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Abstract: Data transmission and storage are inseparable from compression technology. Compressed 
sensing directly undersamples and reconstructs data at a much lower sampling frequency than 
Nyquist, which reduces redundant sampling. However, the requirement of data sparsity in com-
pressed sensing limits its application. The combination of neural network-based generative models 
and compressed sensing breaks the limitation of data sparsity. Compressed sensing for extreme 
observations can reduce costs, but the reconstruction effect of the above methods in extreme obser-
vations is blurry. We addressed this problem by proposing an end-to-end observation and recon-
struction method based on a deep compressed sensing generative model. Under RIP and S-REC, 
data can be observed and reconstructed from end to end. In MNIST extreme observation and recon-
struction, end-to-end feasibility compared to random input is verified. End-to-end reconstruction 
accuracy improves by 5.20% over random input and SSIM by 0.2200. In the Fashion_MNIST extreme 
observation and reconstruction, it is verified that the reconstruction effect of the deconvolution gen-
erative model is better than that of the multi-layer perceptron. The end-to-end reconstruction accu-
racy of the deconvolution generative model is 2.49% higher than that of the multi-layer perceptron 
generative model, and the SSIM is 0.0532 higher. 

Keywords: compressed sensing; deep learning; extreme observation; high precision reconstruction; 
end-to-end 
 

1. Introduction 
Nowadays, people cannot live without digitalization. In this era of digitalization, the 

primary problem is the storage and transmission of massive amounts of data. In the early 
days, the process of digital acquisition of analog signals was inseparable from the tradi-
tional Nyquist-Shannon sampling theorem, which points out that the sampling frequency 
must be more than twice the highest frequency of the original signal in order to com-
pletely retain the information in the original signal or accurately reconstruct the original 
signal [1]. However, in the digital age, where the demand for information is surging, the 
Nyquist-Shannon sampling theorem causes redundant sampling, even with the rapid de-
velopment of current computer technology. The sampling rate, storage space, transmis-
sion bandwidth, and processing speed for huge amounts of data can consume huge re-
sources, and the ways to solve these problems are pointed toward the compression tech-
nology of the signal. In 2006, Candes et al. proposed the theory of Compressed sensing 
[2] (CS), which is different from traditional Nyquist sampling in that the signal could be 
sampled at much lower frequencies than Nyquist sampling, resulting in less redundancy 
in the sampled data and complete reconstruction of the original signal with high proba-
bility [3]. Compressed sensing has been applied in many aspects [4]. For example, in wire-
less communications, channel estimation technology based on compressed sensing has 
been proposed to improve spectral efficiency [5] and the efficiency of channel estimation 
at multi-sensor nodes [6]. In medical images, compressed sensing has been proposed for 

Citation: Diao, H.; Lin, X.; Fang, C. 

Deep Compressed Sensing  

Generation Model for End-to-End 

Extreme Observation and  

Reconstruction. Appl. Sci. 2022, 12, 

12176. https://doi.org/10.3390/ 

app122312176 

Academic Editors: Jongweon Kim 

and Yongseok Lee 

Received: 1 November 2022 

Accepted: 27 November 2022 

Published: 28 November 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 12176 2 of 24 
 

incoherent undersampling and efficient reconstruction of MR Images [7], the application 
for Photo-acoustic (PA) tomography [8], the K-t focus to new dynamic MRI has been pro-
posed from compressed sensing [9], the application of compressed sensing to high-reso-
lution 3D upper airway MRI [10], and taking advantage of the high SNR from hyperpo-
larization achieving a factor of two spatial resolution enhancement for 3D MRSI [11]; In 
terms of radar measurement, a compressed sensing approach has been proposed for the 
target scene reconstruction and has a higher resolution than classical radar [12]. In astro-
nomical imaging, compressed sensing has been proposed to compress redundant astro-
nomical data effectively [13]. In defect detection of the integrated circuit, compressed sens-
ing has been proposed to estimate chip leakage tomography quickly and accurately [14]; 
In terms of pattern recognition, the sparse representation of compressed sensing has been 
used to enhance feature extraction for face recognition [15]. The optimization of com-
pressed sensing projection has been considered to obtain better reconstruction perfor-
mance [16]. Compressed sensing and machine learning have proven the feasibility of 
learning directly in the compressed domain [17]. And the proposal for single-pixel cam-
eras [18], etc. The common point of the above applications is the need to observe and re-
construct signals. However, an important premise of traditional compressed sensing is 
the sparsity of signals, which is a rather harsh condition limiting compressed sensing. In 
nature, not all signals have sparse transformation domains. Even if sparse transformations 
are performed with the help of sparse priors, the effect of inefficient reconstruction will 
be produced. 

In recent years, with the rapid development of deep learning, the mechanisms of 
training, fitting, and discriminating decisions on data have made breakthroughs in both 
academic and industrial fields. Deep learning is a machine learning method that learns 
complex dataset mappings through modified weights in the hidden layers of a network. 
The deeper the network, the more parameters there are in the hidden layers of that net-
work, and the greater the capacity to carry features in the network, making the deep net-
works stronger to learn. Researchers used deep learning to optimize compressed sensing 
to solve the problem. In March 2017, Bora et al. [19] were inspired by the generative mod-
els of VAE (auto-encoding variational) [20] and GAN (generative adversarial nets) [21]. 
They proposed the application of compressed sensing in the generative model (CSGM). 
Furthermore, it got rid of the constraint of sparsity with the help of the generative model 
of neural network. VAE or GAN learned the probability distribution of the dataset 
through pre-training. By compressed sensing, the difference of observation between the 
generated and real data is a loss function for backpropagation optimization. The results 
showed that the reconstruction effect was better than the traditional sparse reconstruction 
method for a smaller number of observations. In May 2017, Mardani [22] et al. proposed 
to extract a generative model that projected from low-dimensional to high-quality MR 
images using the pre-trained LSGAN framework. For undersampled observation data, 
the pre-trained generative model was used to improve fine texture details for more effi-
cient image reconstruction. In 2018, Veen [23] et al. proposed a compressed sensing recon-
struction method based on deep image prior (DIP) without pre-training for the deep gen-
erative model. They introduced a regularization technique that incorporated prior weight 
information to reduce the reconstruction error. In 2019, Wu [24] et al. proposed Deep 
Compressed Sensing (DCS), a generative model that did not require pre-training, and in-
troduced a meta-learning method to train the generative model and the observation 
model jointly, achieving reconstruction through inner and outer loops of meta-learning, 
made the reconstruction response more flexible and rapid. In 2020, Sun et al. [25] proposed 
a new sub-pixel convolution generative adversarial network to learn compressed sensing 
reconstruction of images. Through the adversarial training of the generative model of the 
sub-pixel convolution network and the discriminant model, the generative model learned 
the inherent image distribution and improved the reconstruction quality. Moreover, the 
low-dimensional observation vectors and the generative model could quickly reconstruct 
the image. In 2022, Sheykhivand [26] proposed the combination of compressed sensing 
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and deep neural networks. Compressed sensing theory was used to observe the recorded 
EEG data to reduce the computational load. Then, the observed data were classified ac-
cording to the deep neural network, and the driver fatigue was effectively detected ac-
cording to the classified results with a high accuracy rate. To sum up, traditional com-
pressed sensing and reconstruction are limited by the sparsity constraint, which limits the 
expansion of their applications, and traditional reconstruction methods also consume 
time. With the development of deep learning, neural networks can directly extract hierar-
chical features from a given dataset to perform complex tasks in the real world [27]. The 
combination of deep learning techniques with compressed sensing, in which the hidden 
layer bearing of the neural network is used to compensate for the sparsity of signals so 
that it can be applied to data transmission and storage, is more likely to broaden its appli-
cation field. 

