vector of the functional SGS models are given as follows:

τ
sgs
ij = −2µsgs(S̃ij −

1
3

δijS̃kk) , (15)

qsgs
j = −ksgs

∂T̃
∂xj

, ksgs =
µsgsCP

Prsgs
, (16)

where Prsgs = 0.5 is the subgrid Prandtl number.
In the standard Smagorinsky model, µsgs is given by:

µS
sgs = ρ̃C2

S∆2
√

2S̃ijS̃ij , (17)

where S̃ij is the resolved strain rate tensor defined in Equation (4), CS = 0.1 is the Smagorin-
sky coefficient and ∆ is the filter width given by ∆ = s · h/(P + 1), where s is a scaling
factor set to 2, h is the characteristic grid size and P is the order of the solution polynomial.
This expression of ∆ means that ∆ = h for p1 solution polynomial and ∆ = h/2 for p3 solu-
tion polynomial, which follows the assumption that the filter width corresponds to the cell
size estimated from the DOFs .

2.3.2. Structural Models

The velocity can be decomposed into ui = ũi + u′i, where ũi and u′i stand for resolved
and unresolved parts. Then the subgrid stress tensor can be rewritten as
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τ
sgs
ij = Lij + Cij + Rij , (18)

where

Lij = ρ˜̃uiũj − ρũiũj , (19)

Cij = ρ˜̃uiu′j + ρũ′i ũj , (20)

Rij = ρu′iu
′
j , (21)

are the Leonard stresses, the cross terms and the SGS Reynolds stresses, respectively.
According to the scale-similarity hypothesis [49], the cross terms and the Reynolds stresses
are approximated as

Cij ' ρ[ ˜̃ui(ũj − ˜̃uj) + ˜̃uj(ũi − ˜̃ui)] , (22)

Rij ' ρ(ũi − ˜̃ui)(ũj − ˜̃uj) . (23)

Then the subgrid stress tensor can be written as the following approximation:

τ
sgs
ij ' ρ˜̃uiũj − ρũiũj + ρũiũj − ρ ˜̃ui ˜̃uj = ρ˜̃uiũj − ρ ˜̃ui ˜̃uj . (24)

The subgrid total energy flux vector can be written as [44] :

qsgs
j = γρ(˜̃eI ũj − ˜̃eI ˜̃uj) , (25)

where ẽI is the resolved internal energies:

ẽI =
ρe
ρ
− 1

2
ũkũk . (26)

2.4. Artificial Viscosity

The artificial viscosity adopted in this paper is based on Laplacian dissipative terms
in Equations (1)–(3) given by the following form:

∇ · (µav∇ϕ) , (27)

where ϕ denotes the conserved variable, µav is the artificial viscosity. In this work, µav is
modeled via the dilation-based (DB) artificial viscosity method presented in [37] and is
computed as follows:

µβ = cβ|∇ · ũ|(h/P)2 , (28)

where u = (u, v, w) denotes velocity vector, cβ is an empirical parameter, h is the character-
istic grid size, P is the order of the approximation polynomials of solution. The DB method
takes the dilation as the shock sensor, which is easy to implement and of low computational
cost. In addition, an upper limit is given as follows:

µmax = cmax(h/P)max
x∈Sh
|λ(x, t)| , (29)

where cmax is an empirical parameter, Sh stands for the solution points within element Ωh,
λ(x, t) is the local wave speed. Thus, the final artificial viscosity is:

µav = min(µβ, µmax) . (30)
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For all testcases in this work, the empirical parameters are set as cβ = 1 and cmax = 0.5,
which follow the baseline values suggested by [37].

3. Decomposition of Total Turbulent Energy Dissipation Rate

In this paper, we conducted a detailed derivation of turbulent kinetic energy equation
and a thorough decomposition of the dissipation rate of kinetic energy in the context
of the compressible Navier-Stokes equations with modeling terms including explicit SGS
modeling terms or Laplacian artificial viscosity terms. This is an extended work based
on [50], which did not take any modeling term into consideration. First, the mass and
momentum equations of the Navier-Stokes equations are rewritten as follows:

∂ρ

∂t
+∇ · (ρũ)−∇ · (µav∇ρ) = 0 , (31)

∂(ρũ)
∂t

+∇ · (ρũũ) +∇p−∇ · σ̂ +∇ · τsgs −∇ · (µav∇(ρũ)) = 0 . (32)

These equations are exactly the governing Equations (1) and (2) without the neglectable
terms. Considering the mass Equation (31), the momentum Equation (32) is transformed
into following form:

ρ
∂ũ
∂t

+ ρũ · (∇ũ) +∇p−∇ · σ̂ +∇ · τsgs −∇ · (µav∇(ρũ)) + ũ · (∇ · (µav∇ρ)) = 0 . (33)

By multiplying the momentum equation above by ũ, we obtain a conservation equation

for the turbulent kinetic energy defined by ẽk =
1
2

ũ · ũ:

ρ
∂ẽk
∂t

+ ũ · (ρũ · (∇ũ)) + ũ · (∇p)− ũ · (∇ · σ̂) + ũ · (∇ · τsgs)

−ũ ·
(
∇ · (µav∇(ρũ))

)
+ ũ ·

(
ũ · (∇ · (µav∇ρ))

)
= 0 . (34)

