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Abstract: Fast-grown Paulownia wood is extensively used as construction material in China. The
mechanical properties of Paulownia wood at room temperature are well known. However, investi-
gations of its mechanical behavior at elevated temperatures are very limited. To address this issue,
thermal analysis was conducted to investigate the mass loss and reaction heat during water evapo-
ration and thermal decomposition. Moreover, parallel-to-grain compressive and tensile tests were
conducted on clear Paulownia wood specimens at temperatures ranging from 20 ◦C to 220 ◦C. It
was found that kinking is the main failure mode of the compressive specimens, while transverse
rupture was frequently observed in the tensile specimens. At 220 ◦C, the retention rates of the aver-
age parallel-to-grain compressive and tensile strengths were 38% and 42%, respectively. However,
the strengths significantly increased as the temperature increased from 100 ◦C to 140 ◦C, due to
the moisture evaporation and the hardening of the dry lignin. The design curve suggested by EN
1995-1-2 was very conservative (as much as 76%) at estimating the parallel-to-grain compressive
strengths. However, the design curve was slightly nonconservative (less than 6%) at predicting the
parallel-to-grain tensile strengths when the temperature was below 60 ◦C. Furthermore, a significant
reduction (approximately 40%) in the deformation capacity was found when the temperature was
higher than 180 ◦C.

Keywords: Paulownia wood; elevated temperature; tensile behavior; compression behavior; thermal
analysis

1. Introduction

Steel and concrete have been extensively used in the construction of buildings and
infrastructure. However, their production can produce large amounts of pollution and
carbon dioxide emissions. Compared with traditional construction materials (e.g., steel
and concrete), wood is renewable and sustainable and can significantly reduce carbon
dioxide emissions. Moreover, it has a high specific strength and good seismic performance,
attracting great interest from civil engineers and researchers. In fact, many traditional Chi-
nese buildings, e.g., the Forbidden City, or the Pagoda of Yingxian County, were made of
structural wood. Moreover, modern timber houses are widely adopted in developed coun-
tries and regions, such as Northern Europe, North America, New Zealand and Japan [1,2].
Although structural wood exhibits many advantages, it is sensitive to elevated and high
temperatures. When exposed to fire, several physical changes and chemical reactions occur
within the wood [3–6]. As a result, the mechanical properties of the structural wood may
significantly reduce [7].

Several investigations have been conducted to explore the thermal and mechanical degra-
dations of structural wood under fire or elevated temperatures. The research on the tensile
strength of wood at high temperature can be traced back to the experimental study reported
by Schaffer et al. [8] on the parallel-to-grain tensile strength of Douglas fir at temperatures
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between 25 ◦C and 288 ◦C. It was found that the tensile strength decreased slightly from
room temperature to 175 ◦C, and then reduced significantly when the temperature was
higher than 175 ◦C. Östman [9] reported the parallel-to-grain tensile properties of spruce at
temperatures between 25 ◦C and 250 ◦C. It was found that the tensile strength of spruce
at 250 ◦C is 35% of that at room temperature while the tensile modulus is 53% of that at
room temperature. Yang [10] conducted parallel-to-grain tensile experiments on larch and
Douglas-fir wood at temperatures from 20 ◦C to 250 ◦C, considering three temperature
durations of 60, 120 and 180 min. A nonlinear relationship was found between the ultimate
tensile strength and the temperature. The reduction in the tensile strength was slight in the
range of 100 to 150 ◦C and the peak tensile strength was found in the range of 150 to 200 ◦C.
When the temperature was higher than 200 ◦C, the tensile strength decreased rapidly.
For the specimens with a temperature duration of 60 min, the average tensile strength of
Douglas fir and larch at 250 ◦C was 33% of that at room temperature. Pearson et al. [11]
studied the influence of moisture content and temperature on the tensile properties of New
Zealand pine, and the tensile stress–strain relationship under different moisture content
and temperature was presented and discussed.

