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Abstract: The structural response of buildings to earthquake shaking is of critical importance for
seismic design purposes. Research on the relationship between earthquake ground motion intensity,
building response, and seismic risk is ongoing, but not yet fully conclusive. Often, probability
demand models rely on one ground motion intensity measure (IM) to predict the engineering
demand parameter (EDP). The engineering community has suggested several IMs to account for
different ground motion characteristics, but there is no single optimal IM. For this study, we compile a
comprehensive list of IMs and their characteristics to assist engineers in making an informed decision.
We discuss the ground motion selection process used for dynamic analysis of structural systems. For
illustration, we compute building responses of 2D frames with different natural period subjected to
more than 3500 recorded earthquake ground motions. Using our analysis, we examine the effects of
different structural characteristics and seismological parameters on EDP-IM relationships by applying
multi-regression models and statistical inter-model comparisons. As such, our results support and
augment previous studies and suggest further improvements on the relationship between EDP and
IM in terms of efficiency and sufficiency. Finally, we provide guidance on future approaches to the
selection of both optimal intensity measures and ground motions using newer techniques.

Keywords: ground motion; intensity measures; structural response; inter-story drift ratio; correlation;
performance-based earthquake engineering

1. Introduction

Loss estimation in buildings due to earthquake shaking is critical for performance-
based earthquake engineering (PBEE), which comprises four major components—seismic
hazard, building response, probability of damage, and the costs due to losses and repairs.
The engineering decisions on the retrofitting of structures are made based on probabilistic
estimates of seismic performance of structures in terms of repair cost, casualties, and loss
of functionality acceptable to stakeholders. In the first two stages of the PBEE framework,
seismic hazard and building responses are estimated and represented in terms of “intensity
measures” (IMs) and “engineering demand parameters” (EDPs). The implementation of a
PBEE framework relies strongly on the ability of IMs to predict EDPs accurately. Each stage
of PBEE is accompanied by uncertainties, both seismological and structural, influencing
loss estimation [1].

Limited knowledge about earthquake source processes, Earth structure, and local site
conditions contribute to uncertainties in seismological parameters, which in turn influence
the estimation of IMs. Empirical ground motion prediction equations (GMPEs; also called
ground motion models, GMMs) are available to predict IMs [2]. In GMMs, the complexities
of the earthquake source process and seismic wave propagation in 3D heterogeneous Earth
are simplified and then statistically accounted for when estimating ground motion inten-
sities for future earthquakes. In addition to the seismological uncertainties, uncertainties
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in the structural response of buildings play a significant role in PBEE. These include the
uncertainties in the estimation of stiffness, damping, and inertial characteristics of the
building frame.

The characteristics of earthquake ground motion can be described by several types of
IMs, related to the amplitude, frequency, and energy of ground motion. Therefore, to estab-
lish a meaningful relationship between ground motion and the corresponding structural
response, it is necessary to investigate a broad range of IMs and analyze their correlations
with building response over magnitude, distance, and site condition (e.g., Vs30).

IM-EDP relationships have been explored previously. Shome [3] coined the term
“efficiency” to describe a given IM, whereby an efficient IM generates less variability
(dispersion) about an estimated median in the predicted EDP. Efficiency is quantified
by the standard deviation (“sigma”) in a prescribed EDP-IM relationship (Equation (1)).
Padgett et al. [4] used “practicality” as another descriptor of an IM to examine direct cor-
relations between IM and EDP. In practice, it is measured using the slope (regression
parameter “b” in Equation (1) below) of the predictive relationship between IM and EDP. If
the slope approaches b = 0, there is smaller dependence of the EDP on the IM, indicating
that the IM is less practical to be used for structural design purposes.

Padgett et al. [4] also proposed “proficiency” as an indicator of IM, to investigate the
combined effect of both efficiency and practicality. Proficiency is measured by a modified
dispersion measure (ζ = σ

b ) that quantifies the uncertainty introduced in a regression
model as shown in Equation (1),

log (EDP) = a + b*log (IM) + δ (1)

Here, a and b are coefficients obtained through linear regression; δ is the residual
variability to characterize the variabilities between observed and predicted EDPs. For
Equation (1), a lower dispersion measure ζ indicates a more proficient IM.

Luco and Cornell [5] introduced the term “sufficiency” for IM-EDP relationships that
are invariant over magnitude, fault mechanism, epicentral distance, and site class. More
recently, Yeudy et al. [6] proposed a “steadfastness” measure to determine the robustness
of IMs with respect to variations in building properties. It is computed as the ratio of mean
of proficiencies when buildings are sorted with respect to the number of stories and total
proficiency. Steadfastness becomes important in an urban setting where different building
types exist.

Marafi et al. [7] defined “structurally independent”, “versatile” and “transparent”
IMs that are invariant with respect to building types, also characterizing ground motion
features such as peak values, duration and spectral properties. In addition to these proposed
descriptors, “hazard computability” is important because existing seismic hazard maps
are generally given in terms of PGA and period-dependent spectral acceleration (Sa(T));
however, ideally generating new hazard maps and fragility curves for a specific IM should
be computationally and logistically simple [8,9].

Engineers have proposed a range of IMs to account for the differences in ground mo-
tion characteristics, but there is no consensus yet on which IMs, or combinations therefore,
may be most appropriate. Thus, the first objective of this paper is to review the different
IMs proposed in the literature, as well as the rationale behind their development. Due to
the increased use of ground motion IMs in modern ground motion selection techniques, we
examine the development of these techniques. The main objective of this paper, however,
is to extensively evaluate existing IMs based on seismological and structural factors.

For this, we compile a list of ten IMs that are straightforward to calculate and for
which GMMs are available. To model the structural response, we consider 18 2D reinforced
concrete (RCC) frames with natural periods varying from 0.14 to 1.55 s; these we subject
to over 3500 ground motion records. For various structural and seismological parameters,
we then examine the correlations between frames and IMs. As a final step, we propose
methodologies for utilizing these IMs in a manner that is both efficient and sufficient
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for calculating building responses. In the context of PBEE, the results of the paper are
important in identifying the “ideal” combination of IMs depending on the situation.

2. Ground Motion Intensity Measures

With the increasing availability of strong ground motion data, new IMs are suggested
to improve existing EDP prediction models. However, the efficiency of a particular IM
depends on how well it correlates with the EDPs. An IM with stronger correlation with
a particular EDP indicates that it is a good predictor. For example, spectral measures
such as spectral acceleration (Sa(T)), spectral velocity (Sv(T)) and spectral displacement
(Sd(T)) at the fundamental period of the structure are commonly found as efficient IMs
based on correlation between EDP and IM [10–12]. However, these IMs do not account for
higher vibration modes of the structure and non-linear effects, such as elongation of natural
period [5,13–17]. To address this concern, several contemporary IMs have been proposed
to accommodate the characteristics of both the ground motion and the structure [7,17–34].

2.1. Spectral Shape IMs

As discussed earlier, Sa(T) considers the response of a building with fundamental fre-
quency T to a given ground motion record. However, due to the presence of higher modes,
the response is also affected by ground motion contributions at other periods. Previous
studies observed that the addition of spectral information in IMs reduces variability in the
EDP-IM relationship significantly (Shome and Cornell [4], Carballo and Cornell [20], Baker
and Cornell [21]). Shome and Cornell [4] reported an increase in efficiency for tall buildings
by including spectral values at the second and third periods. Studies accommodate spectral
shape by combining spectral values over a variety of periods [22–26].

Based on time history analyses of single degree of freedom structures (SDOF) with
different hysteretic behaviors, Haselton and Baker [22] found the use of Sa at an elongated
natural period to be more efficient. To account for period elongation, Cordova et al. [23]
proposed a new IM (Equation (2)), with optimal values of c = 2 and α = 0.5 obtained by
calibrating the response of four moment frame structures subjected to 16 near- and far-field
ground motion records. Later, Mehanny [24] replaced the multiplier ′c′ in Equation (2) with
a relative lateral strength parameter (R). The efficiency was tested by subjecting 80 records
to many SDOF systems with different hysteretic behaviors and values of R. This provides
flexibility to the IM to adapt for buildings with different non-linear behaviors.

