
Citation: Li, T.; Jin, Y.; Wu, S.; Liu, S.

Multivariate Fence: Using Parallel

Coordinates to Locate and Compare

Attributes of Adjacency Matrix Nodes

in Immersive Environment. Appl. Sci.

2022, 12, 12182. https://doi.org/

10.3390/app122312182

Academic Editors: Xiaoping Fan and

Ying Zhao

Received: 19 October 2022

Accepted: 21 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multivariate Fence: Using Parallel Coordinates to Locate and
Compare Attributes of Adjacency Matrix Nodes in
Immersive Environment
Tiemeng Li 1,2,* , Yanning Jin 1, Songqian Wu 1 and Shiran Liu 1

1 School of Digital Media & Design Arts, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 Beijing Key Laboratory of Network System and Network Culture, Beijing 100876, China
* Correspondence: tiemeng2000@gmail.com

Abstract: Adjacency matrix visualization is a common method for presenting graph data, and the
Focus+Context technique can be used to explore the details of the ROI (region of interest). Embedded
views and multi-view approaches are usually applied when locating and comparing attributes
among multiple nodes. However, the embedded view has an issue of edge occlusion, while the
multi-view would cause repeated perspective switching. In this paper, we propose a Multivariate
Fence (MVF) model as a focus view of the adjacency matrix to locate and compare attributes among
nodes. An additional spatial parallel coordinate is added to the 2D adjacency matrix in an immersive
environment so that the attribute information can be shown in a single view without blocking edge
information. We also conduct a user study to evaluate the performance of the MVF. The results show
that the MVF has better efficiency and accuracy in locating and comparing the multivariate adjacency
matrix in the immersive environment against the existing focus model. Moreover, the MVF model is
easier to understand and is preferred by users.

Keywords: adjacency matrix; parallel coordinate; graph analysis; multidimensional data visualization;
information visualization

1. Introduction

In graph visualization, the adjacency matrix is a commonly used method that expresses
the relationship between N nodes through an N × N matrix [1]. Multivariate node attributes
are also important information in the adjacency matrix. Still, little space is left for attributes
display because the adjacency matrix expresses whether the relationship exists between two
nodes and makes vital information in conspicuous [2]. The Focus+Context (F+C) technique
is used to solve this issue.

The F+C technique displays node attributes mainly by using the embedded view and
multi-view method [3,4]. In the embedded view [5,6], the attributes of the corresponding
two nodes are superimposed on the edge of the focus, which will lead to the occlusion
of edge information (such as color mapping). The multi-view [3,7] changes the encoding
of the focus area for attribute displacement so that the original edge information will be
covered entirely. Hence, the analyst has to constantly switch between the two views in
the process of data analysis [6,7]. Therefore, showing edge and node attributes without
occlusion is challenging in the traditional F+C focus view.

An immersive environment can be led by Virtual/Augmented/Mixed Reality, wall-
size displays, and tabletops [8]. A survey of Immersive Analytics [9] reports that 3D
graphics, stereo vision, and head tracking are the necessary components that should
be provided in this environment. The application of immersive environments in data
visualization has become a new data analysis technology [10]. Compared with the 2D view,
it adds depth to increase the display space and provides new possibilities for display mode
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and layout [11]. In addition, new interaction methods offer a new interactive experience
and help users explore data more naturally and coherently.

Therefore, we propose a focus view model named Multivariate Fence (MVF), which
uses the spatial parallel coordinate in the immersive environment to display node at-
tributes. The MVF (Figure 1), together with the focus area, constitutes a focus data analysis
workspace, which displays all information of nodes and edges simultaneously without
blocking edges. This method improves the efficiency and accuracy of locating and compar-
ing attributes between nodes and enhances the understanding of the relationship between
nodes and edges of the adjacency matrix. We also conducted a controlled experiment to
evaluate the performance of the MVF.

(a) Customized focus area. (b) Perspective view of MVF.

Figure 1. Multivariate Fence—A focus view model for adjacency matrix showing node attributes.

This work contributes the following: (1) a visualization model for visualizing multidimen-
sional properties of graph data using an immersive environment; (2) a visualization method
for locating and comparing adjacency matrix nodes in an immersive environment; and (3) a
VR-based prototype system for visualizing high-dimensional graph data and an evaluation.

2. Related Work
2.1. Interactions in Adjacency Matrix

Three main interaction techniques are used to explore the adjacency matrix [12]:
Focus+Context, Overview+Detail, and Pan&Zoom. Focus+Context technology distorts
the information space; Overview+Details requires additional view assistance to display
information and user effort to correlate the two; and Pan&Zoom results in higher working
memory because the user can see only one view at a time.

Focus+Context comes in two major forms: lens and fold. The lens usually emphasizes
the contents of an area using magnification, such as suppressing scattered information,
showing details, and changing mappings. PaperLens [13] uses square hardware as a
lens to transform the view of the covered area, and the size of the lens coverage area is
relatively fixed. RMC [6] solves this problem by scaling the lens view transformation area.
BodyLens [14], SpiderEye [15], and ShadowTouch [16] use lenses with different shapes
(round, rectangular, humanoid outline) to change the view mapping to show details, and
can adjust the size of the covered area. However, the above directly overwrites the original
view due to insufficient display space, resulting in information loss. Melang [17] is a 3D
distortion technology that folds the uninterested part to the rear to reduce the display area.
Similarly, SpaceFold [18] and Multi-touch document folding [19,20] support multiple focal
points to be displayed at the same time. Still, the focus shape is relatively fixed, the number
of focal points is limited, the deformation is more serious, and more information is lost.

