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Abstract: In this study, we investigated the human capacity to generate randomness in decision-
making processes using the rock-paper-scissors (RPS) game. The randomness of the time series was
evaluated using the time-series data of RPS moves made by 500 subjects who played 50 consecutive
RPS games. The indices used for evaluation were the Lempel–Ziv complexity and a determinism
index obtained from a recurrence plot, and these indicators represent the complexity and determinism
of the time series, respectively. The acquired human RPS time-series data were compared to a
pseudorandom RPS sequence generated by the Mersenne Twister and the RPS time series generated by
the RPS game’s strategy learned using the human RPS time series acquired via genetic programming.
The results exhibited clear differences in randomness among the pseudorandom number series, the
human-generated series, and the AI-generated series.

Keywords: artificial intelligence; intelligence; human intelligence; game theory; randomness; behavioral
economics

1. Introduction

The contributions of artificial intelligence (AI) to the development of industrial and
social systems are remarkable, and the corresponding research and technological devel-
opments are diverse. A major trigger in the recent expansion of AI is deep learning
technology [1–5]. As a result, in recent AI research, both practical AI applications and
techniques that consider art and human creativity can be presented [6,7].

A huge number of AI applications have been proposed in recent decades, and the
application of AI technology to practical social systems is important and expected to
contribute to societal development. In addition, a great deal of knowledge has been
accumulated in human brain research, i.e., natural intelligence. For example, previous
studies have proposed models that differ from or complement existing AI models based
on new knowledge of the human brain, and this trend has been demonstrated to be
particularly promising results in recent years [8,9]. However, the proven limitations of
existing AI algorithms emphasize the need for further research in this direction [10]. Thus,
broad exploration of new functional expression mechanisms is essential for sustainable
development of AI systems, and research into natural intelligence contributes significantly
to solving such issues. In particular, we believe that extracting the functional expression
mechanism of the human brain should be explored extensively in future AI research.

For example, many Go (a traditional Chinese game) algorithms, e.g., AlphaGo, and
human Go strategies are very different, which is demonstrated by the fact that AlphaGo
takes steps that humans would never perform, i.e., human intelligence employs a different
method that the algorithmic techniques used by AlphaGo. A prominent match between the
AlphaGo algorithm and former Go world champion Lee Sedol held in Seoul, Korea in 2016
demonstrated the effectiveness of AI approaches (AlphaGo) [11,12]. Here, AlphaGo won
with a record of four wins to one loss; however, it is important to acknowledge that the
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human player beat AlphaGo in one game. This proves that it is possible for the human brain
(at least a former world champion’s brain) to develop and employ a winning strategy and
overcome the huge difference in computing power. Although it may be difficult to describe
this strategy as an algorithm, humans certainly do consider strategies to facilitate decision
making. The human ability to generate a strategy is a treasure chest of intelligence; thus,
we should attempt to reveal its essential qualities. This is the crucial difference between AI
and natural intelligence, and research into understanding the human brain is a source of
new computational methods and the emergence of intelligence [13].

Therefore, in this study, to investigate the strategies and decisions generated by the
human brain, we focus on the rock-paper-scissors (RPS) game, which requires very simple
decision making relative to selecting one of three actions, i.e., using the hand symbolize a
rock, paper, or scissors. We analyzed the results of behaviors of human strategies produced
in a limited environment and investigated the emergent capabilities and quality of the
observed randomness, which is a fundamental component of human behavior. We also
investigated the difference between AI and human strategies by investigating whether the
characteristics of the human RPS time-series data can be reconstructed using AI technology.
This study considered a simplest model to investigate human-generated strategies; however,
it also pursues a fundamental question: how much randomness can the human produce?
Here, human randomness refers to randomness that is independent of any non-human
instrument or physical phenomenon and is generated only by intrinsic human functions.
This is an important and interesting concept from a behavioral economics perspective [14,15].

RPS is a simple game that is popular worldwide. In a game of RPS, the players select
one of rock, paper, or scissors, which from a trilemma relationship, and display their
selection simultaneously. There are various theories regarding the origin of RPS, and many
believe that the game is derived from Ishi-ken or Jaku-ken, which originated from the
change of hand play, e.g., Suken or Sukumiken from China [16,17]. Recently, the name
RPS game is a common name for the Jan-ken game from Japan.

In the RPS game, the rock, the paper, and the scissors form a three-way relationship;
thus, there is no bias between the advantages and disadvantages among players, and
winning or losing depends on only luck. In other words, it is natural to assume that there
is no way to win (or increase the probability of winning) the first game against a new
opponent without prior knowledge.