Schaffer et al. [8] reported the compressive properties of dried Douglas-fir wood at
elevated temperatures. The results showed that the compressive strength decreased slowly
as the temperature rose from room temperature to 288 ◦C. Yang [10] studied the parallel-to-
grain compressive strength of Douglas fir and larch wood at elevated temperatures. It was
found that the failure mode of the specimens at temperatures from 20 ◦C to 130 ◦C was
kinking. As the temperature increased from 130 ◦C to 250 ◦C, end crushing was the typical
failure mode. Bednarek et al. [12] reported the parallel-to-grain compressive properties of
oak and pine wood at temperatures from 50 ◦C to 230 ◦C. The compression performance of
Brazilian paricá wood at elevated temperatures was investigated by Figueroa et al. [13] via
three different heating treatment methods (steady-state heating HT, heat treatment TT and
water-saturated WS). It was found that the heating treatment and wood moisture content
had a great impact on compressive performance. When the temperature increased from
room temperature to 150 ◦C, the moisture content was close to zero. Furthermore, when
the temperature was higher than 150 ◦C, the color of the wood was significantly deepened.
The compressive strength of the HT specimen decreased by 23% from room temperature to
80 ◦C. Subsequently, it increased to the maximum value from 80 ◦C to 150 ◦C due to the
reduction of the water content. When the temperature increased from 150 ◦C to 230 ◦C,
the compressive strength decreased nonlinearly due to the gradual cracking of cellulose.
As a result, the compressive strength at 230 ◦C is 35% of that at room temperature [14].
Based on the above experiments, it was found that the moisture content in wood is an
important factor affecting the mechanical properties. The tensile and compressive strengths
of the wood generally decreased with the increase in temperature from 20 ◦C to 300 ◦C.
However, in some cases, the tensile and compressive strength increased significantly as the
temperature increased from approximately 100 ◦C to 160 ◦C.

In China, fast-grown Paulownia wood is extensively used in timber structures and
wood-cored sandwich structures. However, the mechanical properties of Chinese Paulow-
nia wood exposed to elevated temperatures is yet to be known. This paper aims to study
the effect of elevated temperatures on the parallel-to-grain tensile and compressive per-
formance of Paulownia wood. Thermal analysis was conducted to investigate thermal
degradation at high temperatures. Tensile and compressive experiments on clear Paulow-
nia wood at elevated temperatures from 20 ◦C to 220 ◦C were conducted. The failure modes
of the specimens were presented. Moreover, the temperature-dependent progressions of
the moisture, strength and deformation capacity were also presented and discussed.

2. Experimental Program
2.1. Materials

In this study, Chinese Paulownia wood from Shandong province was used as the
test material. Table 1 shows the basic physical and mechanical properties at ambient tem-
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perature. The apparent density of the Paulownia wood was determined as 353 kg/m3.
The average moisture content was measured as 10.9% according to GB/T 1931-2009 [15].
The parallel-to-grain tensile strength and the parallel-to-grain compressive strength were
measured according to GB/T 1938-2009 [16] and GB/T 1935-2009 [17], respectively. More-
over, the tangential shear and radial shear strengths were tested according to GB/T 1937-
2009 [18]. The parallel-to-grain tensile modulus and compressive modulus at ambient
temperature were 5.6 GPa and 4.9 GPa, respectively.

Table 1. Mechanical properties of the Paulownia wood at room temperature.

Species Density
(kg/m3)

Moisture
Content (%)

Strength Parallel to Grain (MPa)

Tension Compression Tangential Shear Radial Shear

Paulownia 353 10.9 43.3 24.5 6.6 4.5

Thermogravimetric analysis (TGA) and differential scan calorimeter (DSC) tests were
conducted from room temperature to 900 ◦C at a heating rate of 10 ◦C/min. The powder
of the Paulownia wood was used as the sample. Before the thermal test, the sample was
placed in a standard condition room. Air and nitrogen atmospheres were adopted as purge
gases and nitrogen was used as the protection gas.

2.2. Specimens

The appearance of the specimens is shown in Figure 1a. The clear specimens were
cut from the Paulownia wood panel. The geometry of the tensile specimens is shown in
Figure 1b. The size of the compressive specimens is 20 mm × 20 mm × 60 mm, according to
GB/T 15777-1995 [19]. A total of 54 tensile specimens and 54 compressive specimens were
designed and fabricated. Six repeated specimens were tested for each target temperature.
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Figure 1. Specimen details: (a) overview and (b) geometry of the tensile specimens.