IMCordova = Sa

(
Tf

)
·

 Sa

(
cTf

)
Sa

(
Tf

)
α

(2)

Vamvatsikos and Cornell [17] showed that for structures with small contributions
from higher modes, any reasonable choice for period elongation results in smaller dis-
persion. However, when higher modes are significant, two new IMs are proposed, listed
in Equations (3) and (4), in which Ta, Tb, Tc are empirically defined periods whose values
were computed from time history analysis of 5, 9 and 20 story frames subjected to 30 ground
motion records. It was observed that any reasonable value higher than the first three elastic
periods for Ta, Tb and Tc provides smaller dispersion [17]. Later, Lin [25] and Lin et al. [26]
proposed modifications to Cordova [23] and Vamvatsikos and Cornell [17] by using three
different frame configurations (4, 10 and 16 stories). The frames were subjected to 30 scaled
and unscaled ground motion records. Equation (5) for short periods (Tf < 1.5 s) considers
period elongation, and Equation (6) for long periods (Tf > 1.5 s) accounts for higher mode
effects [25].

IMVamvatsikos = Sa(Ta) ·
[

Sa(Tb)

Sa(Ta)

]β

(3)

IMVamvatsikos = Sa(Ta)

[
Sa(Tb)

Sa(Ta)

]β

·
[

Sa(Tc)

Sa(Ta)

]γ

(4)
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IMLin,short = Sa(T1)
a · Sa(CT1)

1−α (5)

IMLin, long = Sa

(
Tf

)β
·Sa(T2)

1−β (6)

The above IMs only consider spectral information at certain periods and lack infor-
mation of spectral shape. Bianchini et al. [27] proposed an alternative IM (Equation (7))
based on spectral values computed at 10 logarithmically spaced values between Tf and
Tn. The efficiency of this IM when compared to Sa(Tf) and PGA was better for frames
with higher mode effects. Tsantaki et al. [28] modified Equation (7) to incorporate P-delta
effects (secondary effects when axial and transverse loads are applied simultaneously) by
including a period band δT (Equation (8)). Similar IMs were put forward by Bojorquez and
Iervolino [29,30], Eads et al. [31,32], and Xiao et al. [33,34].

For near-field ground motions, the spectral frequency content around the first mode
of vibration is more efficient as IM than Sa(Tf ) [19]. To account for it, Yahyaabadi and
Tehranizadeh [35] proposed a root mean square-based IM, demonstrating that choosing op-
timal periods ensures efficiency regardless of the number of stories or ductility demand [35].

IMBianchini =
(

Sa

(
Tf

)
·... · Sa(Tn)

) 1
n (7)

IMTsantaki =
(

Sa

(
βTf

)
·Sa

(
βTf + δT

)
·... · Sa

(
βTf + nδT

)) 1
n (8)

Some studies integrated spectral values over a range of periods to better account
for spectral shape. Housner [36] proposed integration of a pseudo-spectrum velocity
curve over the integration limits 0.1 and 2.5 s (Housner Intensity HI, Equation (9)). Von
Thun et al. [37] proposed a similar IM using the same periods of vibration as Housner [36]
but using the velocity response spectrum (velocity spectrum intensity VSI, Equation (10)).
The measure has been suggested for assessing earthquake responses for earth and rockfill
dams. Von Thun et al. [37] also introduced the acceleration spectral intensity (ASI), as they
considered the information related to the acceleration spectrum more important for the
seismic response and design of short-period dams (Equation (11)).

HI =
∫ 2.5

0.1
PSv(T, ξ)dT (9)

VSI =
∫ 2.5

0.1
Sv(T, ξ)dT (10)

ASI =
∫ 0.5

0.1
Sa(T, ξ)dT (11)

These IMs do not consider structural damage in the form of period elongation, and
hence, several modifications were proposed to equations VSI and ASI by changing the
integration limits. Kappos [38] replaced the integration limits in VSI by Tf − t1 to Tf + t2,
where t1 and t2 are period widths that are structure specific. Matsumura [39] replaced the
integration limits with Ty to 2 Ty, where Ty is the yield period determined from pushover
analysis. Martinez-Reuda [40] replaced the upper integration limit in Matsurma [39] with
the hardening period of the structure. There is a need for this IM when strong ground
motions from larger events or from site-amplified motions extend the natural period of
building beyond the yield period.

2.2. Duration IMs

Shaking duration is another IM that strongly influences building response. The effect
of ground motion duration has been studied for specific local site conditions (i.e., saturated
soil deposits); however, the correlation of shaking duration and structural response needs
to be further explored. Bommer and Martinez-Pereira [41] reviewed the role of different
duration parameters in assessing structural damage. Subsequent studies observed cyclic
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fatigue effects under longer-duration earthquakes, leading to reduced strength and stiffness
of masonry structures [42]. Based on Chandramohan et al. [43], significant duration (Tsig) is
considered to be the most suitable IM for determining ground motion duration compared
to other measures. Tsig is the time difference of 5% and 95% (or 75%) energy thresholds
under the acceleration of time history. Marafi et al. [8] proposed to combine duration
and spectral shape in a single measure (Equations (12) and (13)). IMdur in Equation (12)
reflects the effect of duration, and IMshape incorporates the spectral shape information. The
coefficients are based on regression analysis and account for sensitivities. In Equation (12),
IMdur is given by Tsig, and IMshape is computed using Equation (13). ′α′ in Equation (13)
accounts for period elongation effects.

IMComb = Sa (Tn) IMCdur
dur IM

Cshape
shape, (12)

IMshape =
1

Sa (Tn)(α− 1)Tn

∫ αTn

Tn
Sa(T)dT (13)

2.3. Energy IMs

The aforementioned IMs depend on structural configuration and are computed from
spectral values. However, other IMs use accelerograms directly, which we a refer to as en-
ergy IMs. Energy represents the cumulative energy per unit weight absorbed by an infinite
set of undamped single degree of freedom oscillators with a uniform distribution of periods
on (0, ∞) [44]. As energy measures of ground motion, root-mean-square acceleration
(ARMS), Arias intensity (IA) and cumulative absolute velocity (CAV) are available. ARMS is
calculated as the effective acceleration of ground motion during the significant duration
(Equation (14)) and depends on both duration and energy characteristics of the record. In
Equation (14), Tsig is the significant duration, and a(t) is the acceleration time series. Arias
intensity (IA), (Equation (15)) represents the energy dissipated during the entire record
duration. Cumulative absolute velocity (CAV, Equation (16)) is calculated as the area under
the absolute accelerogram, thus representing the continuous accumulation of acceleration
in a ground motion record. CAV is a useful measure of the onset of structural damage.

ARMS =

√
1

Tsig

∫ t2

t1
[a(t)]2dt (14)

IA =
π

2g

∫ t

0
[a(t)]2dt (15)

CAV =
∫ Tsig

0
|a(t)|dt (16)

The IMs summarized above incorporate duration and amplitude characteristics. How-
ever, some studies refer to IMs accounting for amplitude, duration and frequency content
also as energy-based IMs. To equate the motion for a damped SDOF system subjected to
ground acceleration, each term is multiplied by differential increments of displacement
and are integrated in the time interval (0, t) to obtain Equation (17) [45]. Equation (17)
represents kinetic energy (EK), damping energy

(
Eξ

)
and absorbent energy (EA) on the

left side, while the right side represents relative input energy (EI). Housner [46] defined
actual damage to structures as the difference between relative input energy and damping
energy. Equations (18) and (19) are equivalent velocities that represent the relative input
energy and damage energy, respectively.

m
∫ t

0

..
u

.
udt + c

∫ t

0

.
u

.
udt + k

∫ t

0

.
uudt = −m

∫ t

0

.
u

..
ugdt (17)

VE = (2EI/m)0.5 (18)
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VD = (2ED/m)0.5 (19)

2.4. Vector Valued IMs

To account for lack of information in scalar IMs discussed above, some authors propose
vector-valued IMs. Elefante et al. [47] proposed a combination of PGA and moment
magnitude Mw as a more efficient predictor than PGA alone. A combination of Sa(Tf) and
ε(Tf ) (Equation (20)) was proposed by Baker and Cornell [48]. For a particular magnitude
Mw, distance R and other site-source properties denoted by ϕ, ε(Tf ), a spectral shape
measure is defined as the number of standard deviations that separate a given lnSa(Tf)
value from the mean predicted µln Sa(Tf )

from a ground motion model (Equation (20)).