Inspired by CSGM and DCS, this paper proposes a framework combining com-
pressed sensing and deep learning to establish the correspondence of input and output 
(end-to-end deep compressed sensing using generative models, E2E_DCSGM) to achieve 
extreme observation and reconstruction. Observations of compressed sensing showed 
that the number of samples was significantly reduced, which was good for data transmis-
sion and storage. In the network model of reconstruction experiments, multi-layer per-
ceptrons (MLP) and a deconvolution generative model (Deconv_Net) were used in com-
bination with an untrainable observation matrix (A), a trainable observation matrix (A 
trainable, AT), and a deep compressed sensing observation network of multi-layer per-
ceptron (A deep trainable, ADT). In the MNIST experiment, the generative model was 
MLP, and the observation models were A, AT, and ADT. The feasibility of an end-to-end 
connection is verified through a comparative experiment between random and end-to-
end input. In the Fashion_MNIST experiment, the generative models were MLP and De-
conv_Net, and the observation models were A, AT, and ADT. Comparative experiments 
with different generative models demonstrated that the reconstruction effect of De-
conv_Net was better than that of MLP. Both experiments show that the reconstruction 
effect after ADT observation is better. In the reconstruction of extreme observation values, 
the reconstruction results of our method and model are better than those of CSGM and 
DCS. 

2. Related Background 
2.1. Compressed Sensing 

Classical compressed sensing collects all the information in high-dimensional data. 
It maps the high-dimensional data into low-dimensional data to achieve an efficient di-
mensionality reduction representation of the signal, and it can reconstruct high-dimen-
sional data. By observation of compressed sensing, signals with sparsity can be recon-
structed from less data than traditional Nyquist sampling. Therefore, various signal trans-
formations can transform many non-sparse signals into sparse signals, such as discrete 
cosine transform (DCT), discrete wavelet transform (DWT), etc. From the mathematical 
view, the classical CS can be expressed as follows: 𝒙 = 𝜳𝒔 (1) 𝒙 ∈ R୒ is the signal that can be sparse. 𝜳 is a set of orthonormal basis. 𝒔 is the sig-
nal in the sparse domain. 𝒚 = 𝜱𝒙 = 𝜱𝜳𝒔 (2) 𝜱 ∈ R୑×୒ is an observation matrix which is uncorrelated with 𝜳 and M ≪ N. 𝒚 ∈R୑ is the observation vector by compressed sensing dimensionality reduction. 

However, if sparse signals are reconfigurable, the observation matrix needs to satisfy 
the restricted isometry property (RIP): 
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(1 − δ୏) ∥ 𝒙 ∥ଶଶ⩽∥ 𝜱𝒙 ∥ଶଶ⩽ (1 + 𝛿௄) ∥ 𝒙 ∥ଶଶ (3) 𝛿௄ ∈ (0, 1) is the restricted isometric constant of the matrix 𝜱, and RIP ensures that 
any two sparse vectors still maintain their Euclidean distances under the projection of 𝜱. 
The observation matrix satisfies the RIP so that the observation vector of any sparse vector 
can be reconstructed by minimizing the observation error, which is mathematically rep-
resented as: 𝒙ෝ = arg 𝑚𝑖𝑛௫ ∥ 𝒚 − 𝜱𝒙 ∥ଶଶ (4) 𝒙ෝ is the reconstructed signal. The compression ratio of compressed sensing [26] is r = (N − M)/N, so M ≪ N will have a higher compression ratio. Different levels of com-
pression ratio can be achieved by adjusting the size of the observation matrix while satis-
fying the RIP. The observation vector y of compressed sensing can be reconstructed with 
high probability by algorithms based on the convex optimization algorithm, the greedy 
algorithm, the combinatorial reconstruction algorithm, and the Bayesian method. How-
ever, there will be problems such as unstable reconstruction when the number of obser-
vations is low and a long reconstruction time due to high computational complexity. 

2.2. Compressed Sensing Using Generative Models 
In 2017 Bora et al. proposed a CSGM that combines compressive sensing with gener-

ative models to get rid of the forced sparsity constraint on signals from traditional com-
pressive sensing, such as VAE and GAN, which were based on generative models of neu-
ral networks that showed unexpected results in generation data. The generative model 
maps the low-dimensional latent representation space to the high-dimensional sample 
space: 𝒙 = 𝑮(𝒛) , 𝑮(𝒛) ∈ R୒ (5) 𝒛 ∈ R୏ is the low-dimensional signal of the latent space. 𝑮 is the generative model. 𝒙 is the generated signal. During training, the generative model learns mappings from 
low to high dimensions such that the generated vectors are similar to the training dataset. 
Therefore, any pre-trained generative model is used to roughly learn the probability dis-
tribution of the training dataset samples and attempt to assign the training set with high 
probability to the more likely latent vectors. 

The literature [19] proposed the set-restricted eigenvalue condition (S-REC) : ∥∥𝜱(𝒙𝟏 − 𝒙𝟐)∥∥ ≥ 𝛾∥∥𝒙𝟏 − 𝒙𝟐∥∥ − 𝛿 (6) 

Let 𝑆 ∈ R୒, 𝒙𝟏, 𝒙𝟐 ∈ 𝑆 are any natural vectors that exist. 𝛾 > 0 is a constant. 𝛿 > 0 
is an additive slack term. The observation matrix 𝜱 satisfies the S-REC. 