2.3. Experimental Instruments and Setup

Figure 2 presents the configuration of the heating chamber with compressive and
tensile fixtures for the uniaxial compressive and tensile tests. All specimens were firstly
cured in the condition room with an average temperature of 20 ◦C and an average relative
humidity of 65%. Subsequently, the density and moisture content were measured before
the test. Then, the specimen was placed into the heating chamber. In order to measure the
moisture content, five wood cube samples with a length of 20 mm were simultaneously
placed in the heating chamber. The specimens were heated to the specified temperature,
which was then maintained for 10 min before the mechanical loading. As shown in Figure 2b,
the compressive load was transferred from the universal test machine to the specimen via the
moving steel bar with a bearing plate. For the tensile specimen, the ends were fixed with
the grips, as depicted in Figure 2c. All the specimens were loaded with a loading rate of
2 mm/min up to the end of the tests. After the failure of the specimen, the cube samples
were weighed to determine the moisture content.
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3. Experimental Results and Discussion
3.1. Thermal Analysis

Figure 3 shows the TGA and DSC curves of the Paulownia wood exposed to air and
nitrogen atmospheres. The mass loss of the sample in air can be generally divided into three
stages. In the first stage, the mass retention rate decreased from 100% at 39 ◦C to 96% at
120 ◦C, due to the moisture evaporation. The second stage was the thermal decomposition
from 200 ◦C to 378 ◦C. As a result, the mass retention rate reduced from 95.5% at 200 ◦C to
20.5% at 378 ◦C. In the third stage, the mass loss was nearly 98.6% at 430 ◦C, indicating that
the char was almost completely oxidized. Regarding the sample exposed to nitrogen, it
exhibited similar mass loss during the moisture evaporation and the thermal decomposition
stages. However, the TGA curve of the sample in nitrogen moved rightward compared to
that of the sample in air, indicating the thermal decomposition in nitrogen occurred later
than that in air. Moreover, the mass slowly decreased from 26% at 400 ◦C to 17% at the end
of the test while the mass of the sample in air was almost constant (1–1.4%) above 430 ◦C.
Based on the DSC curves, it is worth noting that the thermal decomposition in nitrogen
was an endothermic reaction while the thermal decomposition and oxidation in air are
exothermic reactions. In an actual fire scenario, a thermal decomposition reaction occurs
within the wood, and the volatile combustible gases are continuously transmitted to the
surface of the structure and burned, consuming a large amount of oxygen. Since the air
pressure in the thermal decomposition area is much higher than the pressure on the surface
of the component, it is difficult for oxygen to enter the interior of the wood. Therefore, it
can be inferred that only a thermal decomposition reaction may occur within the wood
when subjected to fire.
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3.2. Failure Modes

The typical failure modes of the tensile specimens are shown in Figure 4a. Most of the
specimens exhibited a transverse crack in the middle. Moreover, a longitudinal crack was
also formed in a few specimens. Yue et al. [20] found that similar transverse cracks occurred
in tensile specimens made of Douglas-fir wood above 130 ◦C, while irregular cracks formed
below 130 ◦C. However, the failure modes of the tensile Paulownia wood specimens were not
affected by the temperature. Figure 4b presents the typical failure modes of the compressive
specimens. It can be seen that a kinking band was clearly formed on the compressive specimens.
Moreover, crushing failure was found at the end of the specimen. The crushing failure of
Paricá wood at elevated temperatures was also observed by Manríquez el al. [14]. In addition,
some specimens were split into two parts, as shown in Figure 4b. The same failure modes
(kinking, crushing and splitting) were observed by Yue et al. [20] in Douglas-fir wood at
elevated temperatures. Table 2 summarizes the number of different failure modes for all
the specimens at different temperatures. Figure 5 presents the percentages of the failure
modes at the target temperatures. For the tensile specimens, a transverse fracture is the
dominant failure mode. For the compressive specimens, kinking is the main failure mode,
while a few specimens exhibited a splitting failure. Furthermore, it seems that the elevated
temperatures had limited effect on the failure mode of the compressive specimens.
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Table 2. Summary of failure modes of the tested specimens.