Overview+Details comes in three major forms: mini-maps, different views from
different perspectives, and view slices. A mini-map is a small map of the whole world,
providing an overview of the user and the relationship between the details and the entire
world. Different views from different perspectives are used to display details of new areas
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through other views. MARVIS [21] displays node attributes in the figure as bar charts
beside the Overview area. View slicing extracts part of the global view as details and zooms
in to display. Visualizing Dynamic Networks [22] uses this method to show details of the
matrix cube. This interaction technique can take up limited view space or require the new
view presentation space to be expanded.

Pan&Zoom technology includes geometric and semantic zooming. The former speci-
fies the scale of the enlarged spatial scales, while the latter changes the level of detail by
changing the visual code. Van Wijk and Nuij summarized smooth and efficient geometric
zooming and panning techniques and presented a model to calculate a solution for optimal-
view animations [12,23]. ZAME [5] and TimeMatrix [24] are content-aware technologies
that rely on semantic zooming to display different encoding details based on the scale
level. Semantic scaling is also included in RMC [6], where four levels of details (LOD)
are designed based on the scale level. Pan&Zoom technology provides users with more
multivariate information through zoom operation.

This work mainly aims to improve the problems of space limitation and occlusion,
display multiple attributes of nodes without blocking the region of interest (ROI), and
support more free zooming.

2.2. ROI Presentation Techniques of Adjacency Matrix

We investigate three methods of visualizing multiple attributes of the adjacency matrix
when selecting the ROI. They are embedded view, multi-view, and juxtaposed view.

The embedded view usually encodes multiple attributes on edges, which can be
embedded into the unit cell (for one edge/two nodes) and meta cells (for cluster). When
embedding in the unit cell, due to the small area allocated by the adjacency matrix to each
cell, multi-attribute does not have sufficient display room and will block edge coding,
which makes it difficult for users to observe. For meta cells, ZAME [5] calculates the
attribute values to obtain the final color map, which loses many details. RMC [6] justifies all
the attribute information on the edge, making the positional relationship among attributes,
nodes, and edges challenging to understand.

Multi-view uses an auxiliary view to display multivariate, which solves the problem
of insufficient display room in the adjacency matrix. Visualization in GraSp [3] uses mobile
devices to display graphs on a large display. Although it expands the new display space,
it requires frequent view switching when mapping between two graphs. The multi-view
technique can also be completed by view switching, completely covering the original
visual information and requiring frequent page switching to complete the task. These
conditions all lead to user fatigue. Multi-view may also need to be accessed through
multiple software, which not only causes window switching but also increases software
installation requirements that is not convenient.

The juxtaposed view displays multiple attributes by placing different encoding views
at the side of the original view. This method does not affect the encoding of the original
view. However, it is not easy to match specific items [25]. As a result, of the limited display
area this technique needs interaction widgets such as sliders for auxiliary observation, or
requires the user to switch the view back and forth. For example, Matrix Zoom [26] provides
views of different encoding. Some views need scroll-view [27–29] to show complete content,
which is hard to match items. Hence, the interaction process is cumbersome.

In this work, we place the multivariate information on the side of the ROI to make the
relationship among attributes, nodes, and edges more intuitive and use spatial dimensions
to display information without blocking any mapping codes in the original view.

2.3. Immersive Analytics

Immersive Analytics (IA) was defined in 2015 as “the applicability and development
of emerging user interface technologies for creating more engaging and immersive experi-
ences and seamless workflows for data analysis applications” and more recently as “the
use of engaging, embodied analysis tools to support data understanding and decision
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making” [10]. A recent survey by Fonnet et al. [9] provides an extensive overview of IA.
The visual analysis of multi-dimensional data in immersive environment consists of four
aspects: immersive visualization, multi-dimensional data, ultimate space, and interaction
input. We summarize each in the following paragraphs.

Immersive visualization. Immersive visualization is an engaging, multi-sensory, and
embodied analysis tool to support exploration, communication reasoning, and decision
making. Recent advances in immersive technologies (VR, AR, MR, large display, tangible
surfaces, etc.) show new opportunities to analyze, explore, and present data using these
technologies [30]. It has been applied to applications such as information visualization and
image immersion. It has proven effective in many other scientific applications, such as brain
tumor analysis, archaeology, geographic information systems, geosciences, and physics [31].
Immersion technology provides a broader space, changes the traditional windows, icons,
menus, pointer (WIMP) interaction paradigm, and provides a new interactive experience.

Multidimensional data. Analyzing multidimensional datasets to find insights and
trends has been a popular topic within IA. Several visualization tools and case studies have
emerged. DXR [32], ImAxes [31], IATK [33], and other tools that support multi-dimensional
data rendering in immersive environments. In a case study, MARVIS [21] combined AR and
mobile devices to display more data dimensions in different views in space, providing more
possibilities for view combination. Personal Augmented uses large displays to combine
with AR and proposes a design space suitable for multi-person collaborative data analysis.
For example, Liu et al. [34] found that users were faster and more accurate when using
a flat layout with a small number of multiples. Still, as multiples increased, a half-circle
layout provided the best performance. The visual layout is relatively fixed in the above
cases, and the space is not fully utilized.