Compared with the RIP condition of traditional compressed sensing, the S-REC re-
laxes the sparsity requirement of the observed vector, making its reconstruction process 
similar to the minimization reconstruction process of Equation (4) : 𝒛ො = arg 𝑚𝑖𝑛௭ ∥∥𝒚 − 𝜱𝑮𝜽(𝒛)∥∥ଶଶ (7) 𝒛ො is the optimized latent vector. Different from Equation (4), the reconstruction idea 
of CSGM is finding the optimal latent input 𝒛 among the random input to minimize the 
error expectation. The back-propagation gradient descent method is used to find the op-
timal latent input 𝒛 within the generative model of the neural network. CSGM success-
fully combines compressed sensing with neural networks. However, the optimization of 
its reconstruction method requires thousands of gradient descent, leading to slow recon-
struction. The observation matrix 𝜱 is an untrainable random matrix, leading to the re-
construction limitation. 
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2.3. Deep Compressed Sensing 
In 2019, Wu et al. proposed deep compressed sensing (DCS) based on CSGM. They 

introduced the model-agnostic meta-learning(MAML) algorithm [28] to solve the problem 
of thousands of gradient descent required for CSGM reconstruction. The process of the 
inner loop is shown in Formula (8): 𝜃௜ᇱ = 𝜃 − 𝛼∇ఏℒ𝒯೔(𝑓ఏ) (8) 𝑓ఏ is a parameterized function, which is represented as a network model. 𝒯௜ is the 
task, which is sampled from the task distribution 𝑝(𝒯). 𝛼 is the inner loop learning rate. 
In the inner loop process, the model parameter 𝜃 is optimized to 𝜃௜ᇱ in order to fit task 𝒯௜. 𝑚𝑖𝑛ఏ   ෍  𝒯೔∼௣(𝒯) ℒ𝒯೔ ቀ𝑓ఏ೔ᇲቁ = ෍  𝒯೔∼௣(𝒯) ℒ𝒯೔ ቀ𝑓ఏିఈ∇ഇℒ𝒯೔(௙ഇ)ቁ (9) 

The optimization goal of parameter 𝜃 is to find a 𝜃௜ᇱ that adapts task 𝒯௜ to minimize 
the loss of current task 𝒯௜. 

Finding the 𝜃௜ᇱ of the adaptation task is equivalent to finding the exact direction of 
gradient descent of the model parameter 𝜃 during the outer loop process. The parameter 𝜃 of the model 𝑓ఏ is updated as: 𝜃 ← 𝜃 − 𝛽∇ఏ ෍  𝒯೔∼௣(𝒯) ℒ𝒯೔ ቀ𝑓ఏ೔ᇲቁ (10) 𝛽 is the outer loop learning rate. The alternating optimization of the inner and outer 
loops to the same objective accelerates the convergence of the network model in training. 
Unlike CSGM, DCS introduced MAML so that the generative model did not have to pre-
train. Moreover, the observation matrix was set from the untrainable random matrix 𝜱 
to the trainable observation model 𝜱𝑫𝑪𝑺. The RIP loss function for the observation model 𝜱𝑫𝑪𝑺 was proposed, and the generation loss was combined to update the generative and 
observation models. 

The most significant feature of DCS is the introduction of MAML, the observation 
and reconstruction can be deep neural networks, and the reconstruction and optimization 
efficiency is significantly better than CSGM. 

3. Method 
3.1. Notation Explanation 

In the observation and reconstruction algorithm based on DCSGM, some symbols 
are defined and their meanings explained, as shown in Table 1. 

Table 1. Notations and their meanings. 

Notation Meanings 𝒙 the original signal 𝜱 the observation model 𝒚 the observed vector 𝒙ෝ the generated signal 𝑮𝜽 the generative model 𝒛 the input of generative model from normalized the observed vector 𝒛ො the input that is optimized 𝒚ෝ the observed vector that is optimized 𝐿ଶ the Euclidean norm ℒீ the loss of generative model ℒః the loss of observation model 
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𝛼 the inner loop optimization rate β the outer loop optimization rate 𝜃 the parameter of model 
T the inner loop iteration 
N the outer loop iteration 𝐿𝑜𝑠𝑠௜௡௡௘௥_௟௢௢௣ the loss of inner loop 𝐿𝑜𝑠𝑠௢௨௧௘௥_௟௢௢௣ the loss of outer loop 

3.2. Model Structure 
The overall model structure of end-to-end deep compressed sensing using generative 

models (E2E_DCSGM) is shown in Figure 1. In the inner loop, the input of the generative 
model was fine-tuned to obtain the minimum loss of the inner loop. In the outer loop, joint 
loss optimized the generative model and the observation model. The reconstruction pro-
cess was accelerated by the idea of inner and outer bidirectional optimization. 

Deconv_Net and MLP were used as generative models. Untrainable matrix (A), train-
able matrix (AT), and multi-layer perceptron observation network (ADT) were used as 
observation models. The experimental group used a deconvolution generative model and 
three observation models. Moreover, the control group was DCS, a combination of the 
multi-layer perceptron and three observation models. The details are shown in Table 2. 

Table 2. Model combination of experimental and control groups. 

Method Input Models Combination Type Purpose 
CSGM Random input MLP + A Control Group 

Random input control group DCS 
Random input 

MLP + AT 
Control Group DCS MLP + ADT 

We proposed 

end-to-end 
MLP + A 

Experimental Group 
Verify the feasibility of end-to-

end reconstruction under the ex-
treme observation 

MLP + AT 
MLP + ADT 

end-to-end 

Deconv_Net + A 

Experimental Group 

Verify the reconstruction effect 
of the improved generator on the 

extreme observation under the 
end-to-end case 

Deconv_Net + AT 

Deconv_Net + ADT 

The experimental part adopts MLP and Deconv_Net as the generators. The straight-
ening process of MLP destroys the spatial characteristics of the image itself. A convolu-
tional network is a hierarchical feature-bearing model. Each layer’s feature map can con-
tain the training images’ spatial features. During the training process, the feature map of 
the number of channels in each layer learns the spatial characteristics of the training im-
ages. These feature maps become prior knowledge during the training process for the next 
epoch. This is similar to translation invariance. 

Although MLP is easier to overfit than Deconv_Net, it is necessary to fit all data sets 
as much as possible while fitting a single data. In other words, the reconstruction process 
requires overfitting and generalization of the entire dataset. MLP needs a vast network 
structure to meet the above conditions. The feature map of each layer of Deconv_Net can 
meet the above conditions. 
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Figure 1. Block diagram to the E2E_DCSGM structure. 
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Table 3 shows the hyperparameter settings of the multi-layer perceptron generative 
model. The structure was sensing_dim-128-256-512-784, except that the activation func-
tion of the last layer was Tanh, the activation function of each layer was LeakyReLU, and 
the input of the generative model was determined by the observation dimension (sens-
ing_dim). 