Baker and Cornell [1] also proposed a combination of Sa(Tf) and R = Sa(T*)/Sa(Tf). Here,
T* is any other period that is chosen to represent the spectrum’s shape, and T* = 2Tf

and T* = T2 for accounting for period elongation or higher mode effects was suggested
by Baker and Cornell (2008a) [1]. Other vector-valued measures that use Sa(Tf) and a
few unitless quantities are discussed in the literature. Bojórquez et al. [49] proposed
IA, normalized by the product of PGA and PGV, whereas Theophilou et al. [50] proposed
SdN(Tf,T2), determined by integrating the displacement response spectrum and normalizing
with Sd(Tf).

ε
(

Tf

)
=

In Sa
(

Tf

)
− µln Sa(Tf )

(Mw, R, ϕ)

σln Sa(Tf )
(Mw, R, ϕ)

(20)

The above summary of proposed IMs illustrates that with the ever-increasing number
of IMs available in the literature, it is important to understand their correlation with
building response. The number of buildings instrumented to record the shaking response
during earthquakes is small. However, due to the efforts of the California Strong Motion
Instrumentation Program (CSIMP) and the Japanese Building Research Institute (BRI), this
database is also growing. Perrault and Guéguen [51] used these data to calibrate existing
EDP prediction models; they found that the variability in total drift ratio can be reduced
by classifying the buildings based on construction material and height. Astorga et al. [52]
developed a flat file of some of the EDPs and IMs calculated from the recorded building
responses and earthquake ground motions from CSIMP and BRI databases.

Recent research has focused on ensuring that hazard consistency is enforced during the
selection of records, rather than covering response estimates for ground motions generated
by all possible scenarios. Therefore, modern ground motion selection techniques account
for a variety of IMs in the process of record selection. Let us therefore review different
methods of selecting ground motions in the following section.

3. Ground Motion Selection Techniques

Non-linear phenomena, such as plastic hinge deformation and soil-structure interac-
tions, contribute to intricate building responses. To capture these complexities, non-linear
dynamic analysis of buildings is necessary. A linear elastic dynamic analysis, however,
is useful for multiple-supported infrastructures, such as bridges, because of dominant
vibration modes [53]. Linear analysis uses a response spectrum as input, while non-linear
analysis requires a complete earthquake ground motion time history as input. As com-
puting capabilities have advanced, seismic building codes recommend using non-linear
dynamic analysis. However, near-field ground motions themselves are very complicated
due to intricacies of the earthquake rupture process, seismic wave propagation in 3D
heterogeneous Earth, and local site effects [54]. Ground motion selection is thus key to
determining whether a dynamic analysis provides a building response that is “relevant”
for the site. Because of the subtleties involved in the selection process, this section provides
an overview on available selection techniques.

Results of seismic hazard analysis (SHA), either deterministic (DSHA) or probabilistic
(PSHA), are required to aid in the selection process. Using a deterministic approach, the
magnitude of the maximum credible earthquake (MCE) for the site of interest is identified
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based on the tectonic setting and past data [55,56]. As a result, records are selected based
on the magnitude–distance combinations that are likely to generate the highest ground
motion amplitude. A probabilistic approach involves integrating the expected seismicity
over a period and a chosen magnitude range (i.e., all earthquakes larger than moment
magnitude Mw 4) to estimate strong motion parameters (such as peak ground acceleration,
PGA, or spectral values Sa(T)), including their uncertainties [57–61]. Subsequently, hazard
curves are computed for specific strong ground motion parameters. A uniform hazard
spectrum (UHS) can then be derived and used for the time history selection process. In the
next few sections, we review different ground motion selection approaches described in
the literature.

3.1. Selection Based on Seismological and Site Characteristics

Several methods were initially proposed to select ground motions based on magnitude
and epicentral distance. Young et al. [62] developed a database of records with sets based on
magnitudes and site distances. As expected, earthquake magnitude is an important factor
for earthquake selection in other studies (Bommer and Acevedo [63], Stewart et al. [64]). It
is common for the search window range of magnitude and distance to be adjusted in order
to include more records. Magnitude ranges of ±0.2 Mw and ±0.25 Mw are proposed by
Bommer and Acevedo [63] and Stewart et al. [64].

Iervolino and Cornell [65] demonstrated that selection based on magnitude and dis-
tance is not justified. For this purpose, Iervolino and Cornell [65] analyzed two classes of
records for a target site (Mw = 7.0 and R = 20 km). One class of records is chosen based on
magnitude and epicentral distance, while another class of records is chosen arbitrarily from
an earthquake catalogue, but scaled. Generally, scaling is performed so that spectral values
at natural periods of structures are closer to UHS at those periods. These records were
subjected to different SDOF and MDOF structural systems with different natural periods
and configurations, hysteresis relationship and material of construction (reinforced concrete
and steel). In terms of building response from these two sets, no significant difference was
detected to justify a careful selection of records. In addition, Bazzurro and Cornell [66,67]
demonstrated that displacements of nonlinear structural elements are independent of epi-
central distance. Nevertheless, magnitude and distance are still used in practice for initial
selection of records, at least when they are readily available.

In record selection, the soil profile is also considered if available. Depending on the
velocity layers of the soil beneath the building, ground motion may be amplified or de-
amplified. Vs30, time-averaged shear wave velocity in the top 30 m, is usually used to
represent the soil characteristics. Based on Vs30, seismic codes characterize the type of
soil in different categories such as rock, stiff soil, and loose soil (NEHRP). Bommer and
Scott [68] discovered that when soil type is used to select records from a strong motion
database comprising 1600 records from 1933 to 1995, the number of records available for
selection is dramatically reduced.

In addition to the factors discussed above, strong motion duration is critical for
building performance and has to be included when choosing ground motions. However,
strong motion duration depends on the rupture duration (the time it takes from the onset
of the rupture process until it is completed) on the causative fault, and thus, it is already
partially considered in magnitude (larger-magnitude earthquakes have longer rupture
duration). We remark that the effect of strong motion duration also depends on the demand
indexes that are considered. For example, duration has no effect on peak deformation
parameters but affects hysteretic energy and the number of cycles. ASCE Standard 4–98 [69]
proposes to take a record’s duration as an indication of the ground motion at a site at a
given seismic hazard level.

Furthermore, the seismotectonic settings need to be accounted for, as they also affect
strong ground motion. Kawaga et al. [70] demonstrated that ground motions at the
surface of buried faults are stronger than those at the surface of surface ruptures at 1
s periods. Furthermore, shallow-crust earthquakes show different peak and spectral
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amplitudes versus subduction zones (Lin and Lee, [71]). Therefore, these parameters
should be considered when selecting a ground motion. As a result of these constraints,
the pool of records is significantly reduced during the selection process. In several studies,
however, similar ground motions and underlying source mechanisms have been found for
earthquakes in different regions (Boore et al. [72], Stafford et al. [73]).

3.2. Selection Based on Spectral Values

In a building code framework, spectral matching, which involves matching the re-
sponse spectrum of candidate records with the target spectrum, is recommended. This
target spectrum is characterized by a smooth design spectrum at different periods. It is
possible to verify candidate response spectra with target records using different approaches
(Ambraseys et al. [74], Iervolino et al. [75]). Ambraseys et al. [74] proposed Equation (21)
to verify the spectral compatibility of records. Drms considers the difference of spectral
values between a candidate and target spectrum. The thresholds for Drms depend on the
period range of interest and number of records required. Alternative approaches involve
the scaling of spectral values at longer periods (Beyer and Bommer [76]).

Drms =
1
N

√√√√ N

∑
i=1

(
SαO(Ti)

PGAO
− Sαs(Ti)

PGAs

)2
(21)

A building code’s design spectrum is an approximate version of the Uniform Hazard
Spectrum (UHS), which is more common in practice. The UHS is calculated in the PSHA
framework using spectral accelerations at different periods for the same hazard levels.
Baker and Cornell [48], however, argue that UHS is ineffective for selecting ground motions,
and instead propose a conditional mean spectrum (CMS). Baker and Cornell [48] state
that the UHS does not represent the spectrum of any individual ground motion; hence, it
is unlikely that an individual ground motion will exceed the hazard level at all periods.
Therefore, building designs based on UHS are more conservative.

