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Abstract: Data transmission and storage are inseparable from compression technology. Compressed
sensing directly undersamples and reconstructs data at a much lower sampling frequency than
Nyquist, which reduces redundant sampling. However, the requirement of data sparsity in com-
pressed sensing limits its application. The combination of neural network-based generative models
and compressed sensing breaks the limitation of data sparsity. Compressed sensing for extreme obser-
vations can reduce costs, but the reconstruction effect of the above methods in extreme observations
is blurry. We addressed this problem by proposing an end-to-end observation and reconstruction
method based on a deep compressed sensing generative model. Under RIP and S-REC, data can be
observed and reconstructed from end to end. In MNIST extreme observation and reconstruction,
end-to-end feasibility compared to random input is verified. End-to-end reconstruction accuracy
improves by 5.20% over random input and SSIM by 0.2200. In the Fashion_MNIST extreme observa-
tion and reconstruction, it is verified that the reconstruction effect of the deconvolution generative
model is better than that of the multi-layer perceptron. The end-to-end reconstruction accuracy of the
deconvolution generative model is 2.49% higher than that of the multi-layer perceptron generative
model, and the SSIM is 0.0532 higher.

Keywords: compressed sensing; deep learning; extreme observation; high precision reconstruction;
end-to-end

1. Introduction

Nowadays, people cannot live without digitalization. In this era of digitalization, the
primary problem is the storage and transmission of massive amounts of data. In the early
days, the process of digital acquisition of analog signals was inseparable from the traditional
Nyquist-Shannon sampling theorem, which points out that the sampling frequency must be
more than twice the highest frequency of the original signal in order to completely retain the
information in the original signal or accurately reconstruct the original signal [1]. However,
in the digital age, where the demand for information is surging, the Nyquist-Shannon
sampling theorem causes redundant sampling, even with the rapid development of current
computer technology. The sampling rate, storage space, transmission bandwidth, and
processing speed for huge amounts of data can consume huge resources, and the ways
to solve these problems are pointed toward the compression technology of the signal. In
2006, Candes et al. proposed the theory of Compressed sensing [2] (CS), which is different
from traditional Nyquist sampling in that the signal could be sampled at much lower
frequencies than Nyquist sampling, resulting in less redundancy in the sampled data
and complete reconstruction of the original signal with high probability [3]. Compressed
sensing has been applied in many aspects [4]. For example, in wireless communications,
channel estimation technology based on compressed sensing has been proposed to improve
spectral efficiency [5] and the efficiency of channel estimation at multi-sensor nodes [6].
In medical images, compressed sensing has been proposed for incoherent undersampling
and efficient reconstruction of MR Images [7], the application for Photo-acoustic (PA)
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tomography [8], the K-t focus to new dynamic MRI has been proposed from compressed
sensing [9], the application of compressed sensing to high-resolution 3D upper airway
MRI [10], and taking advantage of the high SNR from hyperpolarization achieving a factor
of two spatial resolution enhancement for 3D MRSI [11]; In terms of radar measurement, a
compressed sensing approach has been proposed for the target scene reconstruction and has
a higher resolution than classical radar [12]. In astronomical imaging, compressed sensing
has been proposed to compress redundant astronomical data effectively [13]. In defect
detection of the integrated circuit, compressed sensing has been proposed to estimate chip
leakage tomography quickly and accurately [14]; In terms of pattern recognition, the sparse
representation of compressed sensing has been used to enhance feature extraction for face
recognition [15]. The optimization of compressed sensing projection has been considered to
obtain better reconstruction performance [16]. Compressed sensing and machine learning
have proven the feasibility of learning directly in the compressed domain [17]. And the
proposal for single-pixel cameras [18], etc. The common point of the above applications is
the need to observe and reconstruct signals. However, an important premise of traditional
compressed sensing is the sparsity of signals, which is a rather harsh condition limiting
compressed sensing. In nature, not all signals have sparse transformation domains. Even if
sparse transformations are performed with the help of sparse priors, the effect of inefficient
reconstruction will be produced.

In recent years, with the rapid development of deep learning, the mechanisms of
training, fitting, and discriminating decisions on data have made breakthroughs in both
academic and industrial fields. Deep learning is a machine learning method that learns
complex dataset mappings through modified weights in the hidden layers of a network.
The deeper the network, the more parameters there are in the hidden layers of that network,
and the greater the capacity to carry features in the network, making the deep networks
stronger to learn. Researchers used deep learning to optimize compressed sensing to solve
the problem. In March 2017, Bora et al. [19] were inspired by the generative models of VAE
(auto-encoding variational) [20] and GAN (generative adversarial nets) [21]. They proposed
the application of compressed sensing in the generative model (CSGM). Furthermore, it got
rid of the constraint of sparsity with the help of the generative model of neural network.
VAE or GAN learned the probability distribution of the dataset through pre-training. By
compressed sensing, the difference of observation between the generated and real data is a
loss function for backpropagation optimization. The results showed that the reconstruction
effect was better than the traditional sparse reconstruction method for a smaller number
of observations. In May 2017, Mardani [22] et al. proposed to extract a generative model
that projected from low-dimensional to high-quality MR images using the pre-trained
LSGAN framework. For undersampled observation data, the pre-trained generative model
was used to improve fine texture details for more efficient image reconstruction. In 2018,
Veen [23] et al. proposed a compressed sensing reconstruction method based on deep
image prior (DIP) without pre-training for the deep generative model. They introduced
a regularization technique that incorporated prior weight information to reduce the re-
construction error. In 2019, Wu [24] et al. proposed Deep Compressed Sensing (DCS), a
generative model that did not require pre-training, and introduced a meta-learning method
to train the generative model and the observation model jointly, achieving reconstruction
through inner and outer loops of meta-learning, made the reconstruction response more
flexible and rapid. In 2020, Sun et al. [25] proposed a new sub-pixel convolution generative
adversarial network to learn compressed sensing reconstruction of images. Through the
adversarial training of the generative model of the sub-pixel convolution network and the
discriminant model, the generative model learned the inherent image distribution and
improved the reconstruction quality. Moreover, the low-dimensional observation vectors
and the generative model could quickly reconstruct the image. In 2022, Sheykhivand [26]
proposed the combination of compressed sensing and deep neural networks. Compressed
sensing theory was used to observe the recorded EEG data to reduce the computational
load. Then, the observed data were classified according to the deep neural network, and