Table 3. Hyperparameter Settings of multi-layer perceptron generative model. 

Network Layer Related Hyperparameter Settings 

Input batch_size = 64 
(batch_size, sensing_dim) 

Hidden layer 1 Linear(sensing_dim, 256) 
activation function: LeakyReLU 

Hidden layer 2 Linear(256, 512) 
activation function: LeakyReLU 

Hidden layer 3 Linear(512, 784) 
activation function: Tanh 

output (batch_size,1, 28, 28) 

Table 4 shows the hyperparameter settings of the deconvolution generation model. 
The input side was adjusted to 256 channels, the feature map size was 7 × 7, and the feature 
map was expanded to 14 × 14 after upsampling 1. The deconvolution layer 1 had 128 chan-
nels, the convolution kernel size was 3 × 3, the stride size was 1, and the padding size was 
1. The feature map of 128 channels (14 × 14) was obtained. After upsampling 2, the feature 
map was expanded to 28 × 28. The deconvolution layer 2 had 64 channels, the convolution 
kernel size was 3 × 3, the stride size was 1, and the padding size was 1. The 64-channel 28 
× 28 feature map was obtained. The deconvolution layer 3 had one channel, the convolu-
tion kernel size was 3 × 3, the stride size was 1, and the padding size was 1. The recon-
struction image of one channel 28 × 28 was obtained. Except for the activation function of 
the last layer Tanh, the activation function of each layer was LeakyReLU, and the input of 
the generative model was determined by the observation dimension (sensing_dim). 

Table 4. Hyperparameter Settings of deconvolution generative model. 

Network Layer Related Hyperparameter Settings 

Input batch_size = 64 
(batch_size, sensing_dim) 

upsampling 1 scale_factor: 2 

deconvolution layer 1 kernel_size: (128, 3 × 3), stride_size: 1, padding_size: 1 
activation function: LeakyReLU 

upsampling 2 scale_factor: 2 

deconvolution layer 2 
kernel_size: (64, 3 × 3), stride_size: 1, padding_size: 1 

activation function: LeakyReLU 

deconvolution layer 3 
kernel_size: (1, 3 × 3), stride_size: 1, padding_size: 1 

activation function: Tanh 
output (batch_size, 1, 28, 28) 

The hyperparameter settings of the deep observation network of the multi-layer per-
ceptron are shown in Table 5. Its structure was 28 × 28-784-512-256-sensing_dim, and the 
activation function of each layer except the last layer was LeakyReLU. 

  



Appl. Sci. 2022, 12, 12176 9 of 24 
 

Table 5. Hyperparameter Settings of multi-layer perceptron deep observation network. 

Network Layer Related Hyperparameter Settings 

Input batch_size = 64 
(batch_size,1, 28, 28) 

Hidden layer 1 Linear(784, 512) 
activation function: LeakyReLU 

Hidden layer 2 Linear(512, 256) 
activation function: LeakyReLU 

Hidden layer 3 Linear(256, sensing_dim) 
output (batch_size, sensing_dim) 

3.3. Algorithm Design 
In this paper, we propose the framework of an end-to-end (input-output) relation-

ship that combines compressed sensing and deep learning (E2E_DCSGM) to achieve ob-
servation and reconstruction. Different from CSGM and DCS, instead of finding the opti-
mal latent variable 𝒛 by random inputs of the generative model, observed low-dimen-
sional vectors were directly specified as inputs of the generative model to achieve the ob-
servation-and reconstruction process for high-dimensional data. With the guarantee of 
RIP and S-REC, different high-dimensional data have different low-dimensional vectors 
after being observed. Figure 1 shows the algorithm’s model structure, which is divided 
into two parts. First, the real sample 𝒙 is observed as a low-dimensional vector 𝒚 = 𝜱𝒙 
through the observation model 𝜱 and normalized to obtain 𝒛 = 𝐿ଶ(𝒚) as the input of the 
generative model 𝑮𝜽. In the inner loop, the output 𝑮𝜽(𝒛) of the generative model is ob-
served as a low-dimensional vector 𝒚ෝ = 𝜱𝑮𝜽(𝒛). As shown in Formula 11, the low dimen-
sional vector loss optimizes the input z to the generated model. Formula 11 is similar to 
Formulas 8 and 9 in the inner loop. The difference is that the optimization object of for-
mula 11 is the input. 𝒛ො ← 𝒛ො − ∂∥∥𝒚 − 𝜱𝑮𝜽(𝒛)∥∥ଶଶ∂𝒛 ቤ𝒛ୀ௭̂ (11) 

After the inner loop optimization, the optimized generation sample 𝒙ෝ = 𝑮𝜽(𝒛ො) is ob-
tained by the optimized input 𝒛ො and the generation model 𝑮𝜽. The loss is obtained for 
low-dimensional vectors 𝒚 and 𝒚ෝ, observed from the real sample 𝒙 and the generation 
sample 𝒙ෝ by the model 𝜱: 

ℒ𝑮 = 1𝑁 ෍  ே
௜ୀଵ [∥∥𝒚 − 𝒚ෝ∥∥ଶଶ] (12) 

ℒ𝑮 is the loss of the generative model. 𝒚 and 𝒚ෝ are observation vectors for any ex-
isting natural vectors. In addition to the loss of the generative model, the joint loss also 
has the loss of the observation model. Similar to RIP in Formula 3 and S-REC in Formula 
6, Formula 13 serves as the loss function of the observed model. ℒ𝜱 = 𝔼𝒙1,𝒙2 ቂ൫∥∥𝜱(𝒙1 − 𝒙2)∥∥2 − ∥∥𝒙1 − 𝒙2∥∥2൯2ቃ (13) ℒ𝜱  is the loss of the observation model. 𝒙𝟏, 𝒙𝟐 are any natural vectors that exist. 
Here 𝜱 can be untrainable matrix, trainable matrix and neural network. 

In the outer loop, the weights of the generation model and the observation model 
need to be updated. So the outer loop loss function is the joint loss, which is composed of 
the loss of the generative model and the loss of the observation model. 

In summary, the observation reconstruction process of E2E_DCSGM is shown in  
Algorithm 1. 