The above equation integrated on arbitrary domain Ω reads

∫
Ω

ρ
∂ẽk
∂t

dΩ︸ ︷︷ ︸
1

+
∫

Ω
ũ · (ρũ · (∇ũ))dΩ︸ ︷︷ ︸

2

+
∫

Ω
ũ · (∇p)dΩ︸ ︷︷ ︸

3

−
∫

Ω
ũ · (∇ · σ̂)dΩ︸ ︷︷ ︸

4

+
∫

Ω
ũ · (∇ · τsgs)dΩ︸ ︷︷ ︸

5

−
∫

Ω
ũ ·
(
∇ · (µav∇(ρũ))

)
dΩ︸ ︷︷ ︸

6

+
∫

Ω
ũ ·
(

ũ · (∇ · (µav∇ρ))
)

dΩ︸ ︷︷ ︸
7

= 0 . (35)

By using partial integration and considering mass Equation (31) again, the first term
in Equation (35) can be written as

∫
Ω

ρ
∂ẽk
∂t

dΩ =
∫

Ω

∂

∂t
(ρẽk)dΩ−

∫
Ω

ẽk
∂ρ

∂t
dΩ

=
∫

Ω

∂

∂t
(ρẽk)dΩ +

∫
Ω

ẽk(∇ · (ρũ))dΩ−
∫

Ω
ẽk(∇ · (µav∇ρ))dΩ . (36)

The second to fifth terms are rewritten as below using partial integration and periodicity:
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∫
Ω

ũ · (ρũ · (∇ũ))dΩ =
∫

Ω
ρũ · (∇ẽk)dΩ = −

∫
Ω

ẽk(∇ · (ρũ))dΩ , (37)∫
Ω

ũ · (∇p)dΩ = −
∫

Ω
p(∇ · ũ)dΩ , (38)∫

Ω
ũ · (∇ · σ̂)dΩ = −

∫
Ω
(∇ũ) : σ̂ dΩ , (39)∫

Ω
ũ · (∇ · τsgs)dΩ = −

∫
Ω
(∇ũ) : τsgs dΩ . (40)

The sixth and seventh terms as well as the last term in the right-hand side of Equation (36)
are dominated by the artificial viscosity and are simplified by again using partial integration
and periodicity as below:

−
∫

Ω
ẽk(∇ · (µav∇ρ))dΩ︸ ︷︷ ︸

last term in 1

−
∫

Ω
ũ ·
(
∇ · (µav∇(ρũ))

)
dΩ︸ ︷︷ ︸

6

+
∫

Ω
ũ ·
(

ũ · (∇ · (µav∇ρ))
)

dΩ︸ ︷︷ ︸
7

=
∫

Ω
ẽk(∇ · (µav∇ρ))dΩ−

∫
Ω

ũ ·
(
∇ · (µav∇(ρũ))

)
dΩ

=
∫

Ω
µavρ(∇ũ : ∇ũ)dΩ . (41)

From Equations (36)–(41), we have

− ∂

∂t

∫
Ω
(ρẽk)dΩ =−

∫
Ω

p(∇ · ũ)dΩ +
∫

Ω
(∇ũ) : σ̂ dΩ

−
∫

Ω
(∇ũ) : τsgs dΩ +

∫
Ω

µavρ(∇ũ : ∇ũ)dΩ . (42)

The second term in the right-hand side of the above equation is the viscous contribution
and can be further expressed [50,51] as below:

∫
Ω
(∇ũ) : σ̂ dΩ =

∫
Ω

2µ̃∇ũ : S̃d dΩ =
∫

Ω
2µ̃S̃d : S̃d dΩ

=
∫

Ω

4
3

µ̃(∇ · ũ)2 dΩ +
∫

Ω
µ̃w̃ · w̃ dΩ , (43)

where w̃ = ∇× ũ is the resolved vorticity vector, S̃d is the deviatoric part of the strain rate
tensor. According to Equations (42) and (43), the equation for the turbulent kinetic energy
is finally given in volume-averaged form as below:

− ∂

∂t
〈ρẽk〉 =− 〈p(∇ · ũ)〉+

〈
4
3

µ̃(∇ · ũ)2
〉
+ 〈µ̃w̃ · w̃〉

− 〈(∇ũ) : τsgs〉+ 〈µavρ(∇ũ : ∇ũ)〉 , (44)

namely

εtotal = −
dEk
dt

= εd + εc + εs + εsgs + εa , (45)

where
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Ek = 〈ρẽk〉 =
〈

1
2

ρũ · ũ
〉

,

εd = −〈p(∇ · ũ)〉 ,

εc =

〈
4
3

µ̃(∇ · ũ)2
〉

,

εs = 〈µ̃w̃ · w̃〉 ,

εsgs = −〈(∇ũ) : τsgs〉 ,

εa = 〈µavρ(∇ũ : ∇ũ)〉 ,

(46)

where 〈·〉 denotes a volume average over the computational domain. εtotal is time derivative
of the total volume-averaged kinetic energy Ek, εd is pressure-dilation transfer, εc and εs
are the compressible and solenoidal dissipation, respectively. εsgs and εa are the dissipation
caused by the explicit SGS models and artificial viscosity, respectively.