Appl. Sci. 2022, 12, 12176 3 of 23

the driver fatigue was effectively detected according to the classified results with a high
accuracy rate. To sum up, traditional compressed sensing and reconstruction are limited
by the sparsity constraint, which limits the expansion of their applications, and traditional
reconstruction methods also consume time. With the development of deep learning, neural
networks can directly extract hierarchical features from a given dataset to perform complex
tasks in the real world [27]. The combination of deep learning techniques with compressed
sensing, in which the hidden layer bearing of the neural network is used to compensate for
the sparsity of signals so that it can be applied to data transmission and storage, is more
likely to broaden its application field.

Inspired by CSGM and DCS, this paper proposes a framework combining compressed
sensing and deep learning to establish the correspondence of input and output (end-to-
end deep compressed sensing using generative models, E2E_DCSGM) to achieve extreme
observation and reconstruction. Observations of compressed sensing showed that the
number of samples was significantly reduced, which was good for data transmission and
storage. In the network model of reconstruction experiments, multi-layer perceptrons
(MLP) and a deconvolution generative model (Deconv_Net) were used in combination
with an untrainable observation matrix (A), a trainable observation matrix (A trainable,
AT), and a deep compressed sensing observation network of multi-layer perceptron (A
deep trainable, ADT). In the MNIST experiment, the generative model was MLP, and the
observation models were A, AT, and ADT. The feasibility of an end-to-end connection is
verified through a comparative experiment between random and end-to-end input. In the
Fashion_MNIST experiment, the generative models were MLP and Deconv_Net, and the
observation models were A, AT, and ADT. Comparative experiments with different gener-
ative models demonstrated that the reconstruction effect of Deconv_Net was better than
that of MLP. Both experiments show that the reconstruction effect after ADT observation is
better. In the reconstruction of extreme observation values, the reconstruction results of our
method and model are better than those of CSGM and DCS.

2. Related Background
2.1. Compressed Sensing

Classical compressed sensing collects all the information in high-dimensional data. It
maps the high-dimensional data into low-dimensional data to achieve an efficient dimen-
sionality reduction representation of the signal, and it can reconstruct high-dimensional
data. By observation of compressed sensing, signals with sparsity can be reconstructed
from less data than traditional Nyquist sampling. Therefore, various signal transforma-
tions can transform many non-sparse signals into sparse signals, such as discrete cosine
transform (DCT), discrete wavelet transform (DWT), etc. From the mathematical view, the
classical CS can be expressed as follows:

x = Ψs (1)

x ∈ RN is the signal that can be sparse. Ψ is a set of orthonormal basis. s is the signal
in the sparse domain.

y = Φx = ΦΨs (2)

Φ ∈ RM×N is an observation matrix which is uncorrelated with Ψ and M� N. y ∈ RM

is the observation vector by compressed sensing dimensionality reduction.
However, if sparse signals are reconfigurable, the observation matrix needs to satisfy

the restricted isometry property (RIP):

(1− δK) ‖ x ‖2
26‖ Φx ‖2

26 (1 + δK) ‖ x ‖2
2 (3)

δK ∈ (0, 1) is the restricted isometric constant of the matrix Φ, and RIP ensures that
any two sparse vectors still maintain their Euclidean distances under the projection of
Φ. The observation matrix satisfies the RIP so that the observation vector of any sparse
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vector can be reconstructed by minimizing the observation error, which is mathematically
represented as:

x̂ = argmin
x
‖ y−Φx ‖2

2 (4)

x̂ is the reconstructed signal. The compression ratio of compressed sensing [26] is
r = (N−M)/N, so M � N will have a higher compression ratio. Different levels of
compression ratio can be achieved by adjusting the size of the observation matrix while
satisfying the RIP. The observation vector y of compressed sensing can be reconstructed
with high probability by algorithms based on the convex optimization algorithm, the greedy
algorithm, the combinatorial reconstruction algorithm, and the Bayesian method. However,
there will be problems such as unstable reconstruction when the number of observations is
low and a long reconstruction time due to high computational complexity.

2.2. Compressed Sensing Using Generative Models

In 2017 Bora et al. proposed a CSGM that combines compressive sensing with generative
models to get rid of the forced sparsity constraint on signals from traditional compressive
sensing, such as VAE and GAN, which were based on generative models of neural networks
that showed unexpected results in generation data. The generative model maps the low-
dimensional latent representation space to the high-dimensional sample space:

x = G(z) , G(z) ∈ RN (5)

z ∈ RK is the low-dimensional signal of the latent space. G is the generative model. x
is the generated signal. During training, the generative model learns mappings from low to
high dimensions such that the generated vectors are similar to the training dataset. There-
fore, any pre-trained generative model is used to roughly learn the probability distribution
of the training dataset samples and attempt to assign the training set with high probability
to the more likely latent vectors.

The literature [19] proposed the set-restricted eigenvalue condition (S-REC):

‖ Φ(x1 − x2) ‖≥ γ ‖ x1 − x2 ‖ −δ (6)

Let S ∈ RN, x1, x2 ∈ S are any natural vectors that exist. γ > 0 is a constant. δ > 0 is
an additive slack term. The observation matrix Φ satisfies the S-REC.