Temperature
(◦C)

Compression Tension

Kinking End
Crushing Splitting Transverse

Cracking
Longitudinal

Cracking

20 3 3 0 5 1
60 5 0 1 3 2

100 6 0 0 5 1
120 2 2 2 3 3
140 2 4 0 4 2
160 4 1 1 5 1
180 3 2 1 6 0
200 3 2 1 5 1
220 6 0 0 6 0
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3.3. Temperature-Dependent Moisture Content and Color Changes

Figure 6 shows the variation of the average moisture content of the wood cube samples
with the increase in temperature. The moisture content nonlinearly decreased dramatically
from 20 to 120 ◦C due to the moisture evaporation. When the temperature increased to 120 ◦C,
the average moisture content reduced to almost zero, indicating the specimen was totally
dried. A linear reduction of the moisture content in Paricá wood from 20 ◦C to 150 ◦C was
observed by Manríquez et al. [14]. The Paricá wood was totally dried at 150 ◦C, which was
higher than the temperature (120 ◦C) of the Paulownia wood. This was because the size of
the Paricá wood specimen (50 mm × 50 mm × 150 mm) was larger than the Paulownia
wood cube (20 mm × 20 mm × 20 mm) for the test of moisture content. As a result, the
thermal lag in the larger Paricá wood specimen delayed the moisture evaporation process.
Figure 7 depicts the color changes of the typical specimens at different temperatures. It can
be seen that the color of the specimens gradually changed from light to dark. At 220 ◦C,
a large area of the tensile and compressive specimens turned black due to the significant
thermal degradation of the constituents.
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Figure 7. Color changes of specimens: (a) compression and (b) tension.

3.4. Load-Displacement Responses

Figure 8 presents the compressive stress-displacement responses of the specimens
at different temperatures. At the beginning of the test, the compressive stress linearly
increased with the increase in axial displacement. Subsequently, the compressive stress
increased nonlinearly up to the strength, followed by a gradual descending of the compres-
sive stress. It should be noted that considerable dispersion was found in the curves for
each target temperature. This was due to the non-uniform nature of the Paulownia wood.
Figure 9 depicts the tensile stress-displacement responses of the specimens at ambient
and elevated temperatures. The tensile stress linearly increased up to the failure of the
specimen, indicating that the tensile rupture is brittle. Figure 10a,b, respectively, show the
typical compressive and tensile stress-displacement relationship of the Paulownia wood
at different temperatures. The typical curve is selected based on the average strength of
the specimens at each target temperature (i.e., the strength determined from the typical
curve is closest to the average strength). It can be seen that the elevated temperatures had
a significant effect on the stiffness (slope of the curve) of the specimens. Generally, the
stiffness of the specimens decreased from 20 ◦C to a temperature of around 120 ◦C, due
to the softening of the wet cellulose and lignin. However, it increased significantly from
120 ◦C to 140 ◦C. This mainly resulted from the moisture (free water) evaporation and
the hardening of the dry lignin of the wood [20]. When the temperature was higher than
140 ◦C, the bound water began to evaporate while the polymer components of the wood
(i.e., the cellulose, hemicellulose and lignin) started to be thermally degraded. As a result,
the stiffness gradually reduced as the temperature increased from 140 ◦C to 220 ◦C.
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Figure 9. Stress-displacement responses of all the specimens in tension.
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Figure 10. Typical stress-displacement curves: (a) compression and (b) tension.

3.5. Temperature-Dependent Strengths and Deformations

Figure 11a,b show the average parallel-to-grain compressive and tensile strengths of
the Paulownia wood at different temperatures. Figure 11c,d show the normalized compres-
sive strength and tensile strength, respectively. As the temperature increased from 20 ◦C to
220 ◦C, the average compressive strength generally decreased. The average compressive
strength of the specimens at 120 ◦C was 88% of that at room temperature. Moreover, the av-
erage compressive strength increased significantly from 120 ◦C to 140 ◦C. Consequently, the
part of the curve at 140 ◦C was almost overlapped by that at 20 ◦C, as shown in Figure 10a.
As described before, this was mainly attributed to the hardening of the dry lignin of the wood
between 120 ◦C and 140 ◦C. At 220 ◦C, the retention rate of the average compressive strength
was only 38%. The average tensile strength decreased significantly as the temperature
increased from 20 ◦C to 100 ◦C. When the temperature increased from 100 ◦C to 140 ◦C,
the average tensile strength gradually increased. It is interesting to find that the tensile
strength and stiffness increased at a lower temperature (100 ◦C) than that (120 ◦C) for the
compressive strength and stiffness. This can be explained by the free water in the tensile
specimen evaporating faster than the compressive specimen, since the tensile specimen
is much thinner than the compressive specimen. Hence, the hardening degree of the dry
lignin of the tensile specimen is greater than the compressive specimen. At 140 ◦C and
above, the average tensile strength gradually decreased due to the degradation of the
polymer components of the wood. The average tensile strength at 220 ◦C was 42% of that
at room temperature. Table 3 summarizes the average compressive strength and tensile
strength, as well as the corresponding retention rate.
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Figure 11. Strength degradation of the wood samples [10,20,21]: (a) compression; (b) tension; (c) nor-
malized compressive strength; and (d) normalized tensile strength.