To propose CMS, Baker and Cornell [48] used deaggregation analysis of PHSA. This
information pertains to earthquake events (Mw, R and ε) that are most likely to produce a
specific target spectral value over a particular period. The ε value defines how much larger
a target spectral value at a given period is compared to the predictions of a GMM (GMM
of Abrahamson and Silva [77] is used in the original study [48]). A fundamental principle
of CMS is that the spectral value obtained from deaggregation of a given period does
not necessarily apply to other periods. A constant value of ε would represent a standard
UHS curve.

From a large suite of ground motions, Baker [78] observed a high correlation between
ε(T = 2s) and ε(T = 1s) (ρ = 0.75), compared to ε(T = 0.2s) and ε(T = 1s) (ρ = 0.44). We
can use this correlation relationship to determine the trend over different periods, provided
we know what the information was during a particular period. The target spectrum can be
derived from mean values of ε, which are computed as a multiplication of ε at a known
period and correlation coefficients between ε at known and unknown periods derived
from a ground motion database. The procedure to compute CMS has been illustrated in
Baker [79]. Equations to compute mean

(
µε(Ti)|ε(T∗)

)
and median CMS values are given in

Equations (22) and (23).
µε(Ti)|ε(T∗) = ρ(Ti,T∗) ε(T∗) (22)

µln Sa(Ti)|ln Sa(T∗) = µln Sa(M, R, Ti) + ρ(Ti, T∗)ε(T∗)σln Sa(Ti) (23)

Baker and Jayaram [80] computed ρ based on statistical analysis of joint distributions of
spectral accelerations. Ground motions are selected by matching the mean target response
spectrum (Equation (23)), which is computationally inexpensive. The variance of target
response spectrum can also be calculated and holds crucial information. Ground motion
selection is then based on optimization schemes as those proposed by Jayaram et al. [80]
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and Baker and Cynthia [81]. In these algorithms, simulated realizations and target spectra
are generated randomly, and records are then selected based on the difference between
the means and variances of the simulated realizations and the target spectra. CMS can
also be referred to as conditional spectra (CS) when both the mean and variance of the
target spectra are matched. Recent studies by Kwong et al. [82] have extended the CS
approach to include both vertical and horizontal records and to select records based on
multiple components.

There is a major limitation when using CS, due to the fact that the response spectrum
does not accurately represent the seismic response of structures. Several IMs were proposed
that are associated with both structural and seismological parameters, as discussed in
Section 2. This led Bradley [83,84] to develop the generalized conditional intensity measure
(GCIM), a more holistic approach to include any IM in conditional distribution calculations.
The selection can be based on a scalar or a vector of intensity measures. To be consistent with
current practices in seismic hazard analysis, Lin et al. [85] further modified the CS algorithm
by allowing different GMMs to be used to calculate ε. Highlighting the importance of the
spectral correlation structure with periods, Ha and Han [86] developed a methodology
considering correlation structure in the selection process along with target spectra. This is
very important when selecting simulated ground motions that do not necessarily follow the
same correlation structure as recorded ground motions [87]. Kohrangi et al. [88] developed
a compound target spectrum that incorporates multiple target spectra at multiple IM levels
into a single spectrum. Kohrangi et al. [89] presented a newer CMS to use average spectral
acceleration over a period range (AVGSa) instead of Sa(Tf) as the conditioning IM.

3.3. Selection Based on Causal Parameters and Spectral Shape

Ground motion databases around the world are increasing rapidly, with NGA West2
being six times larger than NGA West1. Hence, Tarbali and Bradley [90] have argued for
screening candidate ground motions according to Mw, R and Vs30 (causal parameters) prior
to applying the selection based on spectral shape. The reason is that applying traditional
CS and GCIM techniques to a very large database will result in the selection of records
that the structure may never encounter. To perform this screening, Mw, R and Vs30 can be
bound using deaggregation results from PSHA. If the bounds are too narrow, there would
be few records left for selection, and if they are too wide, then incompatible records would
be left. As a result, it is necessary to carefully select the bounding values. The following
bounding limits for Mw and R (Table 1) were proposed by Tarbali and Bradley [90], where
Mw 1% represents the first percentiles of marginal deaggregation distribution results of Mw.

Table 1. Bounding limits proposed by Tarbali and Bradley (2016) [90].

Magnitude (Mw) Source-to-Site Distance (Rrup)

Upper Limit Lower Limit Upper Limit Lower Limit
min

(
M1%

w , M10%
w − 0.5

)
max

(
M99%

w , M90%
w + 0.5

)
min

(
R1%

rup , 0.5 R10%
rup

)
max

(
R99%

rup , 1.5 R90%
rup

)
A different method of analyzing this problem is proposed by Spillatura et al. [91];

they advocate that records should be screened after the spectral shape selection has been
completed. In their approach (referred to as CS-MR), records selected based on their
spectral shape are discarded based on the desired Mw and R bins. Records that do not
fit into desired Mw–R bins or those that exceed each bin’s contribution to a particular
hazard level are removed. This is followed by the addition of desired ground motions from
underrepresented Mw–R bins, resulting in a set of results that are consistent with both the
target spectrum and the deaggregation results.

The previous sections illustrate that ground motion record selection has become an
increasingly complicated process that includes consideration for a variety of seismological
properties. Therefore, it is necessary to investigate the relationship between IM-EDP in
relation to various seismological parameters. Let us therefore discuss in detail how different
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parameters (structural and seismological) affect the relationship between IM and EDP. We
also provide recommendations for future improvements.

4. Recommendation on Improving the Efficiency of Intensity Measures

In this section, we analyze efficiency and sufficiency of IMs by computing statistical
correlations between EDPs (maximum inter-story drift ratio) and ground motion IMs from
a set of near-field records in the NGA West2 database. We consider 2D reinforced concrete
(RC) frame buildings with different natural periods and perform non-linear time history
analysis to obtain inter-story drift ratios.

For each IM value, we investigate correlations of EDPs over magnitude, epicentral
distance, and site class for different natural periods of structures. We then examine corre-
lations using multi-parameter linear regression models to assess the change in efficiency
and sufficiency characteristics. Our results confirm and augment previous findings, while
we also provide recommendations on how the efficiency and sufficiency of IMs can be
improved. We discuss the ground motion database, intensity measures, and building
models in the following sub-section.

4.1. Ground Motion Database, Intensity Measures and Building Response

We select over 3500 near-field ground motion records from the NGA-West2 database
with epicentral distances Repi ≤ 100 km for moderate-to-large earthquakes in the magnitude
range Mw 5.0–8.0 (Figure 1). Figure 1 (right) displays the histogram of ground motion
records, sorted into magnitude bins 5–6, 6–7 and 7–8. There are a total of 3582 records
from 105 events of which 41% are reverse faulting, 22% of strike-slip and the remaining
events are normal and oblique mechanisms. Site conditions for these ground motion
recordings are site class A–E, based on Vs30 [92]. The two horizontal components of
ground motion are used individually to compute the structural response for different
building frame configurations.

For the chosen records, we compute ten widely used IMs, categorized as (i) peak
ground motion parameters (PGA, PGV and PGD), (ii) spectral and duration parameters
(Sa(T), ASI, VSI), and (iii) energy parameters (ARMS, CAV, IA) to accommodate the ampli-
tude, spectral, duration and energy.

Figure 2 summarizes the distance dependence of these IMs for the selected ground
motion dataset. The solid black line represents the moving window average of IMs. We
observe a more rapid distance decay of PGA than for PGV; however, PGD remains almost
invariant over distance. For spectral measures, a rapid decay with distance for ASI is
observed compared to VSI. For the three energy measures, we find that ARMS and IA
decrease with distance, while CAV remains almost constant. Tsig increases with distance,
as many recording sites are located in sedimentary basins where the intensity of ground
shaking and its duration increase with distance due to the slow arriving surface waves.