Compared with the RIP condition of traditional compressed sensing, the S-REC relaxes
the sparsity requirement of the observed vector, making its reconstruction process similar
to the minimization reconstruction process of Equation (4):

ẑ = argmin
z
‖ y−ΦGθ(z) ‖2

2 (7)

ẑ is the optimized latent vector. Different from Equation (4), the reconstruction idea of
CSGM is finding the optimal latent input z among the random input to minimize the error
expectation. The back-propagation gradient descent method is used to find the optimal latent
input z within the generative model of the neural network. CSGM successfully combines
compressed sensing with neural networks. However, the optimization of its reconstruction
method requires thousands of gradient descent, leading to slow reconstruction. The observation
matrix Φ is an untrainable random matrix, leading to the reconstruction limitation.

2.3. Deep Compressed Sensing

In 2019, Wu et al. proposed deep compressed sensing (DCS) based on CSGM. They
introduced the model-agnostic meta-learning (MAML) algorithm [28] to solve the problem
of thousands of gradient descent required for CSGM reconstruction. The process of the
inner loop is shown in Formula (8):

θ′i = θ − α∇θLTi ( fθ) (8)
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fθ is a parameterized function, which is represented as a network model. Ti is the task,
which is sampled from the task distribution p(T ). α is the inner loop learning rate. In the
inner loop process, the model parameter θ is optimized to θ′i in order to fit task Ti.

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i

)
= ∑
Ti∼p(T )

LTi

(
fθ−α∇θTi( fθ)

)
(9)

The optimization goal of parameter θ is to find a θ′i that adapts task Ti to minimize the
loss of current task Ti.

Finding the θ′i of the adaptation task is equivalent to finding the exact direction of
gradient descent of the model parameter θ during the outer loop process. The parameter θ
of the model fθ is updated as:

θ ← θ − β∇θ ∑
Ti∼p(T )

LTi

(
fθ′i

)
(10)

β is the outer loop learning rate. The alternating optimization of the inner and outer
loops to the same objective accelerates the convergence of the network model in training.
Unlike CSGM, DCS introduced MAML so that the generative model did not have to pre-
train. Moreover, the observation matrix was set from the untrainable random matrix Φ to
the trainable observation model ΦDCS. The RIP loss function for the observation model
ΦDCS was proposed, and the generation loss was combined to update the generative and
observation models.

The most significant feature of DCS is the introduction of MAML, the observation
and reconstruction can be deep neural networks, and the reconstruction and optimization
efficiency is significantly better than CSGM.

3. Method
3.1. Notation Explanation

In the observation and reconstruction algorithm based on DCSGM, some symbols are
defined and their meanings explained, as shown in Table 1.

Table 1. Notations and their meanings.

Notation Meanings

x the original signal

Φ the observation model

y the observed vector

x̂ the generated signal

Gθ the generative model

z the input of generative model from normalized the observed vector

ẑ the input that is optimized

ŷ the observed vector that is optimized

L2 the Euclidean norm

LG the loss of generative model

LΦ the loss of observation model

α the inner loop optimization rate

β the outer loop optimization rate

θ the parameter of model

T the inner loop iteration

N the outer loop iteration

Lossinner_loop the loss of inner loop

Lossouter_loop the loss of outer loop
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3.2. Model Structure

The overall model structure of end-to-end deep compressed sensing using generative
models (E2E_DCSGM) is shown in Figure 1. In the inner loop, the input of the generative
model was fine-tuned to obtain the minimum loss of the inner loop. In the outer loop,
joint loss optimized the generative model and the observation model. The reconstruction
process was accelerated by the idea of inner and outer bidirectional optimization.

Figure 1. Block diagram to the E2E_DCSGM structure.



Appl. Sci. 2022, 12, 12176 7 of 23

Deconv_Net and MLP were used as generative models. Untrainable matrix (A),
trainable matrix (AT), and multi-layer perceptron observation network (ADT) were used
as observation models. The experimental group used a deconvolution generative model
and three observation models. Moreover, the control group was DCS, a combination of the
multi-layer perceptron and three observation models. The details are shown in Table 2.

Table 2. Model combination of experimental and control groups.

Method Input Models
Combination Type Purpose

CSGM Random input MLP + A Control Group
Random input control groupDCS Random input MLP + AT Control Group

DCS MLP + ADT

We proposed

end-to-end
MLP + A

Experimental Group Verify the feasibility of end-to-end
reconstruction under the extreme observation

MLP + AT
MLP + ADT

end-to-end
Deconv_Net + A

Experimental Group
Verify the reconstruction effect of the
improved generator on the extreme

observation under the end-to-end case
Deconv_Net + AT

Deconv_Net + ADT

The experimental part adopts MLP and Deconv_Net as the generators. The straighten-
ing process of MLP destroys the spatial characteristics of the image itself. A convolutional
network is a hierarchical feature-bearing model. Each layer’s feature map can contain
the training images’ spatial features. During the training process, the feature map of the
number of channels in each layer learns the spatial characteristics of the training images.
These feature maps become prior knowledge during the training process for the next epoch.
This is similar to translation invariance.

Although MLP is easier to overfit than Deconv_Net, it is necessary to fit all data sets
as much as possible while fitting a single data. In other words, the reconstruction process
requires overfitting and generalization of the entire dataset. MLP needs a vast network
structure to meet the above conditions. The feature map of each layer of Deconv_Net can
meet the above conditions.

Table 3 shows the hyperparameter settings of the multi-layer perceptron generative
model. The structure was sensing_dim-128-256-512-784, except that the activation function
of the last layer was Tanh, the activation function of each layer was LeakyReLU, and the
input of the generative model was determined by the observation dimension (sensing_dim).

Table 3. Hyperparameter Settings of multi-layer perceptron generative model.

