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Abstract: An alternative way to remove CO2 from biogas is the use of photosynthetic microorganisms,
such as microalgae. This can be achieved by the operation of an open photobioreactor, connected
with a mass transfer column, such as a counterflow column. This technology provides up-graded
biogas with high quality. The microalgal uptake of CO2 from the biogas in counterflow columns
generates pH changes in microalgae culture. To clarify the potential effect of these dynamic pH
conditions in the culture, the effect of pH change on the photosynthetic activity and PSII quantum
yield was studied for microalgae Chlorella sorokiniana. Thus, assays were carried out, where the pH
drop reported in the counterflow columns was replicated in batch microalgae culture through HCl
addition and CO2 injection, moving the culture pH from 7.0 to 5.0 and from 7.0 to 5.8, respectively.
Moreover, the effect of light/darkness on photosynthetic activity was tested when the pH decreased.
The results obtained in this research showed that the photosynthetic activity decreased for the light
conditions when the pH was shifted by HCl addition and CO2 injection. Despite this, the value of the
PSII quantum yield remained at 0.6–0.7, which means that the microalgae culture did not suffer a
negative effect on the photosynthetic system of cells because a high value of PSII efficiency remained.
In the same way, the results indicated that when the pH change was corrected, the photosynthetic
activity recovered. Moreover, the apparent affinity constant for dissolved inorganic carbon (KDIC)
was 0.9 µM at pH 5 and 112.0 µM at pH 7, which suggests that the preferred carbon source for
C.sorokniana is CO2. Finally, all the results obtained indicated that the pH drop in the counter-flow
column for biogas upgrading did not cause permanent damage to the photosynthetic system, and
the decrease in the photosynthetic activity as a result of the pH drop can be recovered when the pH
is corrected.

Keywords: biogas upgrading; microalgae; carbon sequestration; pH

1. Introduction

Today, producing biogas from different wastes is a highly recommended strategy
contributing to the production of non-conventional renewable energy, so that organic
matter contained in effluents and wastes can be used as substrates in anaerobic reactors.
In this sense, produced biogas can be injected into the natural gas grid, used as vehicular
fuel, or burned to obtain thermal/electrical energy. Depending on final use, purification of
biogas can be required, so a biogas upgrading system must be coupled to a biogas reactor to
assuring the high methane content and removal of carbon dioxide (CO2), hydrogen sulfide
(H2S), and other gases (nitrogen (N2), ammonium (NH3), siloxane, etc.) [1].

A biological technology for upgrading biogas is microalgae culture, where due to
photosynthetic activity, these microorganisms can uptake CO2 from biogas as a carbon
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source. A special configuration for biogas upgrade systems through microalgae culture
is the two-stage system, where an absorption unit is coupled with microalgae culture.
In this configuration, the contact between the biogas and microalgae takes place in the
absorption unit. Thus, the operation of an open photobioreactor connected to a counterflow
bubble column (absorption unit) for carbon dioxide (CO2) absorption represents a feasible
alternative for biogas upgrade. The result of this two-stage system is an upgraded biogas
with low CO2 and oxygen (O2) levels. Figure 1 shows a schematic representation of such
a process.
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Figure 1. Schematic representation of the biogas upgrading process, involving microalgae culture
and an absorption column.

To date, there are no operating full-scale installations for algal biogas upgrading, and
researchers have focused their work on enhancing the performance of algal biogas upgrad-
ing systems in indoor/outdoor conditions at lab/pilot scale, modifying the operational
parameters of the absorption unit (L/G) ratio [2], decreasing the O2 concentration in biogas
treated through the nitrification bacteria process in an algal photobioreactor [3], the addi-
tion of a trickling filter for bacterial oxygen removal [4], biogas diffusers [5], simultaneous
CO2 and H2S removal [6], biogas supply regime [7], etc. All this research indicates efforts
carried out to achieve a successful implementation of biogas upgrading through microalgae
at full scale.