Ultimate space. DataHop [35] and Maps Around Me [36] have a higher degree of
expansion and utilization of space. Maps Around Me expands multiple hierarchies of map
data in a spherical layout and provides an automatic layout technique to help users quickly
organize data locations. DataHop uses the process of user data exploration as the layout,
which can not only expand the space of data display; but also record the process of user
exploration. However, one can easily get lost in that environment.

Interaction input. IA changes the traditional input, abandoning the WIMP paradigm,
usually using new input methods such as air gestures and head rotation. Regarding
navigation, devices with six degrees of freedom (6DOF) can recognize the movement of
characters in space and support users to walk and observe directly. Other ways, such as
teleportation, can be used to facilitate quick movement in large spaces. Gesture interaction
technology is also maturing. One paper studied the effect of different input methods
on low-level tasks in a 3D node-link graph [37,38], and the results showed no effect on
accuracy. Still, for complex graphs, gestures were significantly faster. Immersive interactive
environments also have limitations, such as color distortion, perspective, and occlusion,
which must be explored and solved.

At present, VR is a relatively mature technology among interactive devices that can
provide an immersive environment with a reasonably good effect on display resolution
and color. Therefore, VR is adopted in this project to provide an immersive environment,
and gesture interaction is used to provide a new way of natural interaction.

2.4. Parallel Coordinate Plot

Parallel Coordinate Plot (PCP) is a multidimensional data visualization technique [39],
which can arrange multiple attributes in parallel on a 2D plane. Parallel axes are usually
used to represent attributes, and the location of data items on the axis helps in understand-
ing the distribution interval of the attribute [40] and identify outliers. Through line patterns
in PCP, such as tilt degree and density, the relationship between clusters of data items,
adjacent attributes, and correlation can be perceived easily.

PCP allows users to understand an overview of the data, but representing a large
amount of data can cause overdrawn links. At present, many ways are applied to solve
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this problem, such as using a clustering algorithm [41,42] and adding another visual
coding [40,43].

We change the traditional mapping method of parallel coordinates and use an axis to
map nodes in graph data to sense the distribution of node attributes through the axis. The
advantage of parallel coordinate attribute relation perception is that it allows us to observe
and compare the correlation between nodes and identify outliers.

3. Design of the MVF

We propose Multivariate Fence (MVF) as a flexible focus view model for locating
and comparing attributes between multiple nodes in the third spatial dimension. The
MVF is placed in a space perpendicular to a 2D adjacency matrix to provide multivariate
information (Figure 1b). In this section, we describe the MVF design objectives, provide an
overview of the general approach, and elaborate on the visual design of the MVF.

3.1. Design Goals

On the basis of the previous analysis of the adjacency matrix focus view, we propose
the following design objectives, because these issues have a greater impact on the task of
locating and comparing node attributes.

G1: Improve node attribute location and comparison efficiency.

Each edge of an adjacency matrix corresponds to two nodes, and multiple consecutive
links refer to the same node multiple times. Such redundant information should be reduced
in visualization to locate the results quickly.

G2: Minimize information occlusion.

Our approach must present both edge and node information in the ROI. In this case,
the analyst will not lose important information, which is convenient for locating the nodes
and their attributes for comparison.

G3: Assist users to understand the adjacency matrix.

Our approach reduces the correspondence issue in the adjacency matrix, which leads
to information redundancy, and results in cognitive and memory burden on the analyst.

3.2. Overview of the MVF

The core idea of the MVF approach is illustrated in Figure 1. The MVF embedded into
the matrix provides attribute information, forming an analysis space with a spatial parallel
coordinate and focal cluster plane.

As for mapping the adjacency matrix, rows and columns correspond to the set of
nodes. Edges are encoded through color channel to represent relationships between nodes.
The ROI plane of the adjacency matrix is custom selected by users and will be lifted.

The MVF is perpendicular to the ROI plane and displayed at the margin without block-
ing edge information, allowing users to observe edge and node attributes simultaneously
(G2). Nodes and attributes are represented as axes with value points, and are placed at
the side of the corresponding edge and the margin of ROI. In addition, multiple attributes
of each node are displayed only once in the MVF without redundant information. The
position of axes and unique attributes reduce the user’s cognitive burden, facilitating user
observation and comparison (G1). We group elements through position factors to reduce
the memory burden of users and make it easier to understand the relationship between the
elements in the adjacency matrix (G3).

3.3. Construction of the MVF

The MVF is composed of attribute points, axes, and links. The overall parallel coordi-
nate is divided into two parts, vertically placed on the left and top of ROI.
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3.3.1. Axis and Point

For multi-attribute displays, we expect that the MVF can improve the efficiency of
localization and comparison. Therefore, the design is implemented from position mapping
(PM) and the number of occurrences (NoO) of attributes.