Network Layer Related Hyperparameter Settings

Input batch_size = 64
(batch_size, sensing_dim)

Hidden layer 1 Linear(sensing_dim, 256)
activation function: LeakyReLU

Hidden layer 2 Linear(256, 512)
activation function: LeakyReLU

Hidden layer 3 Linear(512, 784)
activation function: Tanh

output (batch_size,1, 28, 28)

Table 4 shows the hyperparameter settings of the deconvolution generation model.
The input side was adjusted to 256 channels, the feature map size was 7 × 7, and the
feature map was expanded to 14 × 14 after upsampling 1. The deconvolution layer 1 had
128 channels, the convolution kernel size was 3 × 3, the stride size was 1, and the padding
size was 1. The feature map of 128 channels (14 × 14) was obtained. After upsampling
2, the feature map was expanded to 28 × 28. The deconvolution layer 2 had 64 channels,



Appl. Sci. 2022, 12, 12176 8 of 23

the convolution kernel size was 3 × 3, the stride size was 1, and the padding size was 1.
The 64-channel 28 × 28 feature map was obtained. The deconvolution layer 3 had one
channel, the convolution kernel size was 3 × 3, the stride size was 1, and the padding
size was 1. The reconstruction image of one channel 28 × 28 was obtained. Except for
the activation function of the last layer Tanh, the activation function of each layer was
LeakyReLU, and the input of the generative model was determined by the observation
dimension (sensing_dim).

Table 4. Hyperparameter Settings of deconvolution generative model.

Network Layer Related Hyperparameter Settings

Input batch_size = 64
(batch_size, sensing_dim)

upsampling 1 scale_factor: 2

deconvolution layer 1 kernel_size: (128, 3 × 3), stride_size: 1, padding_size: 1
activation function: LeakyReLU

upsampling 2 scale_factor: 2

deconvolution layer 2 kernel_size: (64, 3 × 3), stride_size: 1, padding_size: 1
activation function: LeakyReLU

deconvolution layer 3 kernel_size: (1, 3 × 3), stride_size: 1, padding_size: 1
activation function: Tanh

output (batch_size, 1, 28, 28)

The hyperparameter settings of the deep observation network of the multi-layer
perceptron are shown in Table 5. Its structure was 28 × 28-784-512-256-sensing_dim, and
the activation function of each layer except the last layer was LeakyReLU.

Table 5. Hyperparameter Settings of multi-layer perceptron deep observation network.

Network Layer Related Hyperparameter Settings

Input batch_size = 64
(batch_size,1, 28, 28)

Hidden layer 1 Linear(784, 512)
activation function: LeakyReLU

Hidden layer 2 Linear(512, 256)
activation function: LeakyReLU

Hidden layer 3 Linear(256, sensing_dim)

output (batch_size, sensing_dim)

3.3. Algorithm Design

In this paper, we propose the framework of an end-to-end (input-output) relationship
that combines compressed sensing and deep learning (E2E_DCSGM) to achieve observation
and reconstruction. Different from CSGM and DCS, instead of finding the optimal latent
variable z by random inputs of the generative model, observed low-dimensional vectors
were directly specified as inputs of the generative model to achieve the observation-and
reconstruction process for high-dimensional data. With the guarantee of RIP and S-REC, dif-
ferent high-dimensional data have different low-dimensional vectors after being observed.
Figure 1 shows the algorithm’s model structure, which is divided into two parts. First, the
real sample x is observed as a low-dimensional vector y = Φx through the observation
model Φ and normalized to obtain z = L2(y) as the input of the generative model Gθ. In
the inner loop, the output Gθ(z) of the generative model is observed as a low-dimensional
vector ŷ = ΦGθ(z). As shown in Formula (11), the low dimensional vector loss optimizes
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the input z to the generated model. Formula (11) is similar to Formulas (8) and (9) in the
inner loop. The difference is that the optimization object of formula (11) is the input.

ẑ← ẑ− ∂ ‖ y−ΦGθ(z) ‖2
2

∂z

∣∣∣∣∣
z=ẑ

(11)

After the inner loop optimization, the optimized generation sample x̂ = Gθ(ẑ) is
obtained by the optimized input ẑ and the generation model Gθ. The loss is obtained
for low-dimensional vectors y and ŷ, observed from the real sample x and the generation
sample x̂ by the model Φ:

LG =
1
N

N

∑
i=1

[
‖ y− ŷ ‖2

2

]
(12)

LG is the loss of the generative model. y and ŷ are observation vectors for any existing
natural vectors. In addition to the loss of the generative model, the joint loss also has the
loss of the observation model. Similar to RIP in Formula (3) and S-REC in Formula (6),
Formula (13) serves as the loss function of the observed model.

LΦ = Ex1,x2

[
(‖ Φ(x1 − x2) ‖2− ‖ x1 − x2 ‖2)

2
]

(13)

LΦ is the loss of the observation model. x1, x2 are any natural vectors that exist. Here
Φ can be untrainable matrix, trainable matrix and neural network.

In the outer loop, the weights of the generation model and the observation model
need to be updated. So the outer loop loss function is the joint loss, which is composed of
the loss of the generative model and the loss of the observation model.

In summary, the observation reconstruction process of E2E_DCSGM is shown in
Algorithm 1.

Algorithm 1: The pseudo code of end-to-end deep compressed sensing generative model
(E2E_DCSGM).