To analyze correlations between IMs and building response, we model two-dimensional
(2D) reinforced concrete (RC) frames, considering 18 different symmetric and asymmetric
configurations with natural periods varying from 0.14 to 1.55 s. Rayleigh damping is used
to model viscous damping in the structures and frequencies corresponding to the first
mode and mode98 (mode at which mass participation exceeds 98%), which are used to
evaluate damping coefficients. Table 2 summarizes our chosen building configurations
that represent typical RC frames designed according to building code recommendations.
Figure 3 and Table 3 describe the geometry and member configurations of three frames.
(#3, #9 and #14 in Table 2).
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Figure 1. (Left) Magnitude Mw versus epicentral distance Repi for strong-motion recordings in the
NGA west 2 database (gray dots). Red points show the dataset used in this study, focusing on the
near-fault region with maximum epicentral distance Repi = 100 km, leading to 3582 records from
105 events. We consider only magnitudes Mw > 5 to ensure a significant response of the structure;
41% of records are from reverse-slip, 22% each from strike-slip and oblique-slip and remaining from
normal slip events. (Right) Histogram of records sorted with respect to magnitude. The highest
strong motion records fall in 6.0 to 7.0 magnitude category, followed by 7.0 to 8.0 range.
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Figure 2. Variation of peak amplitude, spectral, temporal, and energy intensity measures with
epicentral distance. Black solid lines represent the moving average. PGA and PGV decrease with
epicentral distance, whereby the attenuation of PGA is stronger. PGD follows a constant trend with
distance. Spectral intensity measures and energy measures decrease with distance, except for CAV,
which remains almost invariant. Significant duration (Tsig) increases with distance.
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Table 2. Structural properties of selected frames.

S. No Number of Stories Number of Bays Fundamental Period(s)

1 2 2 0.141
2 4 3 0.233
3 3 3 0.358
4 3 2 0.463
5 4 3 0.535
6 7 5 0.621
7 6 3 0.693
8 6 4 0.769
9 7 3 0.816
10 5 3 0.845
11 8 3 0.962
12 9 3 1.046
13 10 3 1.157
14 10 3 1.213
15 10 4 1.276
16 11 3 1.391
17 12 3 1.471
18 12 5 1.558
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Figure 3. Geometric description of Frames #3, #9 and #14 in Table 2. All dimensions are in meters.
(a–c) corresponds to short, intermediate and long period structures.
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Table 3. Sectional properties of Frames #3, #9 and #14 in Table 2.

Frame No. Section Section ID Width [mm] Depth [mm] Total Longitudinal
Reinforcement Area [mm2]

Frame #3

Beam B1 250 500 904 (top), 452 (bottom)

Column
C1 300 250 904
C2 400 250 1206
C3 230 200 678

Frame #9

Beam
B1 300 400 1005 (top), 565 (bottom)
B2 300 600 2512 (top), 1206 (bottom)

Column
C1 600 300 3000 (exterior), 4800 (interior)
C2 600 230 2700 (exterior), 3850 (interior)
C3 500 230 1356 (exterior), 2100 (interior)

Frame #14

Beam B1 250 500 678 (top), 339 (bottom)

Column

C1 700 250 3000
C2 1200 250 5652
C3 650 250 2412
C4 1000 250 3768
C5 600 250 1260
C6 1000 250 2700
C7 550 250 1070
C8 900 250 2043
C9 500 250 850
C10 800 250 1500
C11 400 250 650
C12 700 250 1250

The material models of concrete and steel employed in this study are concrete02
model [93] with linear tension softening and reinforcing steel with strain hardening ratio
of 0.005. A description of the material models adopted for concrete and steel as well as
values for each parameter are shown in Figure 4 and Table 4. The corresponding equations
of motion are solved based on the finite-element method implemented in OpenSees [94].
All 2D-RC frames are assumed to be fixed at the column base. We apply the same dead
load (DL)/live load (LL) combination to all the frames as (100%DL + 25%LL) to ensure
equal contribution of inertial effects in the modal analysis of the frames.
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Figure 4. Material models for concrete (left) and steel (right) adapted from Opensees manual [94]. In
the concrete model, fpc stands for concrete compressive strength at 28 days and fpcu for concrete crush-
ing strength. Eo and Ets stand for initial elastic tangent and tension softening stiffness, respectively.
Epsco and Epscu are concrete strain at maximum and ultimate strengths, respectively. λ represents the
ratio between unloading slope at ultimate strain and initial slope. ft is the tensile strength of concrete.
In the steel model, fy stands for yield stress in tension, Eo is modulus of elasticity and b is the strain
hardening ratio. The values adopted for concrete and steel models are given in Table 4.



Appl. Sci. 2022, 12, 12089 14 of 31

Table 4. Material properties for concrete and steel models used for modeling frames.

Material Parameter Value

Concrete

fpc 25 MPa
E

psco
0.002

fpcu 2 MPa
E

pscu
0.0035

Eo 29,000 MPa
λ 0.1
ft 3.5 MPa

Ets 1750 MPa

Steel
fy 500 MPa
Eo 200,000 MPa
b 0.005

To simulate the response of a frame subjected to earthquake ground motion, we per-
form a nonlinear direct-integration time history analysis using the Newmark Scheme [95] to
estimate the energy demand parameter (EDP). For the EDP, we use “maximum inter-story
drift ratio” (ISD), which is more suitable for multi-degree-of-freedom structures [96]. Dam-
age states and the corresponding drift ratio thresholds are defined depending on the seismic
design level, performance level, and building typology (height, material or construction
type) [97]. The correlations between IM and EDP are discussed in the next section.

4.2. EDP-IM Relationship

To examine correlations between the various parameters of interest, we first extract
the inter-story drift ratio (ISD) computed for all considered frames. Using the Pearson
correlation coefficient, we then quantify the correlation between ISD and IMs by applying
linear regression to fit the measured ISDs with a given IM (Equation (1)).

Figure 5 shows the variation of ISD for six of ten different IMs, including the cor-
relations coefficient (ρ), efficiency (σ), practicality (b) and proficiency (ζ) measures. The
mean predictions for the EDP along with the standard deviations (solid and dashed lines)
are plotted for each IM. Both peak measures, PGA and PGV, show similar correlation (ρ)
with EDP; however, the variability is lower for PGV. VSI and IA are good indicators for
spectral and energy measures of IMs, respectively. Among all IMs, the correlation of Tsig
with inter-story drift is smallest. ASI, PGV and VSI show similar proficiency; however,
proficiency is higher for IA and Tsig.

For comparison, Table 5 shows the correlation properties of 15 different IMs, including
the IMs proposed by Cordova et al. [23], Vamvatiskos and Cornell [17], Lin et al. [25],
Bianchini et al. [27] and Tsantaki et al. [28]. Larger correlations for spectral measures
compared to other IMs are consistent with the results of Astorga et al. [52], who used
building response of existing structures exposed to earthquake motions. The current
overall correlation properties do not distinguish buildings with different natural periods;
hence, we divide frames by their natural periods and examine the effect on the correlations.

4.2.1. Period Dependence

In this section, we investigate the structural period dependence of the estimated
correlations by classifying frames by their natural period. Figure 6 illustrates the variation
of correlations of peak measures, spectral measures, and energy measures with fundamental
period of the structure. We observe that correlations of peak measures show significant
variations with fundamental period (Figure 6a). PGA exhibits strong correlations for short-
period structures (T < 0.4 s), and PGV shows strong correlations for intermediate-period
(0.4 < T < 0.8 s) and long-period structures (0.8 < T < 1.2 s). Although the correlations with
PGD reveal an increasing trend with period, PGD does not saturate to a constant value
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for the structural periods considered. Therefore, we conclude that PGD is not a good IM
indicator for building frames for this range of natural periods.
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Figure 5. Correlation between inter-story drift ratio and six intensity measures. Bold numbers denote
the correlation coefficient, efficiency, practicality, and proficiency of IMs with respect to equation
log (∆) = a + b ∗ log (IM) (red line). Variability (sigma) is computed as the mean of residual (δ)
from equation log(∆) = a + b ∗ log (IM) + δ . (a,b) correspond to peak measures (PGA, PGV) and
(d,e) correspond to spectral measures (ASI, VSI). (c,f) are for significant duration (Tsig) and Arias
intensity (IA).

Table 5. Correlation, efficiency, practicality, and proficiency of 15 IMs. IMCordova, IMVamvatsikos, IMLin,
IMBianchini and IMTsantaki are computed using Equations (2)–(5), (7) and (8), respectively. VSI, ASI,
ARMS, IA and CAV are computed using Equations (10) and (11) and Equations (14)–(16).