In terms of PM, to facilitate localization, the relationship among attributes, nodes,
and edges should be considered first. A node has multiple attributes, and the relationship
between nodes and edges can be grouped. The proximity principle of Gestalt can reduce
the user’s cognitive cost by grouping elements close in distance/position into a whole
(G1, G3). Therefore, attributes need to be close to nodes, and nodes need to be close to
their corresponding edges. Secondly, considering the user’s learning cost, the traditional
adjacency matrix node name is placed on the left and upper sides of the whole. Traditional
location mapping can reduce the learning cost and speed up locating (G1). To facilitate
comparison, the relative position of different node attributes needs to be considered. In
general, visual comparison of two objects can be supported by showing the two objects in
parallel (superimposed or juxtaposed) or by computing and visualizing their difference
directly [25]. Common visualization methods include bar charts and star plots. What they
have in common is the need to have the same baseline for comparison through location
mapping. Referring directly to these views is inappropriate, which is why we will stick
with their typical characteristics (G1).

In terms of NoO, the relationship between nodes and edges is not one-to-one. There-
fore, in an M * N matrix, each row and column will correspond to the same node, so each
node will appear M or N times when it reaches the edges. However, multiple occurrences
of a node in the matrix will cause information redundancy, which is not conducive to
identification and comparison. Thus, we expect that each node with its attributes appears
only once (G1).

Finally, nodes are represented as axes, multivariate values of nodes are defined as
points, and multiple attribute points are mapped on the same axis with length and color-
code attribute categories. The attribute and node were combined based on the proximity
principle. Axes are placed on the left and above ROI at corresponding nodes to maintain
users’ original cognition of the traditional adjacency matrix and ensure the same start-
ing point of nodes for easy comparison. In addition, each attribute’s value interval and
distribution may differ significantly when multiple attributes are mapped on the axis
simultaneously, and the problem of uneven distribution and severe occlusion will occur
(G2). Therefore, we use a different scale approach: The maximum and minimum values of
each attribute in the datasets are taken as their scale, and attributes of different scales are
simultaneously mapped on the same axis (Figure 2a).

(a) Axis mapping with different scales. (b) Overlap of attribute points.

Figure 2. Visual mapping of MVF.

3.3.2. Link

After axis and point visualization is completed, two problems are found: Points with
different attributes may overlap completely on the axis (Figure 2b), and the location of
covered points cannot be identified, resulting in information loss. A three-dimensional



Appl. Sci. 2022, 12, 12182 7 of 19

perspective environment will produce a parallax effect, and even attribute points have a
common baseline, but the vanishing point of perspective angle causes length deformation,
which is not convenient for attribute comparison between different nodes. To solve these
problems, the link is added to the MVF.

The link connects the same attributes of adjacent nodes, and the slope of the link
can be used to observe the changing trend of attribute values and identify outliers. Links
with different slopes can identify completely overlapping points, alleviating the point
overlap problem to some extent. The color mapping of the link is consistent with the
attributes, which uses the similarity principle in Gestalt to connect the same attributes of
different nodes with colors to form a whole to reduce users’ cognitive burden. All the above
considerations aim to improve the efficiency of attribute recognition and comparison (G1).

3.4. Parallel Coordinate

An analysis of the tasks of the multivariate network shows that the detail display and
comparison usually occur after target cluster identification. Therefore, the MVF is designed
as a flexible auxiliary detail view of the ROI.

After the ROI selection is completed, the parallel coordinate will display all node
attributes involved in the selected ROI, which is divided into two parts and placed perpen-
dicular to the ROI plane (Figure 3c) to avoid the occlusion problem of all ROI edges and
nodes and multivariate (G2).

(a) Customized focus area. (b) Top plane view. (c) Perspective view.

Figure 3. Details of MVF.

3.5. Interactions in Immersive Environment

The user can access and observe objects freely in the 6DOF immersion environment
provided by virtual reality head-mounted display (VR HMD). The size and observation angle
of the object can be directly adjusted with the movement of the body position and the rotation
of the head. The basic interaction zoom and pan do not need to be completed indirectly through
the traditional WIMP paradigm, thus speeding up exploration in the MVF.

4. Comparison with Embedded Model
4.1. Dataset

As an example dataset, we use a graph of DBLP to visualize the adjacency matrix. The
dataset is provided in the supplementary Dataset S1 https://www.mdpi.com/article/10.3390/
app122312182/s1. The graph consists of 12 articles, including 34 authors (the node of the graph).
Three attributes (node multiple attributes) are taken for each author: the earliest publication year,
the number of published papers, and the number of collaborators. The top notes are arranged
in the same order from left to right, and the left nodes are from top to bottom.

The graph has 1156 edges. An edge represents the cooperation times of two authors,
that is, how many articles they wrote together. The edge attributes are color-coded, and no
other edge-related attributes are present in the dataset.

For our tasks, we assume the goal of an analyst is to locate author attributes and
compare attributes through multiple nodes.

https://www.mdpi.com/article/10.3390/app122312182/s1
https://www.mdpi.com/article/10.3390/app122312182/s1
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4.2. Scenarios for Comparison

Scene 1: Adjacency Matrix with MVF

The MVF adjacency matrix focus view model is shown in Figure 4a. The parallel
coordinate is divided into two segments arranged on the left and top of the ROI cluster.
The axes that represent nodes are placed at the central point of the corresponding edges,
and the attributes of each node are mapped on the axis. Links connect the same properties
of adjacent nodes (see Figure 1b).

(a) An example of EBC. (b) Visual mapping in EBC.

Figure 4. Details of the EBC model.