Appl. Sci. 2022, 12, 12176 10 of 24 
 

Algorithm 1: The pseudo code of end-to-end deep compressed sensing generative 
model (E2E_DCSGM). 
Input: 𝒙: real samples x~P(T) 

N: Outer loop iteration 
T: Inner loop iteration 

Training: 
for i in range N//Outer loop iteration N times 𝒚 =  𝜱(𝒙)//y is obtained by real data x 𝒛 = 𝐿ଶ(𝒚)//real data observation vector normalization 

for j in range T//Inner loop iteration T times 𝒚ෝ =  𝜱𝑮𝜽(𝒛)//𝒚ෝ is obtained by generation sample 𝑮𝜽(𝒛) 𝐿𝑜𝑠𝑠௜௡௡௘௥_௟௢௢௣ = ℒ𝑮//calculate the inner loop loss  𝒛ො ← 𝒛ො − 𝛼 ப௅௢௦௦೔೙೙೐ೝ_೗೚೚೛ப𝒛 ቚ𝒛ୀ𝒛ො//optimize input, the inner loop optimization rate α 

end for//End the inner loop 𝐽𝑜𝑖𝑛𝑡 𝑙𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠௢௨௧௘௥_௟௢௢௣  =  ℒ𝑮 + ℒ𝜱//the joint loss of outer loop: 𝜃 = 𝜃 − β∇ఏ(𝐿𝑜𝑠𝑠௢௨௧௘௥_௟௢௢௣)//optimize model, the outer loop optimization rate β 
end for//End the outer loop 
Output: 𝑮𝜽: the generative model 𝜱: the observation model 𝒙ෝ: reconstruction samples 

4. Experiments and Results 
4.1. Experimental Dataset 

In this paper, we used the MNIST dataset and the Fashion_MNIST dataset. The 
MNIST dataset from the National Institute of Standards and Technology contains hand-
written digits in ten categories from 0 to 9, with a training set of 60,000 samples and a test 
set of 10,000 samples. The training set consists of handwritten digits from 250 different 
people, 50% of whom are high school students and 50% of whom are Census Bureau 
workers, and the test set has the same proportion of handwritten digits. The Fash-
ion_MNIST dataset is a clothing image dataset provided by a fashion technology company 
in Germany. It also contains a training set of 60,000 samples and a test set of 10,000 sam-
ples. Unlike the MNIST handwritten dataset, the Fashion_MNIST dataset contains images 
from 10 categories: T-shirts, jeans, pullovers, skirts, jackets, sandals, shirts, sneakers, bags, 
and boots. 

4.2. Experiment Operation Environment 
Table 6 shows the experiment operation environment. 
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Table 6. Experiment operating environment. 

Category Versions 
operating system Windows10 

CPU Core i5-10400 2.9 GHz 
GPU NVIDIA RTX2070SUPER 8G 

Python python3.8 
Pytorch pytorch1.10 
CUDA CUDA version10.2 
cuDNN cuDNN7.6.5 

4.3. Training Parameters and Evaluation Standards 
The size of all the real samples in the experiment was 28 × 28, the training process 

was 500 epochs, and the batch size of each iteration was 64. The learning rate of the outer 
loop was 0.0001. The learning rate of the inner loop was a variable hyperparameter. If the 
inner loop parameter is fixed, there will be non-convergence if the parameter is too large, 
and there will be slow convergence if it is too small. The initial inner loop parameter was 
0.01, and iterations converged to 0. In the MNIST reconstruction, the observation dimen-
sions were respectively set as 196, 157, 118, 78, 39, 16, and 4 (extreme observation). In 
Fashion_MNIST reconstruction, the observation dimensions were respectively set as 78, 
39, 16, and 4 (extreme observation).  

Cosine similarity and structural similarity index measures (SSIM) were used as the 
evaluation index of reconstruction accuracy. The mathematical expression of cosine simi-
larity is shown in Equation (14). 

similarity = cos (𝜃) = 𝐴 ⋅ 𝐵∥ 𝐴 ∥∥ 𝐵 ∥ = ∑  ௡௜ୀଵ 𝐴௜ × 𝐵௜ඥ∑  ௡௜ୀଵ (𝐴௜)ଶ × ඥ∑  ௡௜ୀଵ (𝐵௜)ଶ. (14) 

Cosine similarity evaluates the similarity of two vectors by calculating the cosine of 
the angle between them. The positive value of cosine similarity is between [0, 1], where 0 
means the two vectors are not correlated—the greater the similarity, the smaller the dis-
tance. 

The structural similarity index measure (SSIM) is designed by modeling any image 
distortion as a combination of three factors: loss of correlation, luminance distortion, and 
contrast distortion. The SSIM is defined as: SSIM (𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔) (15) 

⎩⎪⎪⎨
⎪⎪⎧ 𝑙(𝑓, 𝑔) = 2𝜇௙𝜇௚ + 𝐶ଵ𝜇௙ଶ + 𝜇௚ଶ + 𝐶ଵ𝑐(𝑓, 𝑔) = 2𝜎௙𝜎௚ + 𝐶ଶ𝜎௙ଶ + 𝜎௚ଶ + 𝐶ଶ𝑠(𝑓, 𝑔) = 𝜎௙௚ + 𝐶ଷ𝜎௙𝜎௚ + 𝐶ଷ

 (16) 

where l is the luminance comparison function, the second term c is the contrast compari-
son function, and the third term s is the structure comparison function. The positive value 
of SSIM is between [0, 1]. The lower the value, the lower the correlation. 

4.4. MNIST Experiment and Analysis 
The experiments in this section mainly verify the feasibility of our proposed end-to-

end correspondence relationship during the reconstruction process. Therefore, we used 
the same MLP generative model as DCS in all the reconstruction processes of the experi-
ments in this section. In contrast to DCS’s random input, we used end-to-end to establish 
correspondence. This is fixing the input. In the reconstruction experiment of the MNIST 
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dataset, the observed original data was 28 × 28. A, AT, and ADT were used as observation 
models. And the MLP was used as a generative model with the scale of sensing_dim-256-
512-784. Reconstruction was performed at compression ratios of 75%, 80%, 85%, 90%, 95%, 
98%, and 99.5% (the observation dimensions were 196, 157, 118, 78, 39, 16, and 4 (extreme 
observation)). 

Figure 2 shows the reconstructed accuracy curve and SSIM curve under different 
compression ratios using the method we proposed for end-to-end correspondence estab-
lishment. MLP is the generation model, and A, AT, and ADT are three observation mod-
els. It can be seen that the compression ratio of 85% is the boundary. When the compres-
sion ratio is lower than 85%, the reconstruction effect after observation using A, AT, and 
ADT is similar. When the compression ratio is above 85%, the ADT reconstruction effect 
is better than that of AT and A. 