IM Correlation (ρ) Efficiency (σ) Practicality (b) Proficiency (ζ)

PGA 0.79 0.79 1.01 0.78
PGV 0.83 0.67 0.93 0.72
PGD 0.73 0.86 0.62 1.39
Sa(T) 0.72 0.88 0.76 1.16
ASI 0.81 0.74 1.05 0.71
VSI 0.83 0.67 0.92 0.73

IMCordova 0.66 0.95 0.66 1.44
IMVamvatsikos 0.59 1.04 0.52 2.0

IMLin 0.68 0.92 0.69 1.33
IMBianchini 0.84 0.69 1.03 0.67
IMTsantaki 0.75 0.89 0.92 0.97

Tsig −0.17 1.30 −0.40 −3.25
ARMS 0.8 0.77 0.99 0.77

IA 0.81 0.74 0.53 1.39
CAV 0.75 0.83 0.97 0.86
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Figure 6. Correlations between IMs and EDPs as a function of structural period. (a–c) are for peak,
spectral and energy measures, respectively. PGA and PGV exhibit good correlation; PGA decreases
with period. The correlation with PGV increases with period, with a slight decrease beyond 1.2 s;
the correlation with PGD is moderate and increases with period. Among the spectral measures,
the correlation for ASI is similar to that of PGA, and VSI is similar to that of PGV. For long period
structures, correlation with VSI remains almost constant. Sa(T) shows strong correlation for short-
period frames and remains constant for longer periods. Among the energy measures, ARMS and IA

decrease with periods, while CAV remains approximately constant.

Figure 6b depicts the variation of correlations between spectral parameters and ISD
with the fundamental period of structures, as well as the correlations between significant
durations and Sa(T). Sa(T) seems to be an applicable IM over the entire range of natural
period. Since ASI and VSI are influenced by high-frequency and intermediate-frequency
contributions of the pseudo-spectral acceleration and velocity response, they exhibit strong
correlations at the corresponding natural periods. The good performance of spectral
measures over peak measures to predict building response is consistent with previous
studies [10–12,98]. This can be attributed to the fact that spectral shape of ground motion
affects the building response and that peak measures are not representative of the shape
of the spectra. Figure 6c shows the period-dependent correlations of energy measures.
ARMS and IA exhibit correlations of around 0.9 for short period structures and decrease
with period. For CAV, correlations are around 0.8 and remain almost invariant with the
natural period.

For the building frames modeled in our study, we do not observe any correlation of
ISD with ground motion duration, Tsig. Several studies have shown that longer ground
motion durations impart a larger number of cycles of earthquake loading on the structure,
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thus causing significant impact on structural response [99,100]. However, the selected
frames do not account for effects of structural fatigue; therefore, the responses do not
correlate with duration.

Despite high correlations and low variability, peak and spectral measures (except
Sa(T)) are not entirely structurally independent. Therefore, it is important that the selection
of these IMs must be made based on the fundamental vibration mode of the structure.
Our analysis shows that for very small periods (<0.3 s), PGA is a good indicator, while
for periods (0.3–0.6 s), ASI is an efficient indicator. For moderate (0.6–1.2 s) and long
periods (>1.2 s), PGV and VSI better capture the response of structure, respectively. In the
next section, we examine the effect of magnitude Mw and epicentral distance Repi on the
correlations between IM and EDP.

4.2.2. Magnitude and Epicentral Distance

To further discuss the sufficiency of the selected IMs, we examine the dependence
of correlations with event magnitude and epicentral distance, considering three different
magnitude bins: 5.0 ≤Mw ≤ 6.0 (I), 6.0 < Mw ≤7.0 (II) and 7.0 < Mw ≤ 8.0 (III). We compute
correlations between ISD and IMs using a moving window approach for each magnitude
bin. From all 2D-RC frames, we select three frames with fundamental periods to represent
a short (Tf = 0.35 s), intermediate (Tf = 0.82 s) and a long period (Tf = 1.21 s) structure
(frames #3, #9, and #14 of Table 1) (henceforth denoted as SP, IP, and LP structures). The
distance-dependent correlations of peak, spectral, and energy measures for the different
magnitude classes are summarized in Figures 7–9.
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Figure 7. Distance-dependent correlations of peak measures (PGA, PGV, PGD) for different magni-
tude bins (Mw 5–6, Mw 6–7 and Mw 7–8) (panels a–i). Rows correspond to variations in correlations
of PGA, PGV and PGD for three different types of structures—short period, intermediate period and
long period (SP, IP and LP). Correlations of PGA and PGV are almost invariant for SP and IP/LP
structures, respectively (panels a,e,f). For IP/LP structures, correlations of PGV increase with distance
for magnitude bins Mw 6–7 and Mw 7–8. PGD shows significant distance and magnitude dependence
for all types of structures.
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Figure 8. Distance-dependent correlations of spectral measures (ASI, VSI, Sa(T)) for different magni-
tude classes (Mw 5–6, Mw 6–7 and Mw 7–8) (a–l). Rows correspond to variations in correlations of
ASI, VSI and Sa(T) for three different types of structures (SP, IP, LP). Correlations of ASI (a–c) and VSI
(d–f) are almost invariant for SP and IP/LP structures, respectively, and do not show any noticeable
magnitude dependence. Correlations of Sa(T) vary less for SP structures than IP or LP.

From the ten IMs, we find that correlations of PGA and ASI are invariant with mag-
nitude and distance for SP structures (Figures 7a and 8a). For IP and LP structures, cor-
relations of PGA and ASI decrease for magnitude bin Mw 6–7 in the distance range of
40–70 km. Similar findings appear for energy measures (ARMS, IA and CAV). This may
be a consequence of several seismological effects such as directivity effects and/or site
effects. Correlations with peak measures are strongest for small magnitude events and
then decrease with magnitude, especially in the case of PGV and PGD. The dependence on
event magnitude is not significant for Sa(T) at different distance bins (Figure 8). Among all
energy measures, ARMS and IA show the lowest correlation with respect to magnitude and
distance (Figure 9).

For the epicentral distance range 30–80 km, distance-dependent correlations are larger
for small magnitude events, while correlations with IMs are similar across all magnitude
classes beyond 80 km. This behavior of the IMs is expected, because the building response
is non-linear close to the source and tends to a more elastic at larger distances from the
source. Figure 10 shows the logarithmic ratio of observed response (EDP) and elastic limit
for SP, IP and LP structures for different magnitude classes. The elastic limit is taken as
the total elastic drift ratio and is computed from pushover analysis. As distance increases,
the response becomes linear (ordinate less than zero). Since at far distances, the response
is linear for most of the records, the correlations are similar for all magnitude classes.
For intermediate distances, the response is significantly linear only for magnitude bin I
(5 < Mw < 6), with stronger higher correlation than the other two classes.
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Figure 9. Distance-dependent correlations of energy measures (ARMS, IA, CAV) for different mag-
nitude classes (Mw 5–6, Mw 6–7 and Mw 7–8) (a–i). Rows correspond to variations in correlations
of ARMS, IA and CAV for three different types of structures (SP, IP, LP). Energy measures, especially
ARMS (a–c) and IA (d–f), show very similar variation in correlations as that of PGA in Figure 7.

Let us now analyze the relationship between IM and EDP based on another seismo-
logical parameter, the site class.

4.2.3. Site Class

We now discuss the influence of soil types on the correlations, by grouping the ground
motions according to site classes B, C, D and E, using the NEHRP soil classification. Site
class A is not considered due to the small number of available records (only 0.2% in our
database). To present these correlations, we again use the selected SP, IP, and LP frames
(Figure 3). Figure 11 reveals that site class does not affect the correlations of PGA and ASI
for SP structures and PGV and VSI for IP/LP structures. High correlation of PGV and
VSI irrespective of site class was also reported by Ozmen and Inel [101]. For PGD, the
correlations decrease with site class. However, the correlations with PGV decrease with
site class (B to E) or shear wave velocity Vs30. ASI and VSI exhibit correlations similar to
PGA and PGV. Among the spectral measures, the correlation with Sa(T) shows the least
variation with site class. Among the energy measures, ARMS and IA show good correlations
and smallest dependence on site class (Figure 11). However, the correlations with CAV
decrease with site Vs30.