Note that εsgs and εa are not applied simultaneously in a single simulation, the sum
of the components of the dissipation in different types of simulation, denoted by ε′, is given
for clarity:

ε′ =


εd + εc + εs , for implicit LES,
εd + εc + εs + εsgs , for explicit LES,
εd + εc + εs + εa , for LES with artificial viscosity.

(47)

The derived dissipation ε′ is expected to be generally identical to the overall dissipa-
tion εtotal , which is calculated directly from the total volume-averaged kinetic energy Ek.
With the components of ε′ explicitly expressed in Equation (47), the remaining gap between
εtotal and ε′ is the residual dissipation resulted from the truncation error of the numerical
scheme in the explicit estimated terms, which is expressed as:

εres = εtotal − ε′ . (48)

4. Results and Discussion
4.1. Incompressible Taylor-Green Vortex

The Taylor-Green vortex (TGV) [52] is a canonical three-dimensional flow problem
which contains transition to anisotropic small-scale turbulence and subsequent decay [50].
The TGV problem is simulated in a triple periodic cube Ω = [0, 2π)3, starting from the initial
condition as follows:

ρ = ρ0 ,

u = V0sin
( x

L

)
cos
( y

L

)
cos
( z

L

)
,

v = −V0cos
( x

L

)
sin
( y

L

)
cos
( z

L

)
,

w = 0 ,

p = p0 +
ρ0V2

0
16

(
cos
(

2x
L

)
+ cos

(
2y
L

))(
cos
(

2z
L

)
+ 2
)

,

(49)

where ρ, (u, v, w) and p denote density, velocity vector and pressure, respectively, ρ0, V0
and L are reference density, velocity and length and are all set to 1.0. The characteristic
convective time is defined as tc = L/V0. The physical duration of the computation is
set to t f inal = 20tc. The initial Reynolds number is defined as Re0 = ρ0V0L/µ and is set
to 1600. The Mach number is set to M0 = V0/c0 = 0.1, with c0 =

√
γp0/ρ0 being the speed

of sound, where γ is set to 1.4 and the initial pressure p0 is adjusted to ensure M0 = 0.1.
The simulation is conducted using FR-DG scheme on uniform Cartesian grids of 1203

degrees of freedom (DOFs) discretized by a coarse mesh of 303 elements with third-order
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solution polynomial (p3) and a finer mesh of 603 elements with first-order solution polyno-
mial (p1). This resolution leads to a purposely under-resolved simulation for investigation
of the impact of the methodologies applied in this paper.

Figures 1–4 display the time evolution of Ek, εtotal and components of ε′ of the Taylor-
Green vortex simulation. The additional modeling dissipation terms, εsgs and εa, are
plotted in Figure 5. A DNS result of Ek, εs and εd computed by Debonis [53] via the 13-point
dispersion-relation-preserving (DRP) scheme [54] on 5123 elements is taken as reference
in Figures 1–4. Note that at the DNS solution εs is accurate enough to be plotted as a refer-
ence for the total dissipation rate εtotal . The contribution of the compressible dissipation εc
is neglectable in this testcase and therefore not plotted here. In the following paragraphs,
the effects of polynomial order and modeling terms on dissipative property, the energy
spectra, and the computational cost are discussed in detail.
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Figure 1. Time evolution of the total volume-averaged kinetic energy Ek of TGV simulation,
Re = 1600, 1203 DOFs. (a) p1; (b) p3.
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Figure 2. Time evolution of the overall dissipation εtotal of TGV simulation, Re = 1600, 1203 DOFs.
(a) p1; (b) p3.



Appl. Sci. 2022, 12, 12272 12 of 28

Time

ε
s

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

iLES
DB

Smagorinsky
Similarity
DNS

(a)

Time

ε
s

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

iLES
DB

Smagorinsky
Similarity
DNS

(b)

Figure 3. Time evolution of the solenoidal dissipation εs of TGV simulation, Re = 1600, 1203 DOFs.
(a) p1; (b) p3.
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Figure 4. Time evolution of the pressure dilation εd of TGV simulation, Re = 1600, 1203 DOFs.
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Figure 5. Time evolution of the additional dissipation εsgs for explicit LES and εa for LES with
artificial viscosity of TGV simulation, Re = 1600, 1203 DOFs. (a) p1; (b) p3.
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4.1.1. Effects of Polynomial Orders

First, the effects of the solution polynomial order on dissipative property are discussed.
Figures 1 and 2 illustrate a general overview of the dissipative evolution of the TGV
testcase. It can be observed that in the p1 results, all solutions deviate from the reference
due to larger overall dissipation. The results of overall dissipation rate at p1 are all larger
than their p3 counterpart, which also indicates the stronger overall dissipation at lower
order. Figure 3 plots the solenoidal dissipation εs, which is a measure of numerical accuracy
and ability to resolve small vortices scales [55]. Results of solenoidal dissipation at p1 are
apparently lower that those at p3 regardless of the simulation methodologies. It is clear that
the vorticity-carrying small scales are not well resolved on the lower solution polynomial
order because the sharpness of resolved derivatives is severely reduced, though the DOFs
are the same. The pressure dilation dissipation εd, plotted in Figure 4 with the y-axis scale
stretched, is supposed to be two-orders of magnitude smaller than the total dissipation rate
since the Mach number of this testcase is so low. According to the DNS results, the very low
level of pressure dilation dissipation εd, compared with the total dissipation rate, confirms
the incompressible flow assumption though the simulation is compressible. This feature
of the pressure dilation dissipation could serve as some evaluation of the error of numerical
method when simulating incompressible flows via a compressible solver. In Figure 4, the εd
at p1 deviates from the reference at the initial time moment, while the p3 solution agrees
well with the reference until the flow becomes under-resolved. The peak values of εd
decrease as the solution order increases. Similar phenomenon is observed in [56] and is
reported to converge to the ideal solution with grid refinement.