Thus, we change the assumptions and consider the case where the player can know
and exploit the time-series sequence of hand signs the opponent has made previously. If an
opponent makes a perfectly random move, no strategy can improve the probability of win-
ning against that opponent by 33% or more because the random sequence is independent
of past outputs. Conversely, if a player can make a perfectly random move, this random
strategy can minimize the risk of losing regardless of the opponent’s strategy; thus the
random strategy is considered a Nash equilibrium in the RPS game [18].

It is natural to consider that the result of the hand signs depends on the player’s
decision-making processes. Thus, the time series of the opponent’s hands signs is not
completely random, i.e., the time series exhibits characteristics that reflect the feature of the
opponent’s strategy. Based on this assumption, the probability of winning an RPS game
can be increased by extracting the characteristics from the time series of the opponent’s
hand signs. For example, there is a 100% chance of winning against an opponent who only
plays the paper hand sign.

From this perspective, statistical studies of the time series of human hand signs
in the RPS game and studies into the relationship with human psychology have been
performed [19–21]. In addition, RPS games have recently been regarded as strategic
games, and competitions have been held to compete for the strength of the strategy [22,23].
The Japan Jan-ken Association introduces “10 laws of victory” in RPS games on their
webpage [24], and the World Rock Paper Scissors Association introduces rules for winning
RPS games and the regularity of human RPS strategies [25]. These indicate that winning or
losing is primarily determined by player strategy.
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It is feasible to model the time series of human moves as an output time series from a
Markov chain, which allows the player to formulate an effective strategy and estimate the
opponent’s strategy [26–29]. Similarly, it is natural idea to employ evolutionary algorithms
e.g., genetic algorithms (GA)and genetic programming (GP), to estimate and formulate
strategies [30–33]. The evaluation of strategy estimation and formulation depends on the
characteristics of the opponent; thus, it is difficult to evaluate which method is superior from
the viewpoint of algorithm that can create a strong strategy for the RPS game. However,
the validity of the algorithms to generating the RPS strategies has been demonstrated under
conditions assumed in each study.

Most previous studies have assumed that the human RPS time series has characteristics
based on some sort of decision-making rules. However, to the best of our knowledge, no
previous study has evaluated the randomness of the human RPS time series in actual
RPS games. Naturally, there is no affirmative reason to deny this premise; however,
a quantitative evaluation of the randomness of the RPS time series is useful in terms
of discussing the predictability of the time series. In addition, clarifying the nature of
this difference from randomness would allow us to gain insights into human behavioral
decisions because humans effectively combine behaviors based on rational strategies with
spontaneous or interactionally generated randomness, and there may be some meaningful
intelligence in this process.

In this paper, we present two validations performed to reveal the essence of the emer-
gence of randomness in human decision-making processes. First, we evaluate the random-
ness of human RPS time series (Section 2), and then we evaluate the randomness of RPS
time series generated according to a strategy obtained using an AI technique (Section 3).

In Section 2, we present the results of evaluating the randomness using 500 human
RPS time series in an RPS game comprising 50 consecutive games, i.e., the length of a single
RPS time series is 50. Here, two indices were used in this evaluation, i.e., Lempel–Ziv
complexity, which is used to evaluate the complexity of a series, and determinism (DET),
which is obtained from a recurrence plot. DET is used to evaluate the determinism of a time
series. The randomness of the time series is evaluated by obtaining these indices from the
time series of the RPS game moves collected from the subjects and from highly plausible
pseudorandom series and then comparing the relative frequency distribution of these indices.

We found that the RPS time series obtained from the subjects exhibited different
characteristics compared to a series of pseudorandom numbers, i.e., they demonstrate
characteristics with differing complexity and determinism from that of the pseudorandom
series. Note that we evaluated the characteristics of the entire RPS time series set from
500 subjects. Here each RPS time series was generated based on a variety of individual RPS
strategies; thus, the results exhibit nonrandom and biased characteristics.

In addition, in Section 3, to investigate whether the RPS time series can be recon-
structed using AI technology, we evaluated the randomness of the RPS time series gen-
erated by strategies learned using genetic programming. Similar to the evaluation of the
human RPS time series, here complexity and determinism were evaluated using Lempel–
Ziv complexity and DET, respectively. Here, we discuss whether genetic programming can
be used for a strategy that produces an RPS time series with characteristics that are similar
to those of the human RPS time series.