However, although it has been widely reported that the utilization of a counterflow
column improves the quality of upgraded biogas, the microalgal culture is exposed to
important pH changes when circulating through the column [8]. Such pH changes are
higher when reducing the flow, and pH variations are likely to produce a metabolic change
in the microalgae culture. In this sense, the pH is an important parameter in the operation of
a photosynthetic biogas upgrading system because the pH influences the inorganic carbon
equilibrium [9] and the microalgae activity [10]. When CO2 is dissolved in the aqueous
phase, its inorganic carbon species depends on the pH [11–13]. The inorganic carbon
dissociation causes the release of H+, and as a result, pH decreases. The pH reduction
affects the microalgae activity because most microalgae culture grows at a pH range of 7–9,
with an optimal pH between 8.2 and 8.7 [14]. Most of the carbon is in bicarbonate form
in a pH range of 7–9. Although CO2 is the substrate of the Rubisco enzyme, microalgae
cells can use bicarbonate as a carbon source [15]. Bicarbonate can be transformed into
dissolved CO2 by the enzyme carbonic anhydrase (CA) [16–18]. Although CO2 dissolution
causes a pH decrease, the activity of CA causes pH increases outside the cell due to the
transport of hydroxide ions outside the cell in association with the capture of H+ ions for
the interior of the thylakoid membranes [19]. In this sense, research for biogas upgrading
through microalgae culture had shown a pH drop in the absorption unit, where the pH
has decreased up to 2 points as a result of CO2 dissolution in the liquid phase [3,20]. On
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the contrary, as already commented, it is expected that a pH increase takes place in the
photobioreactor because of the photosynthetic activity.

Given the importance of the pH on microalgae cultivation, supplementary research
is needed to clarify the potential effect of these dynamic pH conditions on the culture.
Thus, the aim of this work is to evaluate the effect of the pH gradients expected in the
column on the photosynthetic activity and PSII quantum yield. Photosynthetic activity
refers to the oxygen released by the microalgae from water photolysis under saturating
photosynthetically active radiations (PAR) [21]. The Photo-system II (PSII) quantum yield
(Fv/Fm) reflects the performance of the photochemical processes in PSII. The PSII quantum
yield ranges from 0.65 to 0.80 in healthy microalgae cultures [22]. Both analyses allow
testing the condition of the photosynthetic system and the cell viability.

2. Materials and Methods
2.1. Microalgae Culture

The microalga Chlorella sorokiniana was obtained from the culture collection of Central
Research Services (CIDERTA) of the University of Huelva, Huelva, Spain. Microalgae were
cultivated using a modified M-8a medium [23]. All assays were carried out considering
that the optimal pH of C. sorokiniana is 7.0, and they were grown until the stationary phase.

2.2. Experimental Procedure

Batch photobioreactors of 200 mL were used and inoculated from previous microalgae
batch culture (Section 2.1). applying a light intensity of 90 µmol m−2 s−1. The effect of
pH changes on the microalgae culture was evaluated through two experiments, which
considered a shift in pH caused by the addition of HCl and CO2 injection. Thus, these
experiments simulated the expected pH changes evidenced when real biogas is bubbled in
counterflow columns in microalgae culture:

• Change in the pH by addition of HCl 3.7%. Three conditions were evaluated: control
culture at pH 7.0; pH change from 7.0 to 5.0 when the culture was exposed to light;
pH change from 7.0 to 5.0 when the culture was in darkness. Moreover, for these three
conditions, a biomass concentration of 0.5 and 1.3 g L−1 was evaluated. The effect of
the pH changes was evaluated through the photosynthetic activity and PSII quantum
yield analysis.

• Change in the pH by CO2 injection. Three conditions were applied: control culture at
pH 7.0 (dissolved inorganic carbon concentration of 12 mM); culture exposed to CO2
injection and light; culture exposed to CO2 injection in darkness. CO2 was bubbled into
the microalgae culture lowering the pH value to pH 5.8. Then, the CO2 injection was
stopped and the pH, PSII quantum yield, and photosynthetic activity were determined.
A biomass concentration of 1 g L−1 was used. All assays were carried out in triplicate.