  
(a) (b) 

Figure 2. (a) Reconstruction accuracy curves of different model combinations; (b) Reconstruction 
SSIM curves of different model combinations. 

Table 7 shows more detailed values. It can be seen that reconstruction accuracy is 
higher than 99% and SSIM is higher than 0.90 within the 85% compression rate. When the 
compression ratio was 90% (the observation dimension was 78), the reconstruction accu-
racy of ADT observation was 99.6%, which was similar to the reconstruction effect of AT, 
and 0.55% higher than that of A. Moreover, the SSIM of ADT was 0.9817, which was 0.0042 
higher than AT and 0.06 higher than A. When the compression ratio was 95% (the obser-
vation dimension was 39), the reconstruction accuracy of ADT was 99.48%, which was 
0.21% higher than AT and 1.52% higher than A. Furthermore, the SSIM of ADT was 0.9775, 
which was 0.0116 higher than AT and 0.3778 higher than A. When the compression ratio 
was 98% (the observation dimension was 16), the reconstruction accuracy of ADT was 
98.45%, which was 0.54% higher than AT and 4.61% higher than A. The SSIM of ADT was 
0.9353, which was 0.0345 higher than AT and 0.3452 higher than A. Figure 3 shows the 
reconstruction results of our proposed method. The details of the reconstructed image and 
the original image can be seen in the marked red boxes. The high reconstruction accuracy 
and reconstruction details demonstrate the feasibility of the proposed method. 

Table 7. Comparison of MNIST reconstruction accuracy and SSIM. 

Compression 
Ratio 

(Number of 
Observations) 

75% (196) 80% (157) 85% (118) 90% (78) 95% (39) 98% (16) 

Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM 

A 99.76% 0.9746 99.61% 0.9710 99.54% 0.9701 99.05% 0.9217 97.96% 0.5997 93.82% 0.5901 
AT 99.76% 0.9829 99.67% 0.9731 99.68% 0.9784 99.60% 0.9775 99.27% 0.9659 97.91% 0.9008 

ADT 99.62% 0.9794 99.72% 0.9868 99.75% 0.9859 99.60% 0.9817 99.48% 0.9775 98.45% 0.9353 
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Figure 3. Experimental results of MNIST reconstruction. 

To further research the efficacy of the proposed method, we continue to study the 
reconstruction of extreme observations. As shown in Table 7, the compression ratio was 
[(784 − 4)/784] × 100% ≈ 99.5%. When the observation dimension was 4 with the end-to-
end method, the reconstruction accuracy of ADT was 91.61%, which was 2.07% better than 
AT and 4.54% better than A. The SSIM of ADT was 0.7032, which was 0.1185 higher than 
AT and 0.2515 higher than A. When random input of dimension 4 was used, the recon-
struction accuracy of ADT was 83.86%, the reconstruction accuracy of AT was 84.95%, and 
the reconstruction accuracy of A was 83.80%. Their SSIM were all below 0.4. As shown in 
Figure 4, it can be seen intuitively that the end-to-end reconstruction accuracy and SSIM 
are better those that of random input. Figure 5 shows the training loss curves of the end-
to-end method and random input; the end-to-end method’s loss curve is significantly 
lower than that of random input. As shown in the average loss in Table 8, the average 
difference in numerical values is 22.2930. As shown in Figure 6, the first line is the recon-
struction effect of random input with dimension 4, and the reconstruction effect of ex-
treme observation is blurry and unsharp. The second line is the end-to-end reconstruction 
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effect. From the perspective of the reconstruction image, the reconstructed image after the 
observation of A is blurry, and the same image contains many contours of other images, 
which are almost unrecognizable. Although the image reconstructed after using AT is 
blurry, the digit can be distinguished compared with the A reconstruction, and some re-
construction effects are still blurry. Compared with the A and AT reconstructions, the re-
constructed image using ADT has a high definition. 

Table 8. Comparison of reconstruction results for extreme observations. 

Observation Model A AT ADT 
Reconstruction 

accuracy 
random input 83.80% 84.95% 83.86% 

end-to-end input 87.07% 89.54% 91.61% 

SSIM random input 0.3491 0.3501 0.3803 
end-to-end input 0.4517 0.5847 0.7032 

Average loss random input 70.3399 53.0402 53.2837 
end-to-end input 47.4702 33.8370 28.4777 

 

  
(a) (b) 

Figure 4. (Comparison of reconstruction accuracy (a) and SSIM (b) between random input and end-
to-end. 

  
(a) (b) 

Figure 5. The joint loss curves for (a) random input and (b) end-to-end. 
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Figure 6. Comparison of reconstructed images of extreme observations. 

The convergence response of the end-to-end method was very rapid, and the clearer 
and identifiable images were reconstructed almost in about 15 epochs, and the loss of ADT 
reconstruction was lower than that of AT and A. Figures 3 and 6 also proved the ADT 
reconstruction effect is better than that of AT and A. In Figure 6, the details and differences 
between the reconstructed and original images can be seen in the marked red boxes. 

In the experiment in this section, end-to-end was used in the reconstruction experi-
ment of MNIST. The compression ratio of 85% was the boundary. When the compression 
ratio was lower than 85%, the reconstruction effect was similar to that of A, AT, and ADT 
under the condition that MLP was used as the generative model. However, compared 
with AT and ADT, A had less computation and more flexible code operations. In the case 
of similar reconstruction results, the low computational cost shows apparent advantages. 
When the compression ratio was higher than 85%, the reconstruction effect of ADT was 
significantly better than that of AT and A and only needed about 15 epochs for rough 
reconstruction. 

In contrast, the higher accuracy of reconstruction in a short time shows an advantage 
over the lower-dimensional observation reconstruction. With the compression ratio at 
99.5% of the extreme observation, the reconstruction accuracy of the end-to-end method 
improved by 5.20% on average compared with the random input of DCS, and the SSIM 
improved by 0.22 on average. That verified the feasibility of the extreme observation and 
reconstruction method and showed that the end-to-end reconstruction method had excel-
lent elasticity in the observation dimension. 

4.5. Fashion_MNIST Experiment and Analysis 
In the experiments in the previous section, the feasibility of our proposed end-to-end 

correspondence relationship for reconstruction was verified. The end-to-end reconstruc-
tion is better than random input. However, to further improve the reconstruction effect, 
the structure of the generative model has become our focus. 