2. Evaluation of RPS Time Series

Strategies that determine human behavior are formed by the complicated influences
of various factors, either conscious or unconscious, external or internal. Thus, it is difficult
to analyze human strategies and evaluate their characteristics directly. In contrast, it is easy
and effective to analyze the characteristics of a strategy from the results of human behavior.
Here, most of the results of actions are obtained as time-series data, and we can attempt to
estimate the strategy by extracting and analyzing the features from the data.

Considering the repetitive RPS game as a mixed strategy game, the Nash equilibrium
is a random strategy in which the symbols rock, paper, and scissors are selected with equal
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probability. In other words, the player’s strategy should be random under the assumption
that all players are motivated to win. Under this assumption, the human RPS time series
should be obtained as random time-series data. Practically, there are differences in random
sequence because human individuality is reflected in decision making. Such differences
between human RPS decisions and random sequences are significant characteristics when
evaluating the human ability to generate random events or sequences. Thus, in this study,
to evaluate the randomness of the human RPS time series, we evaluated both complexity
and determinism.

In this study, Lempel–Ziv complexity is used to evaluate complexity, and a recurrence
plot is employed to evaluate determinism. The target RPS time series comprises data
acquired from 500 people who played 50 consecutive RPS games. The RPS time-series
data were obtained from participants attending open days at the Tokyo University of
Technology from 2017–2019. Here, each subject played against an RPS algorithm using
GA and GP [31,32], and the human RPS time-series data were obtained by the player’s
own operations using the keyboard. Note that all subjects played the RPS game after
understanding the purpose of the experiments, and the goal of the player was to win the
RPS game.

2.1. Lempel–Ziv Complexity

Lempel–Ziv complexity was used to evaluate the complexity of the RPS time series [34,35].
The algorithm used to obtain the Lempel–Ziv complexity of the RPS time series is described
in Appendix A. Here, we show the cumulative relative frequency distribution of the
Lempel–Ziv complexity from a set of RPS time-series data of 500 subjects to evaluate the
randomness of the human RPS time series. Similarly, 500 series of pseudorandom numbers
were prepared, and the difference between the human series and random series was
evaluated according to the characteristics of a cumulative relative frequency distribution
of the Lempel–Ziv complexity. Note that the cumulative relative frequency distribution
represents the probability distribution of Lempel–Ziv complexity for the set of target
series; thus, we evaluated the properties of the set rather than the local properties of each
individual series. The set of series is characterized by the strategy used to generate the
set, and we evaluated the average human strategy and pseudorandom strategy. Here,
we assumed that the distribution of the cumulative relative frequency of Lempel–Ziv
complexity in a set with a sufficient number of elements obtained from the same RPS
strategy is reproducible.

In this evaluation, we prepared a set of RPS series acquired from 500 human partici-
pants, a set of 500 pseudorandom series, and a set of 108 pseudorandom series. Here, both
the pseudorandom series were generated using the Mersenne Twister [36]; 500 pseudo-
random series are used for comparison with human RPS series, and 108 pseudorandom
series are used to confirm statistical properties. The length of each RPS series was 50 and
the number of elements was three, i.e., rock, paper, and scissors. We prepared two datasets
for the random strategy to verify whether the cumulative relative frequency distribution of
the statistics obtained from the same strategy exhibits the same distribution with different
sample sizes.

Figure 1 shows the cumulative frequency distribution of the Lempel–Ziv complexity
obtained from these sets of RPS series. Here, the red line is the cumulative frequency
distribution obtained from the set of 500 human RPS time series, the black line with circle
mark is from the set of 500 pseudorandom series, and the black line with square mark is
from the set of 108 pseudorandom series. As can be seen, both random sets exhibit similar
distributions; thus, we can evaluate the average strategy of humans by analyzing a set of
human hands with only 500 series.

By comparing the cumulative frequency distribution of the Lempel–Ziv complexity
obtained from the set of human RPS time series and the set of pseudorandom series, we
found that their characteristics clearly differ. This indicates that the randomness of the
human RPS time series is lower than that of the pseudorandom series. To further observe
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the characteristics of each set of RPS time series, we show the distribution of relative
frequency of the same data in Figure 1 on a different scale in Figure 2. Here, the horizontal
axis denotes the square of the distance between a Lempel–Ziv complexity and the Lempel–
Ziv complexity giving the peak value of the relative frequency distribution, and the vertical
axis denotes the relative frequency of the Lempel–Ziv complexity. Note that we assumed
the average of the distribution was estimated by the Lempel–Ziv complexity giving the
peak value.

Figure 1. Cumulative frequency distribution of Lempel–Ziv complexity obtained from the set of the
human RPS time series and pseudorandom series. “Random” and “Random2” are the results from
the set of 500 and 108 pseudorandom series generated by the Mersenne Twister, respectively. As
shown in Figure 2, the results from the pseudorandom series follow a normal distribution.