2.3. Determination of the Apparent Affinity of Microalgae

The use of inorganic carbon by C. sorokiniana was studied by photosynthetic activity
(PA) kinetics (oxygen release) at pH 5.0 and pH 7.0, applying different dissolved inorganic
carbon (DIC) concentrations into the electrode. The inorganic carbon was added in the form
of NaHCO3, partly converted into CO2 as a function of the pH according to the chemical
equilibrium NaHCO3/CO2 in water. The initial oxygen release rate was registered for each
NaHCO3 concentration added [21]. The apparent affinity constant (KDIC) for inorganic
carbon was calculated from a graph of 1/PA versus 1/[DIC], according to Equation (1).

1
PA

=
KDIC
PAmax

· 1
[DIC]

+
1

PAmax
(1)

2.4. Analytical Methods

The photosynthetic activity was determined by oxygen evolution and standardized
by chlorophyll content. Thus, photosynthetic activity was computed as µmol h−1 µg−1
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chlorophyll. For oxygen determination, a Clark-type electrode was used. Oxygen release
measurements were made under saturating white light (750 µmol m−2 s−1) or darkness
(endogenous respiration) at 25 ◦C [24]. Chlorophyll content was determined by methanol
extraction and visible spectrophotometry. The chlorophyll concentration in the extract was
calculated by modifying Arnon’s Equation (2) [25]:

Total Chlorophyll (µg/mL) = 20.2(A645nm) + 8.02(A663) (2)

The PSII maximum quantum yield was measured using pulse amplitude modulation
(PAM) fluorometry with the saturating-pulse technique [26]. The DIC was analyzed by
alkalinity determination according to the method 4500 of standard methods [27].

2.5. Statistical Analysis

The photosynthetic activity and PSII quantum yield for different tested conditions
were analyzed through independent sample t-student tests. All these analyses were carried
out using the statistical software SPSS19. A significance level of 5% (α = 0.05) and N = 3
were used in all cases.

3. Results

Figure 2 shows the photosynthetic activity and PSII quantum yield of the microalgae
culture when the pH decreased from 7.0 to 5.0 after the addition of HCl, at two biomass
concentrations of 0.5 and 1.3 g L−1. The photosynthetic activity of the light-exposed culture
decreased after 100 min for both biomass concentrations when the pH changed from 7.0 to
5.0 (Figure 2A,B). On the other hand, although the PSII quantum yield slightly decreased
for both biomass concentrations, it remained around 0.6 and 0.7 (Figure 2C,D), such values
correspond to healthy batch microalgae cultures [22]. When the pH was adjusted from pH
7.0 to pH 5.0 at 0.5 g L−1 (Figure 2A), the photosynthetic activity of the culture recovered,
demonstrating that the cells did not suffer permanent damage. On the other hand, when the
pH was changed in the conditions of darkness, no significant changes in the photosynthetic
activity were observed.

Figure 3 shows the photosynthetic activity and PSII quantum yield of the microalgae
culture when the pH was decreased from 7.0 to 5.8 by CO2 injection, simulating the process
occurring in the column (the DIC concentration in the microalgae culture was tripled
because of CO2 bubbling). In contrast to the situation of the pH change by only acid
addition (Figure 2A,B), when the pH was reduced by CO2 injection, the photosynthetic
activity decreased immediately in the culture exposed to light and darkness (Figure 3A).
This result could mean that CO2 inhibits the microalgae activity by a different mechanism
for pH decrease. The photosynthetic activity was recovered after CO2 injection. However,
once CO2 injection was stopped, the pH increased and the DIC concentration decreased in
the culture medium due to both carbon fixation and desorption processes. In this sense,
similar results were obtained with Chlorella sp., whose growth was inhibited when it was
exposed to high CO2 concentrations, but the growth reappeared when the concentration
was decreased [28].