In summary, for a given natural period of interest, ASI and VSI represent sufficient
IMs for SP and LP structures, respectively. Figure 12 displays the variation of ISD with
Vs30, documenting that the mean response does not change much with soft sediment shear
velocity. However, our assumptions related to the building models simplify the interaction
with the sedimentary layers by using a fixed support at the column bases. Furthermore,
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lateral deformation of structures in loose soils will be affected by rocking and rotations of
foundations, which are not considered in our approach.
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Figure 10. Logarithmic ratio of observed EDP and elastic limit for SP, IP and LP structures (a–c). 

The black solid line is the elastic limit for SP, IP and LP structures respectively. The colors show 

Figure 10. Logarithmic ratio of observed EDP and elastic limit for SP, IP and LP structures (a–c). The
black solid line is the elastic limit for SP, IP and LP structures respectively. The colors show ground
motion grouped into different magnitude bins. The solid lines are the moving averages of logarithmic
ratio of observed EDP and elastic limit. As epicentral distance increases, the records rather produce
elastic responses and hence show larger correlations.

4.3. Analysis of Functional Forms

Thus far, we have used the standard functional model (single parameter regression
model) to define relationships between IMs and EDP (Equation (1)). However, this model
does not sufficiently capture the complex interaction of the two. We observe that by
including the seismological parameters in the functional form, the efficiency in predicting
EDPs increase on average by 10% for the selected IMs. Perrault et al. [51] considered a
multiple IM approach by including PGA, CAV, Sa(T) and Sv(T) within a frequency range
close to the fundamental period of the structure. Yeudy et al. [6] included seismological
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parameters (Mw and Repi) directly in the functional forms (Equation (24)), noticing an
increased efficiency and sufficiency with respect to Mw and Repi.

log (EDP) = a + b*log (IM)+ c*log (Mw)+ d*log (Repi) + δ (24)

By extending Equation (24), we show that IMs can be made even more efficient and
sufficient by including soil stiffness parameter (Vs30) and structural period (Tf) in the
functional forms (Equations (25) and (26)).

However, different combinations of these parameters may generate a series of models
with the risk of either over- or under-fitting. We therefore apply the Akaike information
criteria (AIC) to determine the statistical quality of all possible models arising from these
parameters. Table 6 lists AIC scores for different input parameters while using PGA and
PGV as IMs. As expected, AIC scores are lowest when all parameters are considered in the
regression model (bold values in Table 6). Similar results are found considering other IMs.

log (EDP) = a + b*log (IM) + c*log (Mw) + d*log (Repi) + e*log (Vs30) + δ (25)

log (EDP) = a + b*log (IM) + c*log (Mw) + d*log (Repi) + e*log (Vs30) + f*log (Tf) + δ (26)
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Figure 11. Dependence of correlations of intensity measures with site classes B, C, D and E (based
on NEHRP recommendation), along with number of records per site class (in brackets). Rows
represent variations in correlations of peak measures, spectral measures and energy measures for
three different types of structures (SP, IP, LP). For short-period structures, the correlations of PGA
appear to be independent of site class (a). For IP/LP structures, correlations of PGV are invariant
with site class (b,c). PGD correlations decrease with site class (c). For spectral measures, ASI and VSI
exhibit correlations similar to PGA and PGV (d–f). For energy measures, ARMS and IA show good
correlations and least dependence with site class (g–i).
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Table 6. Analysis of Akaike information criterion.

Input Parameters No. of Parameters AIC, IM = PGA AIC, IM = PGV

IM 1 10258.27 9604.36

IM, Mw

2

10128.76 9519.32
IM, Repi 10258.20 9482.93
IM, Vs30 10186.23 9604.32

IM, Tf 9001.96 8033.23

IM, Mw, Repi

3

10032.44 9480.98
IM, Mw, Vs30 10053.73 9519.09

IM, Mw, Tf 8818.62 7902.50
IM, Repi, Vs30 10188.03 9484.23

IM, Repi, Tf 9003.86 7845.15
IM, Vs30, Tf 8901.22 8035.17

IM, Mw, Repi, Vs30
4

9930.11 9482.91
IM, Mw, Repi, Tf 8677.92 7840.91

IM, Repi, Vs30, Tf 8902.92 7846.04

IM, Mw, Repi, Vs30, Tf 5 8526.51 7842.79



Appl. Sci. 2022, 12, 12089 23 of 31

Table 7 summarizes efficiencies and proficiencies for various IMs and the different
functional forms defined in Equations (24 and 26). We find that the suggested modifications
to Equation (1) increase the efficiency and proficiency. We also find that the fundamental
period of the structure plays an important role in predicting EDP, hence including the struc-
ture’s period (Equation (26)), and soil stiffness parameter (Vs30) improves the predictions
remarkably (bold values in Table 7). We observe significant increases of 45% and 19% for
Sa(T) and ASI, respectively, with respect to the standard implementation.

Table 7. Efficiency and proficiency characteristics of various functional forms and IMs.

IM(s)

Efficiency Proficiency

Standard
Form Yeudy Equation

(25)
Equation

(26) % Decrease Standard
Form Yeudy Equation

(25)
Equation

(26)

PGA 0.785 0.750 0.735 0.616 +21.5% 0.776 0.966 1.001 0.839
PGV 0.667 0.657 0.656 0.558 +16.3% 0.717 0.715 0.717 0.610
PGD 0.863 0.768 0.763 0.666 +22.8% 1.390 1.309 1.401 1.224
ASI 0.739 0.718 0.710 0.596 +19.4% 0.707 0.836 0.868 0.728
VSI 0.667 0.650 0.650 0.559 +16.2% 0.725 0.738 0.725 0.624

Sa(T) 0.876 0.796 0.783 0.481 +45.1% 1.158 1.879 2.084 0.554
Tsig 1.300 0.864 0.810 0.710 +45.4% −3.248 −1.866 −1.253 −1.098

ARMS 0.766 0.741 0.725 0.605 +21.1% 0.775 0.925 0.953 0.796
IA 0.741 0.730 0.724 0.605 +18.4% 1.392 1.512 1.572 1.313

Table 8 lists the steadfastness index for different functional forms and IMs. For our
dataset, we observe lower steadfastness for Yeudy et al.’s [6] functional form (Equation (24))
compared to the standard form (Equation (1)). We observe a significant increase in steadfast-
ness (by 100%) for Sa(T) when structural period is considered. IMs such as PGD and CAV
show good steadfastness, which could be due to their invariance over distance (Figure 2).
The steadfastness of PGV, VSI and Sa(T) are observed to be larger than those of PGA and
ASI, which we attribute to the large number of long period frames used in our dataset
whose responses correlate with PGV and VSI more than PGA and ASI.

Table 8. Steadfastness analysis of different functional forms.

IM(s)
Steadfastness Index

Standard Form Yeudy Equation (25) Equation (26) % Change

PGA 0.797 0.640 0.643 0.766 −3.8%
PGV 0.817 0.820 0.819 0.962 +17.7%
PGD 0.889 0.944 0.942 1.080 +21.4%
ASI 0.798 0.675 0.678 0.807 +1.1%
VSI 0.846 0.831 0.830 0.965 +14.1%

Sa(T) 0.498 0.307 0.306 1.045 +100.9%
Tsig 1.015 1.767 1.750 1.984 −95.4%

ARMS 0.791 0.663 0.665 0.795 +0.5%
IA 0.789 0.727 0.733 0.880 +11.5%

CAV 0.849 0.848 0.860 1.006 +18.5%

Next, we examine the sufficiency (p value) of the different functional forms following
Luco and Cornell [5]. Residuals between predicted and observed EDP are plotted with respect
to seismological parameters (Mw, Repi and Vs30), and a p value is computed. Recall that p < 0.05
implies a statistically significant relation, hence indicating in the present cases that the IM is
insufficient. Figure 13 depicts p values with respect to Mw, Repi and Vs30 (pM, pR, pVs30) for
different IM-EDP pairs using different functional forms. The dotted line marks the threshold
of p = 0.05 for classifying sufficient (p > 0.05) and insufficient IMs (p < 0.05). Very low p values
(p < 10−4), indicating a strong relationship between residuals and seismological parameters,
are shown at p = 10−4 level. With event magnitude (Mw), both Equations (24) and (26) show
sufficiency for all IMs, whereas Equation (1) is insufficient.
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Figure 13. Sufficiency analysis in terms of p values of different functional forms and IMs. The dotted
line marks the p = 0.05 threshold for classifying sufficient (p > 0.05) and insufficient IMs (p < 0.05).
Very low p values (p < 10−4) are plotted at p = 10−4 level. Equation (1) does not show sufficiency
with any parameter for most of the analyzed IMs. Equation (24) shows sufficiency only with Mw.
Equation (26) shows sufficiency with respect to Mw and Vs30 for most IMs.