Table 3. Temperature-dependent average strengths and the corresponding deformations.

Temperature (◦C)

Compressive
Strength Tensile Strength Compressive

Deformation Tensile Deformation

(kN) (%) (kN) (%) (mm) (%) (mm) (%)

20 24.5 100 43.6 100 1.27 100 1.78 100
60 21.8 89 33.4 77 1.01 80 1.40 78

100 21.5 88 29.7 68 1.04 82 1.55 87
120 21.4 88 32.8 75 1.13 89 1.56 88
140 23.5 97 33.3 76 1.26 99 1.52 85
160 17.6 72 28.9 66 1.15 91 1.49 84
180 16.2 66 24.5 56 0.96 76 1.03 58
200 15.2 48 22.2 51 0.95 75 1.09 61
220 11.1 38 18.4 42 0.95 75 1.01 57

The average parallel-to-grain compressive and tensile strengths of the Douglas-fir
wood and Larch wood at elevated temperatures from 20 ◦C to 250 ◦C are also depicted
in Figure 11a,b, respectively. At each target temperature, the average compressive (ten-
sile) strength of the Larch wood was the highest, while that of the Paulownia wood
was the lowest. This can be understood because the density of the fast-grown Paulownia
wood (353 kg/m3) is much lower than the Douglas-fir wood (486 kg/m3) and Larch wood
(596 kg/m3). According to EN 1995-1-2, the normalized parallel-to-grain compressive strength
Pc and the tensile strength Pt can be calculated as shown in Equations (1) and (2), respectively:

Pc =

{
− 3

320 T+ 19
16 if 20 ◦C ≤ T ≤ 100 ◦C

− 1
800 T+ 3

8 if 100 ◦C < T ≤ 300 ◦C
(1)
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Pt =

{
− 7

1600 T+ 87
80 if 20 ◦C ≤ T ≤ 100 ◦C

− 13
4000 T+ 39

40 if 100 ◦C < T ≤ 300 ◦C
(2)

where T denotes the temperature (◦C). The normalized temperature-dependent compres-
sive strengths (retention ratios) of the Paulownia wood, Douglas-fir wood and Larch wood,
as well as the design curve of the compressive strength in EN 1995-1-2 [21] are presented in
Figure 11c. It can be found that the normalized compressive strength of the Paulownia wood
decreased at a slower rate than that of the Douglas-fir wood and Larch wood when the tem-
perature was below 140 ◦C. However, it reduced at a faster rate when the temperature was
above 140 ◦C. Moreover, the design curve was much more conservative (as much as 76%
for the Paulownia wood) at predicting the temperature-dependent compressive strengths
of the presented woods. Figure 11d depicts the normalized temperature-dependent tensile
strengths of the woods and the design curve of the tensile strength in EN 1995-1-2. It can
be found that the normalized tensile strengths reduced at a faster rate than the normalized
compressive strengths. Furthermore, the design curve of the tensile strength was noncon-
servative for the Paulownia wood (less than 6%) and Douglas-fir wood (less than 5%) when
the temperature was below 60 ◦C, whereas it was conservative (3–24% for the Paulownia
wood) for all the woods when the temperature was above 100 ◦C.