Figure 2. Distribution of relative frequency at different scale. The horizontal axis is the square of
distance from the peak value. The results from the pseudorandom series (circle and square black
marks) follow a normal distribution. The data are the same as those in Figure 1.
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Here, the normal distribution is calculated as follows:

f (x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (1)

In Equation (1), by replacing x− µ with X and taking the logarithm on both sides, we
obtain the following linear equation for X2:

log f (x) = log
1√

2πσ2
+

(
− 1

2σ2

)
X2. (2)

Thus, in Figure 2, the straight line represents the normal distribution. Here, the slope
is denoted by b; thus, the variance is calculated as follows:

σ2 = − 1
2b

. (3)

As shown in Figure 2, the relative frequency from the random series is distributed
approximately on a straight line and that from the human RPS time series is distributed on
curves that deviate considerably from the straight line. This indicates that the human RPS
series has fat tail characteristics. In other words, the distribution includes a relatively large
number of Lempel–Ziv complexity values away from the peak, which occurs infrequently in
the random distribution. These results demonstrate a clear difference between human RPS
time series and pseudorandom series and they suggest that the human strategy involves
some rule-based decision-making processes that are influenced by player’s individuality.

2.2. Recurrence Plot

We also investigated the determinism of the human RPS time series. Here, determinism
was evaluated using a recurrence plot [37–41], which is a well-known method to analyze
time-series data in nonlinear dynamical systems. The characteristics of various time-series
data are visualized using the recurrence plot, which is effective for the analysis of both
stationarity and determinism. Note that a time series generated based on rules that do not
depend on probability is highly deterministic; thus we assumed that the recurrence plot
can be used to evaluate the randomness of strategies that determine human behavior.

The determinism of time-series data can be evaluated using the ratio of the points
forming diagonal lines in recurrence plot, which is often denoted by DET. The DET takes
a value of [0, 1) based on the determinism of the time-series data, and it is possible to
evaluate the deterministic property of chaotic time series in nonlinear dynamical systems.
Thus, here, we use DET to compare the deterministic property of the set of human RPS
time series to that of the pseudorandom series. Further details about the DET applied to
the RPS time series are described in Appendix B.

Here, the evaluation target was the same sets of 500 series and 108 series of RPS time
series used in the previous evaluation, and the characteristics of each set were evaluated
according to the cumulative relative frequency distribution. Parameter lmin, i.e., the min-
imum length of the diagonal line in the DET calculation, was set to two. The results are
shown in Figure 3, where the bin size is 0.1. A time series with a high DET value has a high
deterministic property; thus, as the cumulative relative frequency distribution becomes in-
creasingly weighted to the right, the set of series is considered to be the more deterministic
(and vice versa). Randomness was assessed as a feature of the strategy used for generating
the RPS time-series data.



Appl. Sci. 2022, 12, 12192 7 of 17

Figure 3. Cumulative relative frequency distribution of DET from recurrence plot obtained from
the set of human RPS time series and pseudorandom series. Here, “Random” and “Random2”
show the results from the sets of 500 and 108 pseudorandom series generated using the Mersenne
Twister, respectively. As shown in Figure 4, the results from the pseudorandom series follow a
normal distribution.

Figure 4. Distribution of relative frequency at different scale. The horizontal axis is the square of
distance from the peak value. The results from the pseudorandom series (circle and square black
marks) follow a normal distribution. The data are the same as those of Figure 3.

In Figure 3, the red line shows the cumulative relative frequency distribution of DET
obtained from the set of human RPS time series, the black line with circle mark shows
that obtained from the set of 500 pseudorandom sequences, and the black line with square
mark shows that obtained from the set of 108 pseudorandom sequences. As can be seen,
the distributions obtained from the two different pseudorandom sets are similar. Thus,
as observed in the evaluation of randomness using Lempel–Ziv complexity, it is also
reasonable to evaluate determinism using the set of 500 series.

Similar to the discussion regarding complexity, here, by comparing the cumulative
relative frequency distribution of DET obtained from the set of human RPS time series and
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the set of pseudorandom series, we found that their characteristics are different. In addition,
the relative frequency distribution was also evaluated, and the results are shown in Figure
4. As can be seen, the DET from the human RPS time series shows a distribution that differs
from the normal distribution obtained from the random series. Note that the horizontal
axis indicates the distance from the peak. The distribution observed from a human RPS
series is asymmetric with respect to the peak and thus shows different characteristics on
the left and right sides of the peak. The shorter of the two red lines shown in Figure 4 is the
characteristic obtained from the distribution to the right of the peak. In the case of the LZ in
Figure 2, there was too little data on the right side from the peak position and the difference
in characteristics between the left and right sides of the peak was not very noticeable. The
difference in randomness is also evident in terms of determinism, which suggests the same
conclusion as that obtained in terms of Lempel–Ziv complexity in the previous section.