Input:
x: real samples x~P(T)
N: Outer loop iteration
T: Inner loop iteration
Training:
for i in range N//Outer loop iteration N times

y = Φ(x)//y is obtained by real data x
z = L2(y)//real data observation vector normalization
for j in range T//Inner loop iteration T times

ŷ = ΦGθ(z)//ŷ is obtained by generation sample Gθ(z)
Lossinner_loop = LG//calculate the inner loop loss

ẑ← ẑ− α
∂Lossinner_loop

∂z

∣∣∣
z=ẑ

//optimize input, the inner loop optimization rate α

end for//End the inner loop
Joint loss = Lossouter_loop = LG + LΦ//the joint loss of outer loop:

θ = θ − β∇θ

(
Lossouter_loop

)
//optimize model, the outer loop optimization rate β

end for//End the outer loop
Output:
Gθ: the generative model
Φ: the observation model
x̂: reconstruction samples
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4. Experiments and Results
4.1. Experimental Dataset

In this paper, we used the MNIST dataset and the Fashion_MNIST dataset. The MNIST
dataset from the National Institute of Standards and Technology contains handwritten
digits in ten categories from 0 to 9, with a training set of 60,000 samples and a test set of
10,000 samples. The training set consists of handwritten digits from 250 different people,
50% of whom are high school students and 50% of whom are Census Bureau workers, and
the test set has the same proportion of handwritten digits. The Fashion_MNIST dataset is
a clothing image dataset provided by a fashion technology company in Germany. It also
contains a training set of 60,000 samples and a test set of 10,000 samples. Unlike the MNIST
handwritten dataset, the Fashion_MNIST dataset contains images from 10 categories: T-shirts,
jeans, pullovers, skirts, jackets, sandals, shirts, sneakers, bags, and boots.

4.2. Experiment Operation Environment

Table 6 shows the experiment operation environment.

Table 6. Experiment operating environment.

Category Versions

operating system Windows10
CPU Core i5-10400 2.9 GHz
GPU NVIDIA RTX2070SUPER 8G

Python python3.8
Pytorch pytorch1.10
CUDA CUDA version10.2
cuDNN cuDNN7.6.5

4.3. Training Parameters and Evaluation Standards

The size of all the real samples in the experiment was 28 × 28, the training process
was 500 epochs, and the batch size of each iteration was 64. The learning rate of the outer
loop was 0.0001. The learning rate of the inner loop was a variable hyperparameter. If
the inner loop parameter is fixed, there will be non-convergence if the parameter is too
large, and there will be slow convergence if it is too small. The initial inner loop parameter
was 0.01, and iterations converged to 0. In the MNIST reconstruction, the observation
dimensions were respectively set as 196, 157, 118, 78, 39, 16, and 4 (extreme observation).
In Fashion_MNIST reconstruction, the observation dimensions were respectively set as 78,
39, 16, and 4 (extreme observation).

Cosine similarity and structural similarity index measures (SSIM) were used as the
evaluation index of reconstruction accuracy. The mathematical expression of cosine similar-
ity is shown in Equation (14).

similarity = cos(θ) =
A · B

‖ A ‖‖ B ‖ =
∑n

i=1 Ai × Bi√
∑n

i=1(Ai)
2 ×

√
∑n

i=1(Bi)
2

. (14)

Cosine similarity evaluates the similarity of two vectors by calculating the cosine of the
angle between them. The positive value of cosine similarity is between [0, 1], where 0 means
the two vectors are not correlated—the greater the similarity, the smaller the distance.

The structural similarity index measure (SSIM) is designed by modeling any image
distortion as a combination of three factors: loss of correlation, luminance distortion, and
contrast distortion. The SSIM is defined as:

SSIM( f , g) = l( f , g)c( f , g)s( f , g) (15)
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l( f , g) =

2µ f µg+C1

µ2
f +µ2

g+C1

c( f , g) =
2σf σg+C2

σ2
f +σ2

g+C2

s( f , g) =
σf g+C3

σf σg+C3

(16)

where l is the luminance comparison function, the second term c is the contrast comparison
function, and the third term s is the structure comparison function. The positive value of
SSIM is between [0, 1]. The lower the value, the lower the correlation.

4.4. MNIST Experiment and Analysis

The experiments in this section mainly verify the feasibility of our proposed end-
to-end correspondence relationship during the reconstruction process. Therefore, we
used the same MLP generative model as DCS in all the reconstruction processes of the
experiments in this section. In contrast to DCS’s random input, we used end-to-end to
establish correspondence. This is fixing the input. In the reconstruction experiment of
the MNIST dataset, the observed original data was 28 × 28. A, AT, and ADT were used
as observation models. And the MLP was used as a generative model with the scale of
sensing_dim-256-512-784. Reconstruction was performed at compression ratios of 75%,
80%, 85%, 90%, 95%, 98%, and 99.5% (the observation dimensions were 196, 157, 118, 78,
39, 16, and 4 (extreme observation)).

Figure 2 shows the reconstructed accuracy curve and SSIM curve under different
compression ratios using the method we proposed for end-to-end correspondence estab-
lishment. MLP is the generation model, and A, AT, and ADT are three observation models.
It can be seen that the compression ratio of 85% is the boundary. When the compression
ratio is lower than 85%, the reconstruction effect after observation using A, AT, and ADT is
similar. When the compression ratio is above 85%, the ADT reconstruction effect is better
than that of AT and A.

Figure 2. (a) Reconstruction accuracy curves of different model combinations; (b) Reconstruction
SSIM curves of different model combinations.

Table 7 shows more detailed values. It can be seen that reconstruction accuracy is
higher than 99% and SSIM is higher than 0.90 within the 85% compression rate. When
the compression ratio was 90% (the observation dimension was 78), the reconstruction
accuracy of ADT observation was 99.6%, which was similar to the reconstruction effect of
AT, and 0.55% higher than that of A. Moreover, the SSIM of ADT was 0.9817, which was
0.0042 higher than AT and 0.06 higher than A. When the compression ratio was 95% (the
observation dimension was 39), the reconstruction accuracy of ADT was 99.48%, which
was 0.21% higher than AT and 1.52% higher than A. Furthermore, the SSIM of ADT was
0.9775, which was 0.0116 higher than AT and 0.3778 higher than A. When the compression
ratio was 98% (the observation dimension was 16), the reconstruction accuracy of ADT was
98.45%, which was 0.54% higher than AT and 4.61% higher than A. The SSIM of ADT was
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0.9353, which was 0.0345 higher than AT and 0.3452 higher than A. Figure 3 shows the
reconstruction results of our proposed method. The details of the reconstructed image and
the original image can be seen in the marked red boxes. The high reconstruction accuracy
and reconstruction details demonstrate the feasibility of the proposed method.