Scene 2: Adjacency Matrix with Embedded Bar Chart (EBC)

To control variables, we migrate the traditional embedded view of the Embedded Bar
Chart (EBC) to the same immersive environment as the MVF. The EBC model is shown in
Figure 4a; attribute values are presented as a bar chart and placed on each edge. Each edge
contains six attribute values belonging to two nodes, with three attribute values for each. The
placing order of each group of attributes is consistent. That is, the value on the left of each group
of attribute values belongs to the upper node, and the value on the right belongs to the left node.
Attribute values are color-coded, consistent with the MVF (Figure 4b).

5. User Study

We conducted a controlled experiment to assess the performance of the MVF in terms
of locating and comparing attributes of the ROI. The EBC was selected to be compared with
the MVF. It is a between-subjects design, and the measures include task completion time,
accuracy, and subjective satisfaction. The experiment program automatically recorded the
task completion time and accuracy rate. After the experiment, users were required to fill in
the questionnaire and participate in an interview.

5.1. Hypotheses

When the EBC is used, attributes often cause information redundancy, substantial
limitation of attribute display space, and edge occlusion. All the above problems cause
interference with the user’s judgment and lead to a long task completion time. On the basis
of these considerations, we developed the following hypotheses, in the task of attribute
localization and comparison:

• H1: The MVF accomplishes tasks faster than the traditional focus view model EBC.



Appl. Sci. 2022, 12, 12182 9 of 19

• H2: MVF is more accurate than EBC when locating and comparing.
• H3: MVF can locate more easily than EBC.
• H4: MVF can perform comparisons more easily than EBC.
• H5: MVF is easier to understand than EBC.
• H6: Users prefer MVF to the EBC model.

5.2. Task

On the basis of the taxonomy of multidimensional visualization tasks by Eliane et al.
(2006) [44], five tasks can be considered as goals: identity, determine, compare, infer, and
locate. In Multivariate Network Visualization [45], tasks are divided into four categories:
structure-based task, attribute-based task, browsing task, and estimation task. The attribute-
based task contains node tasks and links tasks. We combine the two taxonomy methods
above and focus our tasks on locating and comparing nodes’ attributes.

On the basis of Multivariate Network Visualization, the task is affected by the number
of attributes involved. Hence, we designed four tasks, as shown below (Table 1). The first
two tasks are for localizing, and the last two are for comparing. All four are independent
tasks. The answer to the task may be one or more. The following is an example set of tasks:

• T1: The name of the author with two publications in the cluster.
• T2: The name of the author with one cooperator and the publication year of 1993 in

the cluster.
• T3: The name of the author with the fewest publications.
• T4: The name of the author with the earliest publication year and the largest number

of publications.

Table 1. Task taxonomy.

One Attribute Multi-Attribute

Locate T1 T2

Compare T3 T4

The size of the selected cluster is also a variable that affects the experiment. The cluster in
the experiment is divided into small, medium, and large sizes according to the total number
of nodes (34 authors). Small size involves authors in the range of 1–11, medium size involves
authors in the range of 12–22, and large size involves authors in the range of 23–34.

To ensure that every participant can complete the experiment, the answer for each
task is set as the author’s name, which may be unique or multiple. If a wrong choice is
made, then the correct rate is 0. If less is chosen, then the correct rate is calculated as the
proportion of the number of correct answers.

We used the same selected cluster and tasks in the control group, with small, medium, and
large clusters. Each cluster consists of four tasks. After all tasks in a cluster are complete, the
next cluster will be replaced. The selected cluster and task order of T1–T4 were random. To
control variables, the interaction (hovering and clicking) with gestures was consistent in both
experiments. The two models were randomly assigned to different participants.

5.3. Apparatus

The hardware in the experiment is Oculus Rift VR HMD and Leap Motion. Oculus
Rift is a VR device that provides a 3D virtual environment. Leap Motion is a hand-
tracking device placed in front of Oculus Rift HMD for identifying hands in an immersive
environment. It is only used for basic selection operations required in the task and will
not substantially affect the experiment results. The experimental program is developed
using the Unity platform and MRTK toolkit. The experiment was run on Windows 11
64-bit operation system, with an Intel (R) Core (TM) i5-9400F CPU 2.90 GHz, 32 GB RAM
processor. The graphics card is NVIDIA GTX1060 (Figure 5).
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Figure 5. Hardware setup and experimental program interface.

5.4. Procedure

We recruited 20 graduate students on campus as participants, including 5 men and
15 women, who have normal color vision (no color blindness) and are right-handed.
Fifteen of them knew the adjacency matrix in graph visualization, and six had experience
in immersive analytics. We used a between-subjects design, and the participants were
randomly assigned to two groups. Ten students participated in the experimental Scene1-
MVF (two men, eight women), and the other 10 students participated in the experimental
Scene2-EBC (three men, seven women). The participants wore a VR HMD display and sat
on a chair with their hands about 15 cm in front of the Leap Motion (Figure 5).

The participants were first introduced to the basic knowledge of graph visualization,
adjacency matrix mapping rules, multi-attribute mapping rules, and experimental tasks,
then introduced to the essential operation in the virtual environment, and a group of
pre-experiments were conducted the same VR experimental scenario. The pre-experiment
was conducted in the order of small, medium, and large clusters to help the users gradually
adapt to the difficulty. The formal experiment consisted of 9 clusters (three small, three
medium, and three large). Only a pinch gesture was used in the whole experiment. The
participants were advised to take a 5–10 min break in the middle of the experiment, and
each participant spent about 60 min completing the experiment.