Figure 12 depicts the deformation of specimens at the peak loads (strengths) at different
temperatures. Table 3 summarizes the corresponding average values and the retention rates.
The deformation of the specimens was generally related to the moisture content, physical
behavior and chemical reaction of the polymer components. For the compressive specimens,
the average deformation at the peak load gradually decreased as the temperature increased
from 20 ◦C to 60 ◦C. This can be explained in two ways: (1) the compressive strength
decreased at a faster rate than the stiffness; (2) The heat treatment of the hemicellulose
component of the cell wall led to the reduction of hygroscopicity, resulting in a decrease of
swell-deformation capacity [14]. Subsequently, the average deformation increased as the
temperature increased from 60 ◦C to 140 ◦C, due to the glass transition (softening) of the
polymer components. It should be noted that at 140 ◦C the moisture was totally evaporated,
indicating that the deformation capacity was mainly affected by the thermal degradation of the
polymer components. As a result, the average deformation gradually decreased above 140 ◦C.
At 180 ◦C, the average deformation was 76% of that at room temperature. After 180 ◦C, the
average deformation was basically stable. As shown in Figure 12b, the deformation variation
of the tensile specimens was similar to the compressive specimens. As the temperature
increased from 20 ◦C to 60 ◦C, the deformation significantly reduced. Then, the deformation
gradually increased as the temperature increased to 120 ◦C, at which point the deformation
is about 85% of that at room temperature. Subsequently, the deformation retention rate
gradually decreased to 58% at 180 ◦C. No significant change in deformation was found
between 180 ◦C and 220 ◦C. Hence, the deformation capacity (ductility) of the specimens
significantly decreased when the temperature was higher than 180 ◦C. Moreover, as shown
in Figure 12c, the deformation retention rate of the compressive specimens was significantly
higher than the tensile specimens at temperatures higher than 120 ◦C. This was because the
compressive force can lead to the buckling and kinking of the wood fibers, resulting in a
larger deformation than the tensile specimens.
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4. Conclusions

In this paper, a total of 108 clear Paulownia wood specimens were tested to investigate
the parallel-to-grain compressive and tensile properties at elevated temperatures from
20 ◦C to 220 ◦C. Based on the experimental results, the following conclusions can be drawn:

(1) The compressive Paulownia wood exhibited ductile failure modes. Kinking, end crush-
ing and splitting failure modes were observed in the compressive specimens, while kinking
was the main failure mode. The tensile Paulownia wood mainly exhibited a brittle failure.
Transverse cracks were formed in the middle of the specimens, while a few specimens exhibited
longitudinal cracks. The failure modes were generally not affected by elevated temperatures.

(2) For the Paulownia wood in compression, the parallel-to-grain compressive stress
increased linearly at the initial stage. Subsequently, the parallel-to-grain compressive stress
increased nonlinearly, and then decreased slowly up to the end of the test. For the specimens
in tension, the parallel-to-grain tensile stress increased linearly up to the tensile failure.
Moreover, the elevated temperatures had limited effect on the nonlinear- (linear-) loading
behavior of the compressive (tensile) stress-displacement curve of the Paulownia wood.

(3) The parallel-to-grain tensile and compressive strengths of the Paulownia wood
depended highly on the moisture content and the behavior of polymer components (i.e.,
cellulose, hemicellulose and lignin) at elevated temperatures from 20 ◦C to 220 ◦C. Generally,
the parallel-to-grain tensile and compressive strengths decreased with the increase in
temperature. At 220 ◦C, the retention rates of the average parallel-to-grain compressive
and tensile strengths were 38% and 42%, respectively. However, due to the moisture
evaporation and the hardening of the dry lignin, the average parallel-to-grain strengths
significantly increased as the temperature increased from 100 ◦C to 140 ◦C.

(4) The design curve suggested by EN 1995-1-2 was very conservative (as much as
76%) at predicting the temperature-dependent compressive strengths of the Paulownia
wood. However, the design curve was nonconservative (less than 6%) at estimating the
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tensile strengths of the Paulownia wood when the temperature was below 60 ◦C, whereas
it was conservative (3–24%) when the temperature was above 100 ◦C.

(5) The maximum deformation (at the peak load) of the Paulownia wood decreased
from room temperature to 60 ◦C. Subsequently, the maximum deformation increased as
the temperature increased from 60 ◦C to a temperature of around 120 ◦C. The lowest value
of the deformation was found within the temperature range of between 180 ◦C and 220
◦C. Hence, the deformation capacity of the specimens significantly decreased when the
temperature was higher than 180 ◦C.
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