Figure 5 shows the evolution of modeling dissipation terms, εsgs and εa. Later peaks
and higher levels of SGS modeling dissipation are observed at p3, which result from the im-
proved resolution of the velocity gradients. However, for the DB model, later peak but
lower level of modeling dissipation is observed at p3. This opposite behavior of the DB
model is due to its inherent sensitiveness to dilation term, as defined in Equation (28).
It can be inferred from Figure 4 that at p1 solution order, the error between the dilation term
and ideal zero is larger than p3, leading to higher level of εa. This decrease of precision
caused by larger error of dilation at lower solution polynomial order was also reported
in [37] for weakly compressible flow.

The 3D energy spectra at time t = 9 are plotted on a log-log scale in Figure 6. At this
time, the slope of the energy spectra reaches the Kolmogorov value –5/3 and the dissipation
rate reaches peak value. A reference solution via pseudo-spectral method on a 5123 grid [50]
is plotted for comparison. The effects of the solution polynomial order is evident. It can be
observed that the p1 simulations hardly recover the reference slope and deviates at very
low wavenumber, p3 simulations produce more reasonable energy spectra. The p3 results
also deviate from the reference at high wavenumber, which is normal in consideration
of the insufficient resolution.

To sum up, simulations at p3 order produce more accurate results, better resolution
of small scales and significantly lower numerical error though the simulation is under-
resolved. Higher order representation of the solution are also superior at resolving energy
of the small scales. The explicit SGS models and the DB artificial viscosity model, though
built in different manner, all benefit from more accurate resolution of velocity gradients
produced by higher order of solution polynomial. Another benefit brought by higher
order scheme is that the general trend and peak values of the model dissipation are more
reasonable, as shown in Figure 5.
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Figure 6. Energy spectra of TGV simulation at t = 9 of TGV simulation, Re = 1600, 1203 DOFs.
(a) p1; (b) p3.

4.1.2. Effects of the Explicit SGS Models and the DB Model

The evolution of modeling dissipation terms, εsgs and εa are shown in Figure 5.
The impact of the explicit SGS models and the DB model is investigated in the following dis-
cussion, which focuses on the p3 results in Figures 2b and 5b because they are less affected
by the numerical error. Before t = 4, the under-resolved scales are not developed in the flow,
it can be observed in Figure 5b that all models produce very low dissipation. From then
on the flow turns under-resolved and the modeling dissipation arises significantly and
reaches the peak around 8 < t < 9. As shown in Figure 2b, during the under-resolved
phase, all models bring apparent extra dissipation, which can be majorly described by εsgs
and εa derived in Section 3. Among the SGS models, the similarity model is less dissipa-
tive than the Smagorinsky model, as expected. The DB model produces close dissipation
to the similarity model, but with lower εa before t = 4, and sharper peak around 8 < t < 9
as shown in Figure 5b. Similar trend of dissipation property can also be observed in results
of the energy spectra plotted in Figure 6b. From the view of εtotal in Figure 2b, the iLES
method agrees well with the reference during 0 < t < 8 but produces lower peak value
when the smallest turbulent structures occur. The DB model has the potential to improve
the insufficient dissipation, with slightly extra dissipation since t = 4, when the flow turns
under-resolved.

4.1.3. Discussion on Computational Cost

In this section the computational cost of the various methodologies in this test case is
compared. Table 1 shows the runtime cost of the incompressible TGV problem presented
here. Multiple runs were performed and an average value of the runtime is given. Ratio val-
ues are computed based on the averaged runtime of the iLES approach with discretization
being 303 elements and p3 solution polynomial order. These test cases run on a CPU-based
platform, with an Intel E5-2680 V3 node, which consists of 24 cores. Table 1 shows that
the p3 schemes are slightly more computationally efficient than their p1 counterparts.
It can be observed that when higher order discretization is applied, under the same DOFs,
the computational cost is reduced by about 7% for iLES, DB and similarity simulations and
10% for Smagorinsky simulation. An explanation may be that fewer elements in higher
order computation reduces the number of interfaces, which affects the cost of interface
communication. The explicit SGS models both lead to extra cost compared to the iLES
computation. This trend is reasonable because these models both call for extra calculations
on SGS terms. The cost of the DB model is less than the explicit SGS models because of its
more simple terms.
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Table 1. Runtime for 1000 iterations of TGV problem at 1203 DOFs.