Although the original data in the S-REC condition are free from the sparsity require-
ment, the handwritten digits of MNIST have noticeable foreground and background, 
making the MNIST dataset have inherent sparsity. Therefore, the Fashion_MNIST dataset 
was used in this section. 

In the end-to-end reconstruction experiment of the Fashion_MNIST dataset, the ob-
served original data was 28 × 28. The observation models used were A, AT, and ADT. The 
generative model of the experimental group was a Deconv_Net, and the control group 
was an MLP in DCS. According to the experimental results in Section 4.4., when the com-
pression ratio was lower than 85%, the AT and ADT reconstruction advantage was not as 
good as that of A. Therefore, only the reconstruction of the low observation dimension 
was performed in this section, and the reconstruction was performed at the compression 
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ratios of 90%, 95%, 98%, and 99.5% (the observation dimension was 78, 39, 16, and 4 (ex-
treme observation)). 

As shown in Figure 7, reconstruction accuracy curves and SSIM curves of different 
model combinations under different compression ratios are obtained. It can be seen from 
the trend that the reconstruction accuracy and SSIM of Deconv_Net+ADT are at high lev-
els under different compression ratios. The reconstruction accuracy and SSIM of MLP+A 
are lower under different compression ratios. 

  
(a) (b) 

Figure 7. Reconstruction accuracy (a) and SSIM (b) curves of different model combinations. 

Table 9 shows more detailed values. When the compression ratio was 90% (the ob-
servation dimension was 78), the reconstruction accuracy of the Deconv_Net was 3% 
higher than that of the MLP on average under different observation models, and the SSIM 
was 0.1797 higher than that. The best performance was the combination of the deconvo-
lution generative model and the deep observation model (ADT), with a reconstruction 
accuracy of 99.23% and an SSIM of 0.9427. When the compression ratio was 95% (the ob-
servation dimension was 39), the reconstruction accuracy of the Deconv_Net was 2.74% 
higher than the MLP on average, and the SSIM was 0.1521 higher than that. The best per-
formance was the combination of the deconvolution generative model and the deep ob-
servation model (ADT), with a reconstruction accuracy of 98.67% and an SSIM of 0.9152. 
When the compression ratio was 98% (the observation dimension was 16), the reconstruc-
tion accuracy of the Deconv_Net was 3.34% higher than the MLP on average, and the 
SSIM was 0.1346 higher than that. The best performance was the combination of the de-
convolution generative model and the deep observation model (ADT), with a reconstruc-
tion accuracy of 98.00% and an SSIM of 0.8618. When the compression ratio was 99.5% 
(the observation dimension was 4), the reconstruction accuracy of the Deconv_Net was 
2.49% higher than the MLP on average, and the SSIM was 0.1595 higher than that. The 
best performance was the combination of the deconvolution generative model and deep 
observation model(ADT), with a reconstruction accuracy of 94.74% and an SSIM of 0.7405. 
It can also be concluded from the accuracy and SSIM curve that the combination of the 
deconvolution generative model and deep observation model (ADT) is optimal. In sum-
mary, the combination of the deconvolution generative model and the deep observation 
model has a good reconstruction effect. 
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Table 9. Comparison of Fashion_MNIST reconstruction accuracy results. 

Method 
Compression Ratio 

(Number of 
Observations) 

90% (78) 95% (39) 98% (16) 99.5% (4) 

  Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM 
CSGM MLP + A 96.57% 0.7588 96.40% 0.6518 91.63% 0.5721 79.15% 0.3026 
DCS MLP + AT 98.54% 0.9061 97.75% 0.8680 96.94% 0.8139 89.58% 0.5757 
DCS MLP + ADT 98.49% 0.8980 97.65% 0.8879 97.51% 0.8602 93.88% 0.6898 

We 
proposed 

Conv + A 98.60% 0.8793 97.42% 0.7365 94.10% 0.6850 81.94% 0.3430 
Conv + AT 98.77% 0.9206 98.45% 0.9081 97.32% 0.8340 93.40% 0.6441 

Conv + ADT 99.23% 0.9427 98.67% 0.9152 98.00% 0.8618 94.74% 0.7405 

The reconstruction effects are shown in Figures 8, 11, 14 and 17. The first row of all 
figures is the end-to-end reconstruction result of the MLP generative model, and the sec-
ond row is the end-to-end reconstruction result of the Deconv_Net generative model. It 
can be seen intuitively that the accuracy and SSIM of the reconstructed image are rela-
tively high in the two modes at lower compression ratios. 
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Figure 8. Reconstruction results of a 90% compression ratio. 

The reconstructed image with a 90% compression ratio is shown in Figure 8. Columns 
one, three, and five in Figure 8 are the original images, and columns two, four, and six are 
the restored images of different models. In Figure 8, the details of the reconstructed image 
and the original image can be noticed from the red marked boxes. The reconstructed im-
age contains many details of the original image. 

Figure 9 is a histogram of reconstruction accuracy and SSIM of different models when 
the compression rate is 90%. It can be seen that there is not much difference. 

  
(a) (b) 
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Figure 9. Comparison of reconstruction accuracy (a) and SSIM (b) between MLP and Deconv at a 
90% compression ratio. 

Figure 10 shows the loss curves for different models. Through the loss curve, it is 
found that there is no significant difference in the value of reconstruction loss after obser-
vation using A, AT, and ADT. However, Deconv_Net’s loss curve was more stable than 
MLP’s. This also shows that Deconv_Net generalization ability is better than MLP for re-
constructing all datasets. 

  
(a) (b) 

Figure 10. The joint loss curve with the end-to-end MLP model (a) and with the end-to-end De-
conv_Net model (b) at a 90% compression ratio. 

The reconstructed image with a compression ratio of 95% is shown in Figure 11. Col-
umns one, three, and five in Figure 11 are the original images, and columns two, four, and 
six are the restored images of different models. In Figure 11, the details of the recon-
structed image and the original image can be noticed from the red marked boxes. The 
reconstructed image contains many details of the original image. 
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Figure 11. Reconstruction results of at a 95% compression ratio. 

Figure 12 is a histogram of reconstruction accuracy and SSIM for different models 
when the compression rate is 95%. It can be seen that there is not much difference in the 
reconstruction accuracy, but the SSIM of Deconv is higher than that of MLP. 



Appl. Sci. 2022, 12, 12176 19 of 24 
 

  
(a) (b) 

Figure 12. Comparison of (a) reconstruction accuracy and SSIM (b) between MLP and Deconv at a 
compression ratio of 95%. 