Table 7. Comparison of MNIST reconstruction accuracy and SSIM.

Compression
Ratio

(Number of
Observations)

75% (196) 80% (157) 85% (118) 90% (78) 95% (39) 98% (16)

Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM

A 99.76% 0.9746 99.61% 0.9710 99.54% 0.9701 99.05% 0.9217 97.96% 0.5997 93.82% 0.5901

AT 99.76% 0.9829 99.67% 0.9731 99.68% 0.9784 99.60% 0.9775 99.27% 0.9659 97.91% 0.9008

ADT 99.62% 0.9794 99.72% 0.9868 99.75% 0.9859 99.60% 0.9817 99.48% 0.9775 98.45% 0.9353

Figure 3. Experimental results of MNIST reconstruction.
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To further research the efficacy of the proposed method, we continue to study the
reconstruction of extreme observations. As shown in Table 7, the compression ratio was
[(784 − 4)/784] × 100% ≈ 99.5%. When the observation dimension was 4 with the end-to-
end method, the reconstruction accuracy of ADT was 91.61%, which was 2.07% better than
AT and 4.54% better than A. The SSIM of ADT was 0.7032, which was 0.1185 higher than AT
and 0.2515 higher than A. When random input of dimension 4 was used, the reconstruction
accuracy of ADT was 83.86%, the reconstruction accuracy of AT was 84.95%, and the
reconstruction accuracy of A was 83.80%. Their SSIM were all below 0.4. As shown in
Figure 4, it can be seen intuitively that the end-to-end reconstruction accuracy and SSIM are
better those that of random input. Figure 5 shows the training loss curves of the end-to-end
method and random input; the end-to-end method’s loss curve is significantly lower than
that of random input. As shown in the average loss in Table 8, the average difference in
numerical values is 22.2930. As shown in Figure 6, the first line is the reconstruction effect
of random input with dimension 4, and the reconstruction effect of extreme observation
is blurry and unsharp. The second line is the end-to-end reconstruction effect. From the
perspective of the reconstruction image, the reconstructed image after the observation of A
is blurry, and the same image contains many contours of other images, which are almost
unrecognizable. Although the image reconstructed after using AT is blurry, the digit can be
distinguished compared with the A reconstruction, and some reconstruction effects are still
blurry. Compared with the A and AT reconstructions, the reconstructed image using ADT
has a high definition.

Figure 4. (Comparison of reconstruction accuracy (a) and SSIM (b) between random input and end-to-end.

Figure 5. The joint loss curves for (a) random input and (b) end-to-end.
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Table 8. Comparison of reconstruction results for extreme observations.

Observation Model A AT ADT

Reconstruction accuracy random input 83.80% 84.95% 83.86%
end-to-end input 87.07% 89.54% 91.61%

SSIM
random input 0.3491 0.3501 0.3803

end-to-end input 0.4517 0.5847 0.7032

Average loss random input 70.3399 53.0402 53.2837
end-to-end input 47.4702 33.8370 28.4777

Figure 6. Comparison of reconstructed images of extreme observations.

The convergence response of the end-to-end method was very rapid, and the clearer
and identifiable images were reconstructed almost in about 15 epochs, and the loss of ADT
reconstruction was lower than that of AT and A. Figures 3 and 6 also proved the ADT
reconstruction effect is better than that of AT and A. In Figure 6, the details and differences
between the reconstructed and original images can be seen in the marked red boxes.

In the experiment in this section, end-to-end was used in the reconstruction experiment
of MNIST. The compression ratio of 85% was the boundary. When the compression ratio
was lower than 85%, the reconstruction effect was similar to that of A, AT, and ADT under
the condition that MLP was used as the generative model. However, compared with AT
and ADT, A had less computation and more flexible code operations. In the case of similar
reconstruction results, the low computational cost shows apparent advantages. When the
compression ratio was higher than 85%, the reconstruction effect of ADT was significantly
better than that of AT and A and only needed about 15 epochs for rough reconstruction.

In contrast, the higher accuracy of reconstruction in a short time shows an advantage
over the lower-dimensional observation reconstruction. With the compression ratio at
99.5% of the extreme observation, the reconstruction accuracy of the end-to-end method
improved by 5.20% on average compared with the random input of DCS, and the SSIM
improved by 0.22 on average. That verified the feasibility of the extreme observation
and reconstruction method and showed that the end-to-end reconstruction method had
excellent elasticity in the observation dimension.

4.5. Fashion_MNIST Experiment and Analysis

In the experiments in the previous section, the feasibility of our proposed end-to-end
correspondence relationship for reconstruction was verified. The end-to-end reconstruction
is better than random input. However, to further improve the reconstruction effect, the
structure of the generative model has become our focus.

Although the original data in the S-REC condition are free from the sparsity require-
ment, the handwritten digits of MNIST have noticeable foreground and background,



Appl. Sci. 2022, 12, 12176 15 of 23

making the MNIST dataset have inherent sparsity. Therefore, the Fashion_MNIST dataset
was used in this section.

In the end-to-end reconstruction experiment of the Fashion_MNIST dataset, the ob-
served original data was 28 × 28. The observation models used were A, AT, and ADT. The
generative model of the experimental group was a Deconv_Net, and the control group was
an MLP in DCS. According to the experimental results in Section 4.4., when the compression
ratio was lower than 85%, the AT and ADT reconstruction advantage was not as good as that
of A. Therefore, only the reconstruction of the low observation dimension was performed in
this section, and the reconstruction was performed at the compression ratios of 90%, 95%,
98%, and 99.5% (the observation dimension was 78, 39, 16, and 4 (extreme observation)).