Each participant completed 4 tasks ∗ 9 clusters = 36 tasks in this scenario. Finally, we
collected 20 participants ∗ 2 techniques ∗ 36 tasks = 1440 trials.

A task panel in VR includes the task number, task content, and a button that controls
the start and end of the timer (Figure 6). After the user understands the task, they pinched
“Start” button in the task panel to start timing, pinched the name tag of the node to select the
task answer, and pinched the “Submit” button in the task panel to end timing and submit
the answer after finishing the task. If the submitted answer is empty, then the submission
cannot be made, and the timing will not end until one or more answers are successfully
submitted. Once a trial is completed, the subsequent trial is displayed automatically
until all four cluster trials have been conducted, and then, the next cluster with its tasks
would appear.

(a) Before start timer. (b) Top plane view. (c) Perspective view.

Figure 6. Task panel for timing in VR.

We asked the participants to complete tasks as quickly and accurately as possible,
with each task completion time measured by the user pinching on the “Start” button and
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“Submit” buttons and accuracy as measured by the number of correct tasks in the group.
After the user completes the task, the program automatically records and calculates the
data. At the end of the experiment, the users were asked to experience the other model and
then fill out Likert scales to reflect their subjective satisfaction. The questionnaire aims to
evaluate the influence of two factors (position mapping and attribute occurrence quantity)
on location, comparison, and comprehension. Q1–Q3 belong to the position factor, Q4–Q6
belong to the attribute occurrence quantity factor, and Q7 belongs to the preference of the
two models. Except for Q7, each question has five choices: strongly disagree (1), disagree
(2), not sure (3), agree (4), and strongly agree (5). These questions include the following:

• Q1: You think that the position mapping of the author and attributes is helpful for
you to locate the attribute value.

• Q2: You think that the position mapping of the author and attributes is helpful for
you to compare attribute values.

• Q3: You think that the position mapping of the author and attributes is helpful for
you to understand the relationship between author and their attributes.

• Q4: You think that the attribute occurrence number is helpful for you to locate
attribute values.

• Q5: You think that the attribute occurrence number is helpful for your to compare
attribute values.

• Q6: You think that the attribute occurrence number is helpful for you to understand
the relationship between the author and their attributes.

• Q7: Which model do you prefer?

5.5. Result

We used the paired t-test to analyze the collected completion time, accuracy, and
questionnaire Likert scale data.

5.5.1. MVF Is Faster Than EBC

The completion time results are summarized in Table 2 and Figure 7a,b.

Table 2. Means of completion time, with the standard deviation of the measured mean in seconds.
Differences in accuracy are indicated by *. Significant differences in accuracy are indicated by **.

Size Type M SD t p Line No.

MVF 19.85 10.98 1
Small (S)

EBC 31.2 28.51
−3.15 0.003 **

2

MVF 32.24 20.73 3
Medium (M)

EBC 49.94 27.07
−4.285 0.000 **

4

MVF 48.4 22.88 5

Locate
Tasks

Large (L)
EBC 102.9 59.75

−6.404 0.000 **
6

MVF 16.93 7.28 7
Small (S)

EBC 21.16 11.66
−2.492 0.016 *

8

MVF 21.27 10.04 9
Medium (M)

EBC 40.25 25.96
−6.457 0.000 **

10

MVF 46.41 33.63 11

Compare
Tasks

Large (L)
EBC 85.79 53.43

−5.138 0.000 **
12
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(a) Task completion time of locate tasks. (b) Task completion time of compare tasks.

(c) Accuracy of locate tasks. (d) Accuracy of compare tasks.

Figure 7. Results regarding task completion time in seconds. Error bars indicate the standard
deviation of the measured mean.

We found a significant effect of time for the model type. For both localization and
comparison tasks, the MVF takes significantly less time than EBC. For the localization tasks,
the completion time of the MVF is 63.6% (Table 2- 1 2 ), 64.6% (Table 3- 3 4 ), and 47%

(Table 2- 5 6 ) of EBC in S (small), M (medium), and L (large) sizes, respectively. For L
clusters, the advantage of the MVF is more obvious, and the completion time of the MVF is
only 47% of that of EBC (Table 2- 5 6 ). For the comparison task, the completion time of

the MVF was 80% (Table 2- 7 8 ), 52.8% (Table 2- 9 10 ), and 54.1% (Table 2- 11 12 )
of EBC on the scale of S, M, and L, respectively. For M and L clusters, the MVF has more

obvious advantages, and its completion time accounts for only 52.8% (Table 2- 9 10 )

and 54.1% (Table 2- 11 12 ) of EBC (see Figure 7a).

Table 3. Means of accuracy, with the standard deviation of the measured mean in percentages.

Size Type M SD t p Line No.

MVF 0.99 0.04 1
Small (S)

EBC 0.96 0.17
1.609 0.113

2

MVF 0.97 0.11 3
Medium (M)

EBC 0.96 0.13
0.661 0.511

4

MVF 0.92 0.19 5

Locate
Tasks

Large (L)
EBC 0.88 0.29

0.857 0.395
6
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Table 3. Cont.