Discretization DOFs Model Runtime(s) Ratio

303 elements, p3 120

iLES 3443 1.0
DB 3935 1.14

Smagorinsky 4631 1.35
similarity 4823 1.40

603 elements, p1 120

iLES 3686 1.07
DB 4246 1.23

Smagorinsky 5197 1.51
similarity 5200 1.51

4.2. Homogeneous Isotropic Turbulence

The freely decaying homogeneous isotropic turbulence (HIT) is a fundamental case
for investigation of the physical properties of turbulence and an ideal configuration for mea-
suring the ability of numerical method to reproduce the fundamental properties of turbu-
lence. The simulation is conducted in a triple periodic cube Ω = [0, 2π)3 where the ve-
locity field is initially generated from a given spectrum via the approach of Rogallo [57].
The energy spectrum is expressed as follows:

E(k) =
16
3

√
2
π

M2
t0

k4

k5
0

e−2k2/k2
0 , (50)

where k is the wavenumber, Mt0 the turbulent Mach number at t = 0, k0 the wavenumber
at the peak of the energy spectrum, taken as k0 = 8.0 in this work. The physical duration
of the computation is set to 5τ, where τ is the initial large-eddy-turnover time. The initial
density and pressure fields are set uniformly, which means that no fluctuations of any
thermodynamic quantities is in the initial field. The methodologies of computation is
identical to the TGV case, namely, a p1 solution polynomial on a finer mesh of 603 elements
and a p3 solution polynomial on a coarse mesh of 303 elements.

In addition to the total volume-averaged kinetic energy Ek, its time derivative εtotal
as well as the various components of ε′, more statistical quantities of concern are defined
and addressed as follows.

The turbulent Mach number Mat and Taylor Reynolds number Reλ are defined as
follows [51]:

Mat =

√
3urms

〈c〉 , (51)

Reλ =
urmsλ〈ρ〉
〈µ〉 , (52)

where

urms =

√
〈u

2 + v2 + w2

3
〉 , (53)

λ =

√
u2

rms
〈(∂u/∂x)2〉 , (54)

is the turbulent fluctuating velocity and the Taylor microscale, respectively, c stands
for speed of sound, 〈·〉 denotes a volume average over the computational domain at a fixed
time instant.



Appl. Sci. 2022, 12, 12272 16 of 28

Figures 7–10 show the time evolution of Ek, εtotal and components of ε′ of the HIT
simulation with Mat0 = 0.5. Time evolution of the Taylor Reynolds number is plotted
in Figure 11. The energy spectrum at time moment t/τ = 1 is plotted on a log-log scale
in Figure 12. In this case, the contribution of the compressible dissipation εc is neglectable
thus not plotted. The DNS results computed by Samtaney et al. [51] are taken as reference.
Effects of polynomial order and modeling terms are discussed in the following sections.
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Figure 7. Time evolution of the total volume-averaged kinetic energy Ek of HIT simulation,
Mat0 = 0.5, 1203 DOFs. (a) p1; (b) p3.
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Figure 8. Time evolution of the overall dissipation εtotal of HIT simulation, Mat0 = 0.5, 1203 DOFs.
(a) p1; (b) p3.
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Figure 9. Time evolution of the solenoidal dissipation εs of HIT simulation, Mat0 = 0.5, 1203 DOFs.
(a) p1; (b) p3.
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Figure 10. Time evolution of the dissipation εsgs for explicit LES and εa for LES with artificial viscosity
of HIT simulation, Mat0 = 0.5, 1203 DOFs. (a) p1; (b) p3.
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Figure 11. Time evolution of Reλ of HIT simulation, Mat0 = 0.5, 1203 DOFs. (a) p1; (b) p3.
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Figure 12. Energy spectra at t/τ = 1 of HIT simulation, Mat0 = 0.5, 1203 DOFs. (a) p1; (b) p3.

4.2.1. Effects of Polynomial Orders

Figure 7 shows time evolution of the total volume-averaged kinetic energy Ek of HIT
simulation, it can be observed that for iLES or each model, results at p3 are more close
to reference than their p1 counterparts, which indicates that numerical error is lower
at p3. Figure 8 plots time evolution of the total dissipation rate. Note that at the begin-
ning of the simulation the total dissipation rate εtotal meets a sharp oscillation. This is
caused by the given initial conditions, which are not in acoustic equilibrium and therefore
lead to pressure fluctuation from the initial field as the pressure becomes consistent with
the velocity [58,59]. The initial fluctuation in flow field leads to the strong oscillation of εd
at the beginning, which is nearly unaffected by the order of solution polynomial or sim-
ulation methodologies, therefore not plotted. The closer view of εtotal at the beginning
moment in Figure 8 shows that peak values of the initial oscillation all decrease at higher
solution order. Figure 9 plots the solenoidal dissipation εs. The p3 simulations produces
higher levels of solenoidal dissipation, which indicates a wider range of resolved scales.
Figure 10 plots time evolution of the modeling dissipation and is discussed in detail
in Section 4.2.2.

Figure 11 shows the decay of Reλ for the various simulations in log-log coordinates.
A power law of the decay, which is previously fitted by Samtaney et al. [51], is plotted
here as reference. Note that higher value of Reλ indicates higher Taylor microscale, which
is related to the range of domain dominated by viscous effects. It is shown that the p1
results deviate more from the reference because of the stronger effects of numerical viscosity.
The 3D energy spectrum at t/τ = 1 is shown in Figure 12. The energy at high resolvable
wavenumber at p1 is obviously over dissipated because of the low order of solution. The
p3 results recover the ideal slope better but also fall off the ideal slope at high wavenumber.