In summary, we investigated the differences between the sets of RPS time series
generated by human strategies and the set of pseudorandom RPS time series using Lempel–
Ziv complexity, which evaluates the complexity of the series, and the DET derived from
the recurrence plots. The results clearly demonstrate a difference between the sets of
pseudorandom series and the human RPS time series, i.e., the human RPS time series are
less complex and more deterministic than the pseudorandom series. These results suggest
that the average human RPS strategy includes regularities that emerge due to characteristics
of human decision making. Although this finding is very natural, it should be verified in a
quantitative evaluation.

3. Strategy Inference from RPS Time Series Using Genetic Programming

Is it possible for an AI system or algorithm to beat a human opponent in the RPS
game? This question has attracted the interest of many researchers and engineers, and
competitions for strong RPS algorithms have been held. Here, there is an essential difference
between the goal of always winning and having a high win rate in a sufficient number of
RPS game trials, and it is common to aim for the latter. As discussed in the previous section,
the characteristics of the human RPS time series differ from those of the pseudorandom
series, i.e., the human RPS time series is generated from some strategy other than a random
strategy. Thus, improving of the winning rate in repetitive RPS games can be achieved by
estimating the opponent’s strategy using their RPS time series and predicting the next move
based on the estimate strategy. In other words, this is equivalent to performing reverse
engineering to infer the procedure used to generate the time series from the observable time
series. Based on this idea, we can used the Markov model as a predictive model, which
has been used in many studies [26–29]. In addition, strategy estimation metaheuristics has
been also considered effective in many conventional studies [30–33].

In this study, we inferred the RPS game strategy using the human RPS time-series data
via genetic programming, which is a type of evolutionary computation. In this experiment,
we inferred the RPS strategy using 500 RPS time series from each of 500 subjects; thus,
we obtained a set of strategic models for 500 the individuals who provided the data. We
evaluated the complexity and determinism of the set of RPS time series generated from the
set of strategies inferred using GP. The results were then compared to the sets of human RPS
time series and random series discussed in the previous section. The results demonstrate
that GP’s strategic inference ability in RPS games in terms of the randomness of the training
data. This could be a valuable finding relative to determining whether it is possible to
reconstruct human RPS time series using an AI technique.

GP is an extension of the well-known GA. In the GA, a numerical sequence (frequently
a binary sequence) is defined as an individual representing a candidate solution, and the
objective function is minimized or maximized through repetitive generational changes in a
population of individuals. In each generational change, genetic operators, e.g., crossover
and mutation, are applied to individuals to search for the optimal solution. GP extends
the structure of individuals to a tree structure, which allows the algorithm or program
to be taken as a solution. Here, the optimal solution is searched by essentially the same
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algorithm as the GA. This means that GP can infer an unknown system from the observable
time series and we apply this technique to the inference of RPS strategies.

In the following, we describe the procedure used to infer a human RPS strategy using
GP. First, the data used for inference comprised the 500 human RPS time-series data and
opponent RPS time-series data acquired from a computer opponent. Here, the length of one
RPS time-series data was 50. Note that the data used to infer a single strategy comprised a
pair of the RPS time-series data.

The individual for the RPS strategy was represented using a tree structure using
the functions shown in Table 1 and an arbitrary integer in the range [0:99]. Here, we
used previously proposed functions [30] that have been shown to be effective in previous
studies [30,31]. Functions 1–7 perform arithmetic operations on arguments, and functions
8–12 reflect the game history and give some randomness to the output series. Here, function
involving probabilistic elements were not considered, and all strategies described by the
individual were implemented as deterministic systems.

Table 1. Functions used to infer RPS strategies.