Figure 13 shows the loss curves for different models. Similarly, through the loss 
curve, it is found that there is no significant difference in the value of reconstruction loss 
after observation using A, AT, and ADT. However, Deconv_Net’s loss curve was more 
stable than MLP’s. This also shows that Deconv_Net generalization ability is better than 
MLP for reconstructing all datasets. 

  
(a) (b) 

Figure 13. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net 
model (b) at a 95% compression ratio. 

The reconstructed image with a compression ratio of 98% is shown in Figure 14. Col-
umns one, three, and five in Figure 14 are the original images, and columns two, four, and 
six are the restored images of different models. In Figure 14, the details and differences 
between the reconstructed and original images can be seen in the marked red boxes. The 
details of the reconstructed image become slightly blurred. 
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Figure 14. Reconstruction results of at a 98% compression ratio. 

Figure 15 is a histogram of the reconstruction accuracy of different models when the 
compression rate is 98%. It can be seen that the reconstruction accuracy and SSIM of De-
conv are slightly higher than those of MLP. 

  
(a) (b) 

Figure 15. Comparison of reconstruction accuracy (a) and SSIM (b) between MLP and Deconv at a 
compression ratio of 98%. 

Figure 16 is the loss curve for different models. When MLP is the generation model, 
the reconstructed loss curve after observation with A, AT, and ADT fluctuates greatly and 
is very unstable. The loss curve of Deconv_Net was more stable than that of MLP. This 
suggests that Deconv_Net has been shown to generalize the fitted datasets better than 
MLP as the compression ratio increases. 

  
(a) (b) 
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Figure 16. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net 
model (b) at a compression ratio of 98%. 

The reconstructed image with a compression ratio of 99.5% is shown in Figure 17. 
Columns one, three, and five in Figure 17 are the original images, and columns two, four, 
and six are the restored images of different models. In Figure 17, the details and differ-
ences between the reconstructed and original images can be seen in the marked red boxes. 
The details of the reconstructed image of A become blurred, while AT and ADT still main-
tain contours and details. 
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Figure 17. Reconstruction results of at a 99.5% compression ratio. 

Figure 18 is a histogram of the reconstruction accuracy for different models when the 
compression rate is 99.5%. It can be seen that the reconstruction accuracy and SSIM of 
Deconv are significantly higher than those of MLP. 

  
(a) (b) 

Figure 18. Comparison of reconstruction accuracy (a) between MLP and Deconv and SSIM (b) at a 
compression ratio of 99.5%. 

Figure 19 is the loss curve for different models. When MLP is the generation model, 
the reconstructed loss curve after observation with A, AT, and ADT has a significant fluc-
tuation and is very unstable. The loss curve of Deconv_Net was more stable than that of 
MLP. It can be seen from the loss curves of both models that the loss curves observed by 
ADT are significantly lower than those of A and AT. Again, Deconv_Net shows a better 
generalization of all fitted datasets than MLP as the compression ratio increases. 
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(a) (b) 

Figure 19. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net 
model (b) at a compression ratio of 99.5%. 

In the extreme observation a the dimension of four, the loss tends to be stable over a 
small number of epochs, and a relatively clear reconstruction image is obtained. Moreo-
ver, the loss curve of the Deconv_Net is significantly more stable than that of the MLP. It 
indicates the relative stability of the end-to-end correspondence. 

This section also concludes that the higher the number of observation dimensions, 
the closer the reconstruction accuracy of A, AT, and ADT. The more no difference between 
the reconstruction effect and the reconstruction accuracy can be guaranteed above 96%. 
In this case, the reconstruction method combining A with the generative model with a 
lower cost can be selected. As the observation dimension becomes smaller and smaller, 
the observation vector seems to “condense” the original signal, and a minimal amount of 
observation signal carries a massive amount of information about the original signal. In 
the reconstruction experiments of different observation models, the reconstruction accu-
racy of the Deconv_Net generative model is 1.38% higher than that of the MLP generation 
model of DCS, and the SSIM is 0.0522 points higher than that. When the extreme observa-
tion with a compression ratio is 99.5% (the observation dimension is 4), the reconstruction 
accuracy of the Deconv_Net generative model is 2.49% higher than that of the MLP gen-
erative model of DCS, and the SSIM is 0.0532 higher than that. It also shows that the com-
bination of the deconvolution generative model and the multi-layer perceptron observa-
tion model provides a higher possibility for the high-precision reconstruction of the ob-
served image by establishing the corresponding relationship from end-to-end. 

5. Conclusions 
First of all, for the reconstruction of extreme observations, the end-to-end corre-

spondence method proposed by us shows a very obvious reconstruction effect in MNIST 
dataset experiments compared with the random input of CSGM and DCS. The reason is 
that it is difficult to find random variables in the latent space that match the corresponding 
reconstructions during the reconstruction of extreme observations. Our idea is to directly 
use the low-dimensional vector of extreme observation to correspond with the observed 
original data for reconstruction. RIP and S-REC provide a guarantee for establishing the 
corresponding relationship. Secondly, in the end-to-end framework, the method of us 
combining the deconvolution generative model with the observation model is compared 
with the method of DCS combining the multi-layer perceptron generative model with the 
observation model. The reconstruction accuracy is improved by 1.38%, and the SSIM is 
improved by 0.0522 on average. The reconstruction accuracy of the extreme observation 
is improved by 2.49%, and the SSIM is improved by 0.0532 on average. The deep observa-
tion model of a multi-layer perceptron and the deconvolution generation model show ex-
cellent reconstruction performance. Since, in the deep observation model of a multi-layer 
perceptron, the dimension reduction of each hidden layer is constrained by RIP, different 
original signals will not be mapped to the same observation vector. At the same time, the 
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generative model is also subject to RIP constraints: different observation vectors will not 
map to the same reconstruction signal, which provides a guarantee for the reconstruction 
of extreme observations. In the hidden layer structure of the generative model, the decon-
volution generation model is different from the multilayer perceptron. The feature map 
of the deconvolution network carries the spatial information of the image, so in the ex-
treme, the feature map of the hidden layer of the convolution network carries more data 
features than the linear connection of the multilayer perceptron, which is beneficial to the 
reconstruction of image data. 

Generalization ability is commonly mentioned in machine learning, and overfitting 
is a key obstacle in machine learning that is not easy to overcome. In this paper, the gen-
erative neural network model was used to reconstruct compressed sensing, which was a 
lossy reconstruction process. The reconstruction process precisely uses the disadvantage 
of overfitting to improve the reconstruction’s accuracy. In future research, we will con-
tinue exploring methods for the high-precision reconstruction of low-dimensional obser-
vations and combine this method with application scenarios. 
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