4.2.2. Effects of the Explicit SGS Models and the DB Model

In this simulation, the total dissipation after t/τ = 1 is dominated by the solenoidal
dissipation εs and the modeling dissipation εsgs or εa if any model is applied because
the residual dissipation εres is small and the pressure dilation dissipation εd vanishes after
t/τ = 1. Figure 10 plots time evolution of the modeling dissipation. The Smagorinsky and
the Similarity models produce lower level of dissipation, which seems not significantly
affected by the solution order. The DB model is sensitive to the initial fluctuation and
its behavior is excessively dissipative at the early stage of the simulation. The reason
for this is that εa is sensitive to magnitude of all components of the velocity gradient,
shown in Equation (46). The p1 result present higher εa probably because the larger error
of the velocity gradient. Though the duration of the initial fluctuation is short, the excessive
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dissipation of the DB model last until t/τ = 1, resulting faster drop of the turbulent kinetic
energy Ek, shown in Figure 7. It can also observed that the excessive εa is damped at higher
solution polynomial, as shown in Figure 10. The DB model at p3 also produces better
resolution of εs than p1, though still underpredicted. Results of the decaying Reλ shown
in Figure 11 shows no evident difference between the simulation methodologies at p1, while
at p3, the DB model produces slightly higher Reλ than the other methodologies at the same
order, which indicates that this model may lead to a slightly wider spectra of turbulent
scales than the other models. The energy spectrum results at t/τ = 1 shown in Figure 12
again exhibit the excessive dissipation of the DB model at p1 solution polynomial in this
test case. It is also observed that at p3 solution order the excessive dissipation of the DB
model is damped. This test case indicates that the DB model may behave more dissipative
as compressibility of the flow increases, while in this case the given initial conditions have
a strong effect on the dissipation features.

4.3. Compressible Taylor-Green Vortex

In this section, for a further assessment of the DB method in solving compressible
problems, the TGV problem is extended to Mach number 1.25, while the other parame-
ters of simulation follow those in Section 4.1. DNS results on 5122 meshes [42] is taken
as reference. Note that in the reference work, the Ducros sensor [60] is applied for adap-
tive dissipation control of the scheme. Therefore a combination of the DB method and
the Ducros sensor, referred to as DBs, is applied in this testcase for a relatively fair compari-
son, which takes the following form:

µβ,DBs = sD · cβ|∇ · ũ|(h/P)2 , (55)

where sD is defined by

sD = H(−(∇ · ũ)) (∇ · ũ)2

(∇ · ũ)2 + w̃ · w̃ + ε
, (56)

where H is the Heaviside function, w̃ is the resolved vorticity vector, ε = 10−32 is a small
constant to avoid zero in denominator. Note that sD = 1 leads to the original DB method
defined by Equation (28).

Figure 13a displays the time evolution of the turbulent kinetic energy Ek of the com-
pressible Taylor-Green vortex simulated by the original DB method (marked as DB) and
the Ducros-sensor-involved DB method (marked as DBs). A different feature of the com-
pressible Taylor-Green vortex problem from its incompressible counterpart is that the tur-
bulent kinetic energy does not decrease from the initial moment but increases slightly
before t = 4 when internal energy is converted into kinetic energy. The increase in kinetic
energy at the early stage can be observed for DBs method, while the kinetic energy pre-
dicted by the original DB method exhibits no significant change at the same time period.
Both methods generally agree well with the reference, while the DBs produces more
satisfying results because the further reduced dissipation.
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Figure 13. Time evolution of (a) turbulent kinetic energy and (b) dissipation of compressible
TGV simulation, Ma = 1.25, Re = 1600, 1203 DOFs, p3. (a) turbulent kinetic energy; (b) εc + εs;
(c) εc + εs + εa.

Figure 13b plots the total viscous dissipation rate, which follows the definition
in reference [42] by εc + εs. It can be observed that the DB method recovers the peak
value of the total viscous dissipation rate well when working with the Ducros sensor.
Figure 13c plots the sum of total viscous dissipation rate and the extra dissipation brought
by the artificial viscous terms, namely, εc + εs + εa to show influence of the DB models
on the dissipative process. While in incompressible TGV simulation the DB model at p3
provides reasonable compensation when the flow becomes under-resolved, as plotted
in Figure 5b, in this compressible case, however, the DB models behave over dissipative
at the early stage of the flow. It can be observed that the Ducros sensor helps control
the over dissipation.

Figures 14–16 plot contours of dilatation rate ∇ · u, the artificial viscosity µav defined
by Equation (30) and local Mach number respectively on surfaces of the computational
domain via DB and DBs methods at t = 2. Taking previous study [42] as reference, multiple
shock waves are well captured despite the lower resolution than reference. The profiles
of shockwaves by DB and DBs methods are similar since that the DBs method mainly
reduces artificial viscosity in smooth regions, as shown in Figure 15. Figure 17a shows
the line profiles on center line of the computational domain defined by y, z = π at t = 2.5.
It can be observed that both DB models are capable of capturing the shockwave, which is
represented by the sudden drop of Mach number. Time evolution of the max Mach number
in the computational domain is plotted in Figure 17b. In spite of the early stage before
t = 4, two major peaks of the max Mach number is observed at about t = 6 and t = 9,
respectively. The peak values are more or less smoothed by the original DB method and
are recovered well when the Ducros sensor is applied.