No. Function Note

1 add(x, y) Return x + y
2 sub(x, y) Return x− y
3 multiple(x, y) Return x× y
4 divide(x, y) Return x/y i f y == 0 return x
5 mod(x, y) Returnx%y i f y == 0 return x
6 plus1(x) Returnx + 1
7 plus2(x) Returnx + 2
8 gp-hand(x) Return the hand sign program made prior to the x games (i f t− x ≤ 0 Return x)
9 opp-hand(x) Return the hand sign opponent made prior to the x games (i f t− x ≤ 0 Return x)
10 If-r(x, y1, y2) i f x%3 = 0 return y1 else return y2
11 If-s(x, y1, y2) i f x%3 = 1 return y1 else return y2
12 If-p(x, y1, y2) i f x%3 = 2 return y1 else return y2

The individual is calculated from the leaf node toward the root node, and the remain-
der obtained by dividing the output of the root node by three shows the RPS hand sign. The
strategy described by an individual generates an RPS series by giving the opponent’s RPS
series. Thus, the length of the generated RPS series is the same as that of the opponent’s RPS
series. Stochastic elements are not included in the strategy; thus, the RPS series generated
by an individual for a specific opponent’s RPS series is uniquely determined.

An individual is evaluated using the Fitness calculated by Equations (4) and (5). Here,
an individual that generates an RPS time series with a high similarity to a human RPS time
series will have a high fitness. Here, similarity was evaluated in terms of the number of
equal elements in the time series:

Fitness =
L

∑
i=0

Di , (4)

Di =

{
1 i f Human hand signi = Program hand signi
0 otherwise

, (5)

where L is the length of the RPS time series, Human hand signi is the i-th hand sign of the
human RPS time series, and Program hand signi is the i-th hand sign of the RPS time series
generated by an individual. Here, the Program hand signi sequences are generated with
reference to the RPS time series data shown by the opponent’s computer during data collection.

The flow of RPS strategy acquisition via GP is illustrated in Figure 5. In this study,
the hyperparameters were set as follows: crossover rate: 0.95, mutation rate: 0.05, and
maximum number of generations: 106.
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Figure 5. Flow of RPS strategy acquisition via GP.

We obtained the set of 500 RPS time-series from the set of 500 strategies inferred using
a pair of RPS time series data for 500 players and their opponents. Here, the obtained
500 RPS data were evaluated according to Lempel–Ziv complexity and DET, and the results
are shown in Figures 6 and 7, respectively. In addition, the relative frequency distribution
was evaluated in the manner described in Section 2. The relative frequency distribution
results are shown in Figures 8 and 9, respectively. In each figure, the analysis results of
the RPS time series from the GP inferred strategy are added to Figures 1–4. These results
demonstrate that the RPS time series obtained from the strategies estimated by GP are even
less complex and more deterministic than the human RPS time series.

From the results shown in Figures 8 and 9, we observe that the relative frequency
distributions obtained from the GP and human RPS time series both exhibit fat tail distribu-
tions compared to the normal distribution obtained from a pseudorandom sequence. Here,
the relative frequency distribution characteristics of the human RPS series are similar to the
normal distribution in the high-frequency region (i.e., near the peak of the distribution) but
are larger than the normal distribution in the low-frequency region. For the RPS time series
acquired by GP, even in the high-frequency region, the distribution is not similar to that of
the random case (i.e., a normal distribution).

These are reasonable results considering that the strategy inferred by GP comprises a
finite combination of functions (Table 1) and does not include stochastic elements. However,
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although the strategy comprises simple functions, some individuals have generated series
with randomness that was comparable to that of the human RPS series; thus, the result
does not negate the validity of strategy inference via GP. Note that the performance of
GP in the optimal solution search is strongly dependent on the functions used for each
individual. Thus, we only present the results obtained under certain conditions. Thus, the
results suggest that GP can be used effectively to infer a strategy based on human RPS
time-series data. In future, it would be interesting to consider improving the performance
of GP.

Figure 6. Cumulative relative frequency distribution of Lempel–Ziv complexity obtained from the
set of RPS time series. The RPS time series were generated by a pseudorandom set, human, and the
strategy inferred by GP. Here, “Random” and “Random2” show the results from the sets of 500 and
108 pseudorandom series generated using the Mersenne Twister, respectively.

Figure 7. Cumulative relative frequency distribution of DET from recurrence plot obtained from the
set of RPS time series. The RPS time series were generated by pseudorandom set, human, and the
strategy inferred using GP. Here, “Random” and “Random2” show the results from the sets of 500
and 108 pseudorandom series generated using the Mersenne Twister, respectively.
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Figure 8. Relative frequency distribution of Lempel–Ziv complexity obtained from the set of RPS
time series. The data are the same as those in Figure 6.

Figure 9. Relative frequency distribution of DET from recurrence plot obtained from the set of RPS
time series. The data are the same as those in Figure 7.