As shown in Figure 7, reconstruction accuracy curves and SSIM curves of different
model combinations under different compression ratios are obtained. It can be seen from
the trend that the reconstruction accuracy and SSIM of Deconv_Net+ADT are at high levels
under different compression ratios. The reconstruction accuracy and SSIM of MLP+A are
lower under different compression ratios.

Figure 7. Reconstruction accuracy (a) and SSIM (b) curves of different model combinations.

Table 9 shows more detailed values. When the compression ratio was 90% (the obser-
vation dimension was 78), the reconstruction accuracy of the Deconv_Net was 3% higher
than that of the MLP on average under different observation models, and the SSIM was
0.1797 higher than that. The best performance was the combination of the deconvolution
generative model and the deep observation model (ADT), with a reconstruction accuracy
of 99.23% and an SSIM of 0.9427. When the compression ratio was 95% (the observation
dimension was 39), the reconstruction accuracy of the Deconv_Net was 2.74% higher than the
MLP on average, and the SSIM was 0.1521 higher than that. The best performance was the
combination of the deconvolution generative model and the deep observation model (ADT),
with a reconstruction accuracy of 98.67% and an SSIM of 0.9152. When the compression ratio
was 98% (the observation dimension was 16), the reconstruction accuracy of the Deconv_Net
was 3.34% higher than the MLP on average, and the SSIM was 0.1346 higher than that. The
best performance was the combination of the deconvolution generative model and the deep
observation model (ADT), with a reconstruction accuracy of 98.00% and an SSIM of 0.8618.
When the compression ratio was 99.5% (the observation dimension was 4), the reconstruction
accuracy of the Deconv_Net was 2.49% higher than the MLP on average, and the SSIM was
0.1595 higher than that. The best performance was the combination of the deconvolution
generative model and deep observation model (ADT), with a reconstruction accuracy of
94.74% and an SSIM of 0.7405. It can also be concluded from the accuracy and SSIM curve
that the combination of the deconvolution generative model and deep observation model
(ADT) is optimal. In summary, the combination of the deconvolution generative model and
the deep observation model has a good reconstruction effect.
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Table 9. Comparison of Fashion_MNIST reconstruction accuracy results.

Method Compression Ratio
(Number of Observations) 90% (78) 95% (39) 98% (16) 99.5% (4)

Accuracy SSIM Accuracy SSIM Accuracy SSIM Accuracy SSIM

CSGM MLP + A 96.57% 0.7588 96.40% 0.6518 91.63% 0.5721 79.15% 0.3026
DCS MLP + AT 98.54% 0.9061 97.75% 0.8680 96.94% 0.8139 89.58% 0.5757
DCS MLP + ADT 98.49% 0.8980 97.65% 0.8879 97.51% 0.8602 93.88% 0.6898

We proposed
Conv + A 98.60% 0.8793 97.42% 0.7365 94.10% 0.6850 81.94% 0.3430

Conv + AT 98.77% 0.9206 98.45% 0.9081 97.32% 0.8340 93.40% 0.6441
Conv + ADT 99.23% 0.9427 98.67% 0.9152 98.00% 0.8618 94.74% 0.7405

The reconstruction effects are shown in Figures 8, 11, 14 and 17. The first row of all
figures is the end-to-end reconstruction result of the MLP generative model, and the second
row is the end-to-end reconstruction result of the Deconv_Net generative model. It can be
seen intuitively that the accuracy and SSIM of the reconstructed image are relatively high
in the two modes at lower compression ratios.

Figure 8. Reconstruction results of a 90% compression ratio.

The reconstructed image with a 90% compression ratio is shown in Figure 8. Columns
one, three, and five in Figure 8 are the original images, and columns two, four, and six are
the restored images of different models. In Figure 8, the details of the reconstructed image
and the original image can be noticed from the red marked boxes. The reconstructed image
contains many details of the original image.

Figure 9 is a histogram of reconstruction accuracy and SSIM of different models when
the compression rate is 90%. It can be seen that there is not much difference.

Figure 9. Comparison of reconstruction accuracy (a) and SSIM (b) between MLP and Deconv at a
90% compression ratio.
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Figure 10 shows the loss curves for different models. Through the loss curve, it
is found that there is no significant difference in the value of reconstruction loss after
observation using A, AT, and ADT. However, Deconv_Net’s loss curve was more stable
than MLP’s. This also shows that Deconv_Net generalization ability is better than MLP for
reconstructing all datasets.

Figure 10. The joint loss curve with the end-to-end MLP model (a) and with the end-to-end De-
conv_Net model (b) at a 90% compression ratio.

The reconstructed image with a compression ratio of 95% is shown in Figure 11.
Columns one, three, and five in Figure 11 are the original images, and columns two,
four, and six are the restored images of different models. In Figure 11, the details of the
reconstructed image and the original image can be noticed from the red marked boxes. The
reconstructed image contains many details of the original image.

Figure 11. Reconstruction results of at a 95% compression ratio.

Figure 12 is a histogram of reconstruction accuracy and SSIM for different models
when the compression rate is 95%. It can be seen that there is not much difference in the
reconstruction accuracy, but the SSIM of Deconv is higher than that of MLP.

Figure 13 shows the loss curves for different models. Similarly, through the loss curve,
it is found that there is no significant difference in the value of reconstruction loss after
observation using A, AT, and ADT. However, Deconv_Net’s loss curve was more stable
than MLP’s. This also shows that Deconv_Net generalization ability is better than MLP for
reconstructing all datasets.



Appl. Sci. 2022, 12, 12176 18 of 23

Figure 12. Comparison of (a) reconstruction accuracy and SSIM (b) between MLP and Deconv at a
compression ratio of 95%.

Figure 13. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net
model (b) at a 95% compression ratio.