Appl. Sci. 2022, 12, 12272 21 of 28

X Y

Z

dilation

0

-0.4375

-0.875

-1.3125

-1.75

-2.1875

-2.625

-3.0625

-3.5

(a)

X Y

Z

dilation

0

-0.4375

-0.875

-1.3125

-1.75

-2.1875

-2.625

-3.0625

-3.5

(b)

Figure 14. Profile of shock waves at t = 2 by contour of dilatation rate via (a) original DB and (b) DBs
of compressible TGV simulation, Ma = 1.25, Re = 1600, 1203 DOFs, p3. (a) original DB; (b) DBs.
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Figure 15. Contour of artificial viscosity at t = 2 via (a) original DB and (b) DBs of compressible TGV
simulation, Ma = 1.25, Re = 1600, 1203 DOFs, p3.
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Figure 16. Profile of shock waves at t = 2 by contour of local Mach number via (a) original DB and
(b) DBs of compressible TGV simulation, Ma = 1.25, Re = 1600, 1203 DOFs, p3.
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Figure 17. Local Mach number along y, z = π line and time evolution of max Mach number
of compressible TGV simulation, Ma = 1.25, Re = 1600, 1203 DOFs, p3. (a) local Mach number along
y, z = π line; (b) max Mach number.

4.4. Compressible Channel Flow

In this section, the compressible turbulent channel flow [61] is considered. The channel
flow is a canonical configuration for wall-bounded turbulence which consists of simple
boundary conditions and geometry. In this paper, we consider the computation of the tur-
bulent channel flow at Reb =15,334 and Mb = 1.5, where Mb and Reb stand for the bulk
Mach number and bulk Reynolds number, respectively, defined by

Reb = 2ρbubh/µw (57)

Mb = ub/cw (58)

where h is half-height of the channel, and

ρb =
1
V

∫
V

ρ dV (59)

ub =
1

ρbV

∫
V

ρu dV (60)

are the bulk density and bulk velocity in the channel, respectively. µw and cw are the dy-
namic viscosity and speed of sound at the wall temperature, respectively. The simulation
is carried out in a rectangular box whose size is 2πh× 2h× πh in the x, y, z directions.
Periodicity conditions are set in streamwise (x) and spanwise (z) directions and isothermal
and no-slip walls are set at y = ±h. The initial field for this testcase consists a laminar
velocity profile, which is perturbed in spanwise direction. The flow is developed statisti-
cally stationary by a uniform pressure gradient, which ensures that the mass flux remains
nearly constant. The detailed procedure follows that reported in [19]. The detail of spatial
resolutions is given in Table 2, where the ∆+ values are estimated as element size divided
by the number of solution points per direction. Note that the grid spacing y+1 is controlled
by the distance of first solution point from the wall, which is set in order to capture the small
structures developing in the near-wall regions [62], as suggested by some rules-of-thumb
for wall-resolving LES [20]. The friction Reynolds number is defined as Reτ = h/δν,
with δν = νw/uτ being the viscous length scale, ν the kinetic viscosity and uτ the fric-
tion velocity. In this study, the Reτ computed from wall stress and average density near
the wall is 404, which is lower than the target Reτ = 500 reported by [61]. This gap is
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resulted from the insufficient resolution [17], which is not as fine as DNS which produce
the target value.

Table 2. Spatial resolution for channel flow computation.

Computation DOF ∆x+ ∆z+ ∆y+
avg y+

1

LES with DB
method 120× 96× 60 26 26 10 0.88

Figure 18 shows the mean velocity profile simulated by LES using p3 FR-DG method
with the original DB artificial viscosity. DNS results in [61] are taken as reference.
These quantities are presented in semi-local coordinates [63]. It can be observed in Figure 18
that the viscous sublayer is well resolved compared with the DNS result. The resolved
buffer layer (about 10 < y+ < 40) deviates from DNS results, indicating that the turbulent
transport is damped in this near-wall region. The bias prediction of the buffer layer leads
to the mismatch of the log layer (about y+ > 40) to DNS results, while the logarithmic
dependence is well predicted. We note that in semi-local coordinates the near-wall velocity
is used for non-dimensionalization, which is computed from the wall friction in the sim-
ulation. As addressed before, the wall stress is underestimated taken the DNS results
as reference. This underestimation also partly contributes to the bias of the log layer, and
the bulk velocity ub may be a more proper choice for non-dimensionalization for a fair
comparison, as reported in [17], which is however not available for this test case. Figure 19
show the Reynolds stresses. A general agreement of trends can be observed. The peaks
of the streamwise (Figure 19a) and spanwise (Figure 19c) velocity variances are obvious
larger by DB than DNS, the Reynolds shear stress (Figure 19d) is lower by DB, while
the wall-normal velocity variances (Figure 19b) of DB agree well with DNS. This is related
to the mesh resolution. Note that in Figure 19b the Reynolds stress is better resolved,
on whose direction the mesh is relatively finer. To conclude, this testcase indicates the abil-
ity of the DB method working with high order FR-DG method to simulate compressible
wall-bounded turbulence robustly, and its potential to provide reasonable prediction in this
complex flow configuration.
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Figure 18. Mean velocity profile in supersonic channel flow at Mb = 1.5 and Reb =15,334 based
on height of the channel.
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Figure 19. Reynolds stresses in supersonic channel flow at Mb = 1.5 and Reb =15,334 based on height
of the channel. (a) u′u′; (b) v′v′; (c) w′w′; (d) u′v′.