4. Discussion and Conclusions

In this study, we evaluated the randomness of the time series of human hand signs in
the RPS game. Here, we compared the complexity and deterministic characteristics of the
RPS time-series data collected from 500 subjects with an equal number of pseudorandom
RPS series sets. We also evaluated the complexity and determinism of the output time series
from an RPS strategy inferred via genetic programming using the human RPS time-series
data. Here, Lempel–Ziv complexity was used as an index to complexity, and DET obtained
from a recurrence plot was used as an index to evaluate determinism.

From observation of RPS time series data alone, it was difficult to correctly classify
them into pseudorandom series, human RPS time series, and time series generated from
the GP’s trained strategy models. However, by evaluating the complexity and determinism
of each set of 500 RPS series, we found that each set (i.e., pseudorandom series, human RPS
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series, and GP RPS series) exhibited clearly different statistical distribution. In other words,
the results quantitatively corroborate the above intuitively recognized properties.

The subjects were informed of the purpose of the experiment when the RPS time-series
data were collected, and the goal was to win the RPS game. Thus, this result evaluates the
randomness of the RPS series generated by the human system, including the RPS strategy
to win the RPS game, and it does not universally evaluate the ability of the human system
to generate random series. Furthermore, although the 500 RPS time series data collected in
this study were provided by 500 different individuals, different results would be expected
if a set of 500 time-series data generated by one person was used. Thus, many meaningful
assumptions can be made about the collection of human RPS series, and the results in
this study are only considered from one aspect. Thus, in future, we plan to clarify the
characteristics of human time series generation under various conditions.

Human-generated randomness can have essential significance in terms of human
behavior because randomness contributes to eliminating bias in fair decision making and
accurate estimates of probability events. This randomness is also strongly related to the
diversity of human behavior and exploratory behavior; however, humans may possess
unconscious knowledge about the limits of human-generated randomness. This is evident
in the fact that people have used objects and natural phenomena to apply randomness in
gambling since ancient times [42]. In terms of search methods, for example, some results
demonstrate that methods that consider chaos, which is a deterministic phenomenon, give
more efficient search results than the method with randomness [43,44]. Certain features
of near randomness but not belonging to randomness allow for the creation of special
functions, such as efficient search. We believe that this study provides possible findings
that could be the basis for a series of future studies evolving from this perspective.

In this paper, we considered AI-based strategy inference using only genetic program-
ming. However, the strategies inferred in this study were defined by a procedure that
does not include a stochastic component; thus, we assume that different results could be
obtained by including stochastic elements in the strategy component. In addition, in terms
of the evaluation function, the GP used in this study only considered the similarity of
series as the evaluation function. However, we consider that evaluation via homology,
which considers deviations in patterns, is more suitable for strategy evaluation. Although
improving the performance of strategy inference methods was beyond the scope of this
study, it is an interesting subject that has been studied extensively to date, and we would
like to explore this area in the future based on the results presented in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

RPS Rock-Paper-Scissors
DET DETerminism
GA Genetic Algorithm
GP Genetic Programming

Appendix A. Lempel–Ziv Complexity

Lempel–Ziv complexity is an index obtained based on methods such as LZ77, which
is a data compression algorithm. In data compression algorithms like LZ77, the sequence
is encoded by recording the first-look sequence pattern in a dictionary in order from the
beginning of the entire sequence data. Here, the partial sequence recorded in the dictionary
is referred to as a word, and the number of words recorded in the dictionary is defined as
the complexity of the series. The pseudocode to calculate Lempel–Ziv complexity is given
in Algorithm A1.

Algorithm A1 pseudocode to calculate Lempel–Ziv complexity

. S is target sequence.

. N is the number of elements in the S.

. l is length of subsequence.

. subl is a subsequence of length l from the initial element of S.

. D is a set of subsequence.
l ← 1
while N <= 0 OR N < l do

if subl is the first-look sequence pattern then
Add subl to D . Record the “word” in the dictionary.
Remove subl from S
Update the value of N
l ← 1

else
Increment l

end if
end while
return The number of elements in D

For example, in the case of series [0,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1], the number of words
registered in the dictionary is seven, i.e., the Lempel–Ziv complexity is calculated as having
a value seven. In this study, Lempel–Ziv complexity was calculated for the RPS time series;
thus, the above procedure was applied to a sequence with three elements. For sequences
with a length of 50 and three elements, Lempel–Ziv complexity (CLZ) takes a value in range
9 ≤ CLZ ≤ 21. It can be seen that the larger the calculated Lempel–Ziv complexity, the
more different patterns are in the series, and the smaller the Lempel–Ziv complexity, the
more similar patterns are included.