As shown in Figure 3B, the CO2 injection caused an increase in the PSII quantum yield.
An increase in PSII yield means that a higher percentage of the absorbed light energy was
used in the photochemical process. This response could be attributed to an increase in
the demand for reducing power (NADPH) to fix and reduce the higher carbon inorganic
concentration in the culture medium [29].

To study the preferred inorganic carbon source of C. sorokiniana, the apparent affinity
constant for the dissolved inorganic carbon was determined. Figure 4 shows the photosyn-
thetic activity as a function of the inorganic carbon concentration provided in the electrode
cube at pH 7.0 and pH 5.0. The apparent affinity constant for dissolved inorganic carbon
(KDIC) was 0.9 µM at pH 5 and 112.0 µM at pH 7. The NaHCO3 added into the algal
samples at pH 5 was mostly in the form of CO2. Therefore, the lower apparent KDIC value
at pH 5 than pH 7 suggests that this microalga had a higher affinity for CO2 than HCO3

−.
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4. Discussion

According to the results in Figure 2A, in a counter-flow column for biogas upgrading,
a pH shift takes place from 7.0 to 5.0; in light conditions, it is expected that this condition
affects photosynthetic activity after 100 min. However, the counter-flow column is operated
considering a residence time less than 20 min, which indicates that the decrease in photo-
synthetic activity by a pH shift will not take place [30]. Moreover, the absorption columns
for biogas upgrading through microalgae are able to operate in dark without increasing the
oxygen concentration in upgraded biogas [4,30]

In relation to the results shown in Figure 3, it can be supposed that if a pH drop takes
place, such as has been evidenced when biogas is injected into the microalgae culture in the
column, the photosynthetic activity of algal cells could decrease. However, in this case, the
cells do not suffer damage in their photosynthetic system, maintaining a high value of PSII
quantum yield, such as the result obtained in this research. When microalgae return to the
photobioreactor, the DIC concentration decreases due to photosynthesis and desorption,
and the microalgal cells recover their photosynthetic activity.

The result obtained, as shown in Figure 3, indicates that CO2 would be the inorganic
carbon source preferred by C. sorokiniana. This result agrees with Williams and Colman [31],
who indicated that C. saccharophila had an affinity for CO2, which was 160 times greater
than that for HCO3

−. The highest affinity at pH 5 could suggest the expression of some
concentrating mechanisms of CO2 that could facilitate its fixation by Rubisco. According to
Tsuzuki, Shiraiwa, and Miyachi [32], there are two possible ways by which CO2 may be
supplied to the Chlorella surface: CO2 can be supplied from the culture medium by simple
diffusion (direct supply of CO2) or HCO3

− formed from CO2 can be converted again into
CO2 via the enzyme carbonic anhydrase (CA) and incorporated by the algal cells (indirect
supply of CO2).

Additional research must be carried out to clarify the mechanisms affected in the algal
cells due to the injection of a gas with a high CO2 concentration and/or a decrease in the pH,
considering that CO2 is the preferred source of carbon for Chlorella. A possible substrate
inhibition may occur in an enzyme involved in the mechanism of carbon consumption.
On the other hand, because of the circulating flow between the photobioreactor and the
column, microalgae cells can be exposed to pH and DIC gradients several times during
the operation of the system. Thus, it would be interesting to study whether these repeated
changes had some additional effect on microalgae activity.
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5. Conclusions

Based on the results of this study, it is expected that the pH gradients in an absorption
column would not cause damage to the photosynthetic system of microalgae, because a high
value of PSII efficiency remained, and the photosynthetic activity could be recovered. This
means that for reported pH drops in the absorption column, photosynthetic activity will not
be affected, which assures an efficient CO2 uptake process and growth in microalgae culture.

CO2 is the preferable source of carbon for C. sorokinana. However, additional research
must be carried out to study the mechanisms that are affected in the algal cells when a gas
with high CO2 concentration is applied.
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