5. Conclusions

In this paper, the ability of the DB artificial viscosity model to simulate under-resolved
compressible turbulent flows is investigated in high order flux reconstruction framework.
The results are compared with several explicit SGS models and iLES. A detailed derivation
of the dissipation rate due to modeling terms, including the Laplacian artificial viscosity
model or the explicit SGS model, is conducted. The total dissipation rate of kinetic energy
εtotal is thus decomposed into several components which are discussed in detail. The effects
of the order of solution polynomial, the SGS models and the DB model on the dissipative
property and resolving ability in the simulation are investigated thoroughly. The Taylor-
Green vortex (TGV) problem at Re = 1600 and freely decaying homogeneous isotropic
turbulence (HIT) at Mat0 = 0.5 are simulated at 120 DOFs with two sets of meshes and
solution polynomial orders: a coarse mesh of 303 elements with p3 solution polynomial and
a finer mesh of 603 elements with p1 solution polynomial. The DB method is further vali-
dated in two compressible problems, the compressible TGV problem and the compressible
channel flow problem, with p3 solution polynomial and relatively coarse meshes.

The results of TGV simulations show that the fourth-order-accurate p3 FR method
matches the reference solution better than the p1 counterpart at the same low DOFs.
The p1 method is limited by its excessive dissipation and low resolution at small scales and
leads to over dissipation at high resolvable wavenumbers. Higher order representation
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of the solution are superior at resolving energy of the small scales. The explicit SGS models
and the DB artificial viscosity model all benefit from more accurate resolution of velocity
gradients produced by higher order of solution polynomial. Another benefit brought
by the higher order scheme is a general improvement in model dissipation. The dissipation
introduced by the DB model at p3 behaves in a similar manner to some explicit SGS models,
and compensates the dissipation when the smallest scales emerge, while the iLES alone is
incapable of producing sufficient dissipation. However, it should be noticed that the DB
model is sensitive to the dilation term and brings excessive dissipation at p1 solution
polynomial as the error of dilation term is larger.

The HIT simulations show that the initial oscillation of flow field leads to exces-
sive dissipation of DB model, which can be damped at higher solution polynomial order.
The initial field also leads to oscillation of the pressure dilation dissipation, which is unaf-
fected by the order of solution polynomial order or simulation methodologies.
After the oscillation, lower order solution causes larger error of the pressure dilation dissipa-
tion, which leads to over dissipation of the DB model. This also explains the damped dissi-
pation of the DB model at higher solution polynomial order. Dissipation of the Smagorinsky
model and the Similarity model are not as sensitive to the solution order as the DB model.
The results of spectrum and Reλ indicate that at p1 solution order the numerical dissipation
is excessive regardless of the models applied, and the viscosity dominates on a larger
range of scales. The p3 simulations produce more accurate results on the whole thanks
to the lower numerical dissipation and better resolution on small scales. However, future
works still need to be conducted on detailed DNS results of the components of εtotal derived
by this paper.

Both above test cases show that the iLES results via the fourth-order accurate FR
method generally match the reference solution well at the given under-resolved DOFs, but
they are insufficiently dissipative when the smallest scales emerge in the flow.
The explicit SGS models and the DB model all bring additional dissipation to the compu-
tation but behave in a different manner. It should be noted that the accuracy of gradient
solving is essential to the DB model when the flow is under-resolved. The dissipation
of the DB model is excessive at p1 but grows reasonable at p3 solution order in smooth
regions, which is a suitable property for high order method computation with shocks.

As for the stronger compressible test cases, the compressible TGV problem shows
that the DB method is capable of capturing shockwaves accurately in the under-resolved
turbulent flow in spite of the insufficient resolution. A simply utilized Ducros sensor is
able to control the dissipation of the DB method without sacrificing robustness. The results
from compressible channel flow demonstrate the potential of the DB method on simulation
of compressible wall-bounded turbulence, while further investigation should be concen-
trated on the dissipation in the near-wall region and non-dimensionalization based on bulk
velocity may be conducted to provide more fair comparison.

In this work, the DB model generally shows good potential for compressible LES using
high order method while further investigation should be focused on dissipation features
while dealing with wall-bounded turbulence. We also note that further investigation should
be conducted at higher than p3 polynomial order and DNS study which helps provide
the components of εtotal may be called for as reference. Development of the DB method
for more complex flow figures should also be conducted.
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The following abbreviations are used in this manuscript:

CFD computational fluid dynamics
LES large eddy simulation
RANS Reynolds Averaged Navier-Stokes
DNS Direct Numerical Simulation
FVM finite volume method
DG discontinuous Galerkin
SD spectral difference
FR flux reconstruction
CPR correction procedure via reconstruction
DOFs degrees of freedom
DPW DOFs per wave
ESFR energy-stable flux reconstruction
TVB total variation bounded
WENO weighted essentially non-oscillatory
DB dilation-based
SGS subgrid scale
TGV Taylor-Green vortex
HIT homogeneous isotropic turbulence
iLES implicit large eddy simulation
SPs solution points
SSPRK54 strong stability preserving five-stage fourth-order Runge-Kutta
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