Appendix B. DET from Recurrence Plot and Application to RPS Time Series

Generally, to obtain a recurrence plot from time-series data, the first step is to convert
the time-series data to a reconstructed state space vector. Assuming that the time-series
data is represented as xt(t = 1, . . . .n), the dimension of the reconstructed state space is m,
and the delay time is τ. Thus, the reconstructed state space vector Xt is obtained as follows:

Xt = {xt, xt+τ , . . . , xt+(m+1)τ}. (A1)
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The next step is to calculate the Euclidean distance Di,j between the two points of this
reconstructed state space vector Xt, where Di,j is defined as follows:

Di,j = ‖Xi − Xj‖. (A2)

Eventually, the recurrence plot is obtained using this Di,j. The recurrence plot is an
N× N pixels image, where each pixel takes a value of 0 or 1, i.e., white or black. Now, with
i = 1, . . . , N on the horizontal axis and j = 1, . . . , N on the vertical axis, the pixel value
RPi,j at the coordinates (i, j) of the recurrence plot is calculated as follows:

RPi,j =

{
1, i f Di,j ≤ θ

0, otherwise
. (A3)

Here, parameter θ defines the proximity of Xi and Xj. Note that parameter θ is set
empirically according to the target problem.

Examples of recurrence plots can be found in many previous studies [37–41]. Generally,
highly regular patterns appear for time series derived from periodic functions, and irregular
patterns appear for highly random time series. In the case of seemingly irregular time series
generated from deterministic systems, e.g., a chaotic time series, a partially regular pattern
will appear in the recurrence plot. These properties of recurrence plots are quantified by
DET and used as a measure of determinism.

DET is calculated as the ratio of the number of points forming a diagonal line to the
total number of points in the recurrence plot. Given that the 45-degree diagonal line appears
when the distance between two points is continuously close, the higher the deterministic
property of the time series, the higher the DET value. Here, P(l), i.e., the number of the
diagonal lines of length l(l ≥ 1) in the recurrence plot of length N on a side, is expressed
as follows:

P(l) =

 ∑N−1
j≥2

(
1− RPi+l,j+l

)
∏l−1

k=0 RPi+k,j+k i f i = 1

∑N−1−l
i≥2 ∑N−l

j≥i+1

(
1− RPi−1,j−1

)(
1− RPi+l,j+l

)
∏l−1

k=0 RPi+k,j+k i f i ≥ 2
. (A4)

Note that the recurrence plot is line symmetrical with the diagonal line; thus, the
number of diagonal lines is calculated in the range i < j in Equation (A4) to simplify
the calculation.

Using P(l), DET can be calculated as follows:

DET =
∑N−1

l≤lmin
lP(l)

∑N−1
l≤1 lP(l)

. (A5)

The diagonal line is always drawn as a continuous line; thus, it is excluded from the
calculation by setting the upper limit of the sum of Equation (A5) to N − 1. In addition,
parameter lmin represents the minimum length of the diagonal line and is determined em-
pirically.

We generate a recurrence plot from the RPS time series to evaluate the deterministic
property of the human RPS time series. Here, the target time series is a type of point
process data; thus, we assumed that the dimension of the reconstructed state space, m, is
one. Thus, the recurrence plot is generated using the values of the RPS time series without
modification. In other words, Xt in Equation (A1) is the t-th hand sign (i.e., rock, scissors,
paper = 0, 1, 2) in the RPS time series, and the length of a side in the recurrence plot is equal
to the length of the RPS time series. Then, let Xi = Xj be the condition for RPi,j = 1 as
shown in Equation (A6). This is equivalent to setting parameter θ = 0 in Equation (A3).

RPi,j =

{
1, i f Xi = Xj
0, otherwise

. (A6)
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For example, the recurrence plot obtained from the RPS series [1,0,2,1,0,2,1,0,1,2,1,0,2,
0,1,2,1,0,0,1,0,0,2,1,1,2,0,2,1,0,2,1,0,2,1,1,0,2,1,1,1,0,1,2,1,0,1,2,1,2] is shown in Figure A1.
Since several short sequences such as [1,0,2] or [0,2,1] appear repeatedly in this series,
a line with an angle of 45 degrees appears in the recurrence plot, and it is evaluated as a
series with relatively high determinism. In this example, the DET is calculated as 0.652709.
As demonstrated by this example, the recurrence plot can visualize the characteristics of
the RPS time series.

Figure A1. Example recurrence plot for RPS time series [1,0,2,1,0,2,1,0,1,2,1,0,2,0,1,2,1,0,0,1,0,0,2,1,
1,2,0,2,1,0,2,1,0,2,1,1,0,2,1,1,1,0,1,2,1,0,1,2,1,2].
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