Size Type M SD t p Line No.

MVF 0.96 0.14 7
Small (S)

EBC 0.91 0.27
1.286 0.203

8

MVF 0.96 0.16 9
Medium (M)

EBC 0.95 0.19
0.266 0.791

10

MVF 0.85 0.36 11

Compare
Tasks

Large (L)
EBC 0.81 0.35

0.597 0.553
12

We also found a significant effect of size. As expected, completion time increased
for the L cluster, especially the EBC. In terms of the localization tasks, for L clusters, the
completion time of the EBC increased by 106% (Table 2- 4 6 ), while the MVF increases

by only 50% (Table 2- 3 5 ). In terms of comparison ability, for M clusters, the completion

time of the EBC increased by 90.2% (Table 2- 8 10 ) while the MVF increased by only

25.6% (Table 2- 7 9 ) (Figure 7b). Hence, H1 was accepted.

5.5.2. No Significant Difference in Accuracy between MVF and EBC

The accuracy results are summarized in Table 3 and Figure 7c,d. No significant
difference in accuracy was found between MVF and EBC for localization or comparison
tasks. With the increase of the selected cluster size, the accuracy of localization and
comparison tasks of both models decreased. Hence, H2 was rejected.

5.5.3. MVF Can Locate More Easily Than EBC

The results are summarized in Table 4 and Figure 8a.
From Q1, “You find it easier to locate the attribute if it appears only/more than once”

and Q4, “You find the position mapping of the attributes is easier for you to locate the
attribute”, we found that the MVF and the EBC have a significant difference in how easily
they can locate. Users generally think the MVF can locate more easily. The scores of the
MVF were significantly higher than those of the EBC for both attribute occurrence times
(Table 4- 1 3 ) and position mapping (Table 4- 3 4 ) factors. Hence, H3 was accepted.

Table 4. Means of Likert scale questionnaire, with the standard deviation of the measured mean in seconds.
Differences in accuracy are indicated by *. Significant differences in accuracy are indicated by **.

Size Type M SD t p Line No.

MVF 4.5 0.53 1
Q1 (NoO)

EBC 2.8 1.4
4.019 0.003 **

2

MVF 4.3 0.67 3
Easy to
Locate

Q4 (PM)
EBC 2.7 0.82

5.237 0.001 **
4

MVF 4.4 0.52 5
Q2 (NoO)

EBC 3.4 1.07
3 0.015 *

6

MVF 4.3 0.67 7
Easy to
Compare

Q5 (PM)
EBC 3 0.82

3.881 0.004 **
8
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Table 4. Cont.

Size Type M SD t p Line No.

MVF 4.3 0.82 9
Q3 (NoO)

EBC 2.6 0.84
5.075 0.001 **

10

MVF 4.4 0.7 11
Easy to
Understand

Q6 (PM)
EBC 3 1.05

3.096 0.013 *
12

(a) Means of Likert scale questionnaire. (b) Count of user preference.

Figure 8. Results of task completion time in seconds. Error bars indicate the standard deviation of
the measured mean.

5.5.4. MVF Can Perform Comparisons More Easily Than EBC

The accuracy results are summarized in Table 4 and Figure 8a.
From Q2, “You find it’s easier to compare attribute values between authors if the

attribute appears only/more than once” and Q5, “You find the position mapping of the
attributes is easier for you to compare attribute values between authors”, we found that
the MVF and EBC have significant differences in comparability. The MVF can perform
comparisons more easily for common tasks. The score of the MVF was significantly higher
than that of EBC in both attribute occurrence times (Table 4- 5 6 ) and position mapping

(Table 4- 7 8 ) factors. In addition, the MVF was larger than the EBC (Table 4- 7 8 )
with an average difference of 1.3 points in position mapping, indicating that the attribute
location of the MVF was conducive to attribute comparison. At the same time, EBC was
relatively unfavorable to the comparison. Hence, H4 was accepted.

5.5.5. MVF Is Easier to Understand Than EBC

The results are summarized in Table 4 and Figure 8a.
From Q3, “You find it’s easier to understand the relationship between the author and

attributes if the attribute appears only/more than once” and Q6, “You find the position
mapping of the attributes is easier for you to understand the relationship between the
author and attributes”, we found that the MVF and the EBC have significant differences
in incomprehensibility. The MVF is easier to understand for common tasks. The scores
of the MVF were significantly higher than those of the EBC for both quantitative factors

(Table 4- 9 10 ) and location factors (Table 4- 11 12 ). Moreover, the difference between

the quantitative factors MVF and EBC was larger (Table 4- 11 12 ), with an average
difference of 1.7 points, indicating that the occurrence times of the MVF attributes were
helpful to the understanding of the model. At the same time, the EBC was relatively
unfavorable to the understanding. Hence, H5 was accepted.
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5.5.6. Users Prefer MVF to EBC Model

The results are summarized in Figure 8b.
From Q7, “Compare the MVF and the EBC and choose the model you prefer”, we

found that users prefer the MVF to the EBC model. All users prefer the MVF model, while
no users prefer the EBC model. This finding indicates that the MVF model is significantly
better than the EBC model in completing the localization and comparison tasks. Hence, H6
was accepted.