The reconstructed image with a compression ratio of 98% is shown in Figure 14.
Columns one, three, and five in Figure 14 are the original images, and columns two, four,
and six are the restored images of different models. In Figure 14, the details and differences
between the reconstructed and original images can be seen in the marked red boxes. The
details of the reconstructed image become slightly blurred.

Figure 14. Reconstruction results of at a 98% compression ratio.
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Figure 15 is a histogram of the reconstruction accuracy of different models when the
compression rate is 98%. It can be seen that the reconstruction accuracy and SSIM of Deconv
are slightly higher than those of MLP.

Figure 15. Comparison of reconstruction accuracy (a) and SSIM (b) between MLP and Deconv at a
compression ratio of 98%.

Figure 16 is the loss curve for different models. When MLP is the generation model,
the reconstructed loss curve after observation with A, AT, and ADT fluctuates greatly and
is very unstable. The loss curve of Deconv_Net was more stable than that of MLP. This
suggests that Deconv_Net has been shown to generalize the fitted datasets better than MLP
as the compression ratio increases.

Figure 16. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net
model (b) at a compression ratio of 98%.

The reconstructed image with a compression ratio of 99.5% is shown in Figure 17.
Columns one, three, and five in Figure 17 are the original images, and columns two, four,
and six are the restored images of different models. In Figure 17, the details and differences
between the reconstructed and original images can be seen in the marked red boxes. The
details of the reconstructed image of A become blurred, while AT and ADT still maintain
contours and details.

Figure 18 is a histogram of the reconstruction accuracy for different models when the
compression rate is 99.5%. It can be seen that the reconstruction accuracy and SSIM of
Deconv are significantly higher than those of MLP.
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Figure 17. Reconstruction results of at a 99.5% compression ratio.

Figure 18. Comparison of reconstruction accuracy (a) between MLP and Deconv and SSIM (b) at a
compression ratio of 99.5%.

Figure 19 is the loss curve for different models. When MLP is the generation model,
the reconstructed loss curve after observation with A, AT, and ADT has a significant
fluctuation and is very unstable. The loss curve of Deconv_Net was more stable than that
of MLP. It can be seen from the loss curves of both models that the loss curves observed by
ADT are significantly lower than those of A and AT. Again, Deconv_Net shows a better
generalization of all fitted datasets than MLP as the compression ratio increases.

Figure 19. The joint loss curve with the end-to-end MLP model (a) and the end-to-end Deconv_Net
model (b) at a compression ratio of 99.5%.
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In the extreme observation a the dimension of four, the loss tends to be stable over a
small number of epochs, and a relatively clear reconstruction image is obtained. Moreover,
the loss curve of the Deconv_Net is significantly more stable than that of the MLP. It
indicates the relative stability of the end-to-end correspondence.

This section also concludes that the higher the number of observation dimensions,
the closer the reconstruction accuracy of A, AT, and ADT. The more no difference between
the reconstruction effect and the reconstruction accuracy can be guaranteed above 96%.
In this case, the reconstruction method combining A with the generative model with a
lower cost can be selected. As the observation dimension becomes smaller and smaller,
the observation vector seems to “condense” the original signal, and a minimal amount of
observation signal carries a massive amount of information about the original signal. In the
reconstruction experiments of different observation models, the reconstruction accuracy of
the Deconv_Net generative model is 1.38% higher than that of the MLP generation model
of DCS, and the SSIM is 0.0522 points higher than that. When the extreme observation with
a compression ratio is 99.5% (the observation dimension is 4), the reconstruction accuracy
of the Deconv_Net generative model is 2.49% higher than that of the MLP generative model
of DCS, and the SSIM is 0.0532 higher than that. It also shows that the combination of
the deconvolution generative model and the multi-layer perceptron observation model
provides a higher possibility for the high-precision reconstruction of the observed image
by establishing the corresponding relationship from end-to-end.

5. Conclusions

First of all, for the reconstruction of extreme observations, the end-to-end correspon-
dence method proposed by us shows a very obvious reconstruction effect in MNIST dataset
experiments compared with the random input of CSGM and DCS. The reason is that it
is difficult to find random variables in the latent space that match the corresponding re-
constructions during the reconstruction of extreme observations. Our idea is to directly
use the low-dimensional vector of extreme observation to correspond with the observed
original data for reconstruction. RIP and S-REC provide a guarantee for establishing the
corresponding relationship. Secondly, in the end-to-end framework, the method of us
combining the deconvolution generative model with the observation model is compared
with the method of DCS combining the multi-layer perceptron generative model with the
observation model. The reconstruction accuracy is improved by 1.38%, and the SSIM is
improved by 0.0522 on average. The reconstruction accuracy of the extreme observation is
improved by 2.49%, and the SSIM is improved by 0.0532 on average. The deep observation
model of a multi-layer perceptron and the deconvolution generation model show excellent
reconstruction performance. Since, in the deep observation model of a multi-layer percep-
tron, the dimension reduction of each hidden layer is constrained by RIP, different original
signals will not be mapped to the same observation vector. At the same time, the generative
model is also subject to RIP constraints: different observation vectors will not map to the
same reconstruction signal, which provides a guarantee for the reconstruction of extreme
observations. In the hidden layer structure of the generative model, the deconvolution
generation model is different from the multilayer perceptron. The feature map of the
deconvolution network carries the spatial information of the image, so in the extreme, the
feature map of the hidden layer of the convolution network carries more data features than
the linear connection of the multilayer perceptron, which is beneficial to the reconstruction
of image data.

Generalization ability is commonly mentioned in machine learning, and overfitting is
a key obstacle in machine learning that is not easy to overcome. In this paper, the generative
neural network model was used to reconstruct compressed sensing, which was a lossy
reconstruction process. The reconstruction process precisely uses the disadvantage of
overfitting to improve the reconstruction’s accuracy. In future research, we will continue
exploring methods for the high-precision reconstruction of low-dimensional observations
and combine this method with application scenarios.
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