With respect to Vs30, the IMs are sufficient for Equation (26) and insufficient for
other functional forms. With respect to epicentral distance (Repi), none of the functional
forms show sufficiency. This observation contradicts Yeudy’s findings that all the IMs
are sufficient (p > 0.05) when using their proposed IM-EDP relation (Equation (24)). This
inconsistency may arise from the different near-field ground motion dataset used in their
study. While Yeudy’s dataset considers many small magnitude events (Mw < 5) at distances
less than 50 km, large events (Mw > 5) dominate our dataset at least up to 100 km. The
seismic energy radiated from these larger-magnitude earthquakes has different attenuation
behavior with distance, contributing to variations in the predicted EDP. Small magnitude
events produce ground motions that attenuate faster at shorter distances, while large events
attenuate more gradually over larger distances. To verify, we divide our ground motion
dataset into distance bins and calculate pR values (Figure 14). When grouped into distance
bins, we observe sufficiency for most IMs in the 30–100 km range.
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Figure 14. p values with respect to epicentral distance segregated into bins. When grouped into
distance bins, most IMs show sufficiency with respect to epicentral distance for Repi > 30 km.

We now address the role of structural period in the IM-EDP relationship by computing
efficiency and sufficiency by adopting Equation (26) for short-period and long-period
structures separately. We classify all structures with fundamental periods less than 0.5 s
as short-period structures (based on Figure 6a, in which correlations with PGV and PGA
at T = 0.5 s are similar) and remaining structures as long-period structures. We skip
intermediate-period structures in this analysis because of their similar behavior with longer-
period structures. We adopt a combination of IM approaches, similar to vector-valued
implementation of IMs proposed by Baker and Cornell [102], and evaluate the efficiency
and p values for selected IMs and their combinations as listed in Tables 9 and 10. We
find that the listed IMs are more efficient for short-period structures (Table 9), and that on
average, efficiency decreases by 25% for long-period structures (Table 10). A combination of
peak measure, PGA, and energy measure, ARMS, results in good efficiency and sufficiency
(pM, pR and pVs30) for T < 0.5 s.

Table 9. Efficiency and p values for frames < 0.5 s.

IM(s) Efficiency
p values

pR pR pVs30

PGA 0.372 8.84 × 10−1 3.03 × 10−1 5.40 × 10−1

Sa(T) 0.345 8.08 × 10−1 4.08 × 10−2 9.63 × 10−2

ASI 0.353 9.21 × 10−1 3.36 × 10−3 6.69 × 10−2

PGA, Sa(T) 0.327 9.27 × 10−1 3.35 × 10−3 2.61 × 10−1

PGA, ASI 0.352 9.34 × 10−1 6.19 × 10−3 1.39 × 10−1

PGA, ARMS 0.370 8.77 × 10−1 3.94 × 10−1 4.12 × 10−1

PGA, IA 0.370 8.80 × 10−1 1.75 × 10−1 6.61 × 10−1

PGA, CAV 0.372 8.84 × 10−1 2.21 × 10−1 6.22 × 10−1
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Table 10. Efficiency and p values for frames > 0.5 s.

IM(s) Efficiency
p values

pM pR pVs30

PGV 0.478 8.47 × 10−1 3.61 × 10−16 3.56 × 10−2

Sa(T) 0.486 1.85 × 10−1 1.09 × 10−20 7.69 × 10−1

VSI 0.466 1.10 × 10−1 1.10 × 10−10 5.22 × 10−2

PGV, Sa(T) 0.447 3.85× 10−1 9.52 × 10−14 6.33 × 10−2

PGV, VSI 0.455 2.75 × 10−1 8.24 × 10−11 1.91 × 10−2

PGV, Sa(T), VSI 0.446 2.93 × 10−1 2.90 × 10−12 5.45 × 10−2

PGV, Sa(T), ARMS 0.443 2.50 × 10−1 4.17 × 10−12 1.08 × 10−1

PGV, Sa(T), IA 0.445 2.78 × 10−1 2.47 × 10−11 5.29 × 10−2

PGV, VSI, ARMS 0.452 1.61 × 10−1 3.54 × 10−9 3.54 × 10−2

PGV, VSI, IA 0.454 1.98 × 10−1 6.94 × 10−9 1.55 × 10−2

For long-period structures, a combination of IMs is more efficient in the IM-EDP
relationship. However, we do not observe sufficiency with respect to epicentral distance
(pR) due to the lack of Mw < 5 events in our dataset. A combination of a peak measure, PGV,
spectral measure, VSI, and energy measure, ARMS, provides good efficiency and sufficiency
(pM and pVs30) for T > 0.5 s.

In summary, these multi-IMs coupled with seismological and structural parameters
in the regression model provide an efficient and sufficient prediction of EDPs by IMs.
However, a few limitations of our review on ground motion intensity measures and
selection techniques need to be mentioned. First, the adopted 2D RC frame models simplify
the additional modes of deformations that may include torsional effects. Second, the
ground motion duration is likely to impact building response, especially for sites located
on top of deep sedimentary structures. However, the building models adopted here do
not account for fatigue effects due to long-period cyclic loading. Last, the consideration of
a single response measure (ISD, in this case) may not always be sufficient to characterize
the complete structural response. Other measures of EDPs, such as hysteretic energy
dissipation and co-seismic frequency of structure, should also be investigated in the future.

5. Conclusions and Future Directions

The complexities of the earthquake source process, heterogeneities in 3D Earth struc-
ture through which seismic waves travel, and intricate local site conditions govern the
response of structures subjected to earthquake shaking. In a PBEE framework, different
characteristics of earthquake ground motions, quantified in terms of parameters related
to wave amplitude, spectral content, and energy, are represented by a variety of intensity
measures (IMs). Several intensity measures are reviewed in this paper, as well as the
thought processes behind their development. Following this, we discuss ground motion
selection approaches from the basic level to the state of the art with a special focus on
IM-based approaches.

Next, based on more than 3500 near-field strong motion recordings (magnitude be-
tween Mw 5–8) from the NGA West 2 PEER database and structural analysis of a set of
different 2D reinforced concrete frames, we discuss the correlations between ten simple IMs
and building response (inter-story drift ratio). The natural period of the structural frames
varies from 0.1 to 1.55 sec, and the corresponding building response is extracted by using
non-linear time history analysis. We analyze the effect of structural (Tf) and seismological
parameters (Mw, Repi, Vs30) on IM-EDP correlations. Finally, we provide recommendations
on how to obtain efficient and sufficient EDPs from these IMs.

Seismological and structural uncertainties pose both challenges and opportunities for
future research. Despite the improvements in ground motion sensors and the increasing
importance of rotational motion on structures in recent studies [103,104], rotational motion
is rarely considered in IMs. Researchers have proposed IMs for rocking structures [105,106]
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that are more susceptible to rotational motion damage, but a broader research effort is
needed to develop further IMs.

Recent advances in machine learning have led to the development of innovative ap-
proaches for simulating synthetic ground motions [107,108] and developing new ground
motion models [109–113]. It may be interesting to apply these novel techniques to evaluat-
ing intensity measures and choosing ground motion records. A few studies have used these
strategies for determining efficient IMs [114,115] and for proposing new metrics to evaluate
IMs [116]. To the best of our knowledge, there are no stand-alone machine learning algo-
rithms for selecting ground motions. With high performance computing capabilities and
innovative clustering algorithms, this problem will be addressed in the near future, thus
forging the paths for machine-learning-based seismic hazard quantification and earthquake
risk mitigation.
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