6. Discussion
6.1. Efficiency

During the localization, the MVF was less affected by community size because all
attributes of the MVF had a unified baseline. A specific attribute could be used as the basis
for screening and positioning, significantly improving localization efficiency. However,
no unified baseline was available the EBC column elements, making comparison difficult.
Moreover, the MVF can see more attributes in the diagonal corner, and the head rotation
amplitude is smaller when browsing all attributes, thus saving more time.

During the comparison, the EBC was more affected by community size because when
too many column nodes were present (M, L clusters), the attributes that were not on the
same baseline increased. Moreover, because the column was too long, head rotation was
needed to assist observation, so it took more time. Unlike localization, which requires only
a single browse, the comparison may require repeated observations between distant areas,
which is why the time assumption increased dramatically in M and L clusters. However,
in the MVF, users could find a suitable angle to view more attributes in the immersive
environment, and the head rotation amplitude and times were less than the EBC, thus
taking less time.

Some users said in the interview that the redundant information of EBC is too much
and dense, which disturbs their judgment. Observing large clusters even requires large
body movements, which makes it impossible to derive an overview of the data, increasing
the burden of memory and making it more time consuming.

The above findings show that the MVF has higher efficiency than the EBC when
localizing and comparing, suggesting that the MVF has no redundant data and makes
the interface simpler. The MVF provides a unified baseline for all attributes, which is
more intuitive. The VR immersion environment can give an overview angle in the MVF,
decreasing the need to remember the data from the visual field. Moreover, users can
observe details without tremendous body and head movements.

6.2. Accuracy

No significant difference in accuracy was found between the MVF and the EBC, and
the accuracy decreased with the increase in cluster size. We suggest that the MVF could
increase efficiency while maintaining accuracy. When the cluster size increases, more nodes
and attributes are involved, which is why the error probability is higher.

6.3. Localization Ability

The MVF can locate more accessible than the EBC. Regarding the number of attribute
occurrences, EBC’s fastest and most accurate localization method (observing one row and
one column) still causes redundant information about one author’s attribute. At the same
time, no duplicate data exist in the MVF model. Hence, the MVF is more concise and clear.
Regarding position mapping, the order of two juxtaposed attributes in the EBC needs to be
memorized repeatedly, which causes a cognitive burden. The MVF has a unified baseline,
which is why it convenient for users to quickly filter and locate through height based on a
specific value. However, this locating method may cause some errors due to the perspective
effect in an immersive environment.

Some users mentioned in the interview that the attributes on the left will be uncon-
sciously regarded as the attributes of the author on the left, but this is not the mapping rule
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in EBC. However, the left column contains the attributes of the author on the top, making it
difficult to remember. Moreover, the attributes in the middle are far away from the author’s
name, whch is why they may deviate from the row or column when locating. The MVF, on
the other hand, does not need to remember the relationship between the author and their
attribute because they are placed closer.

6.4. Comparison Ability

The MVF can compare more accessible than the EBC. Regarding the number of at-
tribute occurrences, EBC may repeatedly compare attributes because the corresponding
author of the juxtaposition attribute can easily remember incorrectly. Regarding position
mapping, all attributes of MVF are on the same horizontal plane, and attribute values can
be intuitively compared through the broken line trend. In addition, the upper and left
parallel coordinates form an angle, significantly reducing the user’s browsing range.

6.5. Comprehensive Ability

The MVF is easier to understand than the EBC. Regarding the number of attribute occur-
rences, most users overthought information in the EBC, bringing negative emotions and causing
loss of interest, whereas the MVF is more intuitive and straightforward. Regarding position
mapping, according to the Gestalt proximity principle, users take the information close as a
group. In the EBC, the column on the lower right is far away from the author’s name, thus
causing serious confusion to users. However, the MVF uses axes to connect the author’s name
with attributes, which fits the property and is easier to understand.

6.6. User Preference

In quantity, users dislike redundant information, which interferes with their judgment.
In terms of position, users want to group elements directly through location placement
to minimize memory burden. In terms of physical exertion, users prefer not to move too
much. Therefore, the MVF is more consistent with user preferences than the EBC.

6.7. VR Immersive Environment Influence

The VR immersive environments have both advantages and disadvantages for data
analysis. The advantage is that VR supports natural observation, and slight zoom, and
angle rotation are easy to achieve. Finding the perfect viewing angle is easy in a VR
environment. The disadvantage is that significant scale movement may cause fatigue.
Moreover, VR can cause vertigo due to the low frame rate. Moreover, VR is not suitable for
long-time wear. Continuous use of VR for more than 1 h causes apparent visual fatigue.

7. Conclusions

We propose a focus view model of an adjacency matrix named MVF, using parallel
coordinates and the third spatial dimension to provide node attributes. Through this
approach, all ROI information will not be blocked, and the relationship between nodes
and attributes will be clear. No redundant multivariate information is present in the MVF,
and the position mapping conforms to users’ cognition of the traditional adjacency matrix,
allowing users to quickly locate and compare node attributes. We conducted a user study
to evaluate the performance of the MVF. The results show that the MVF is more efficient
and accurate than the EBC in locating and comparing attributes. The position mapping
and single attribute occurrence in the MVF are easier to understand than in the EBC. Users
have a strong preference for the MVF. In future work, we will improve the perspective of
space and apply our model to the focus view in other multivariate graphs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app122312182/s1, Dataset S1: Datasets and Details for MVF Evaluation.
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