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Abstract: Background: Few studies have focused on predicting the overall survival (OS) of patients
affected by SARS-CoV-2 (i.e., COVID-19) using radiomic features (RFs) extracted from computer
tomography (CT) images. Reconstruction of CT scans might potentially affect the values of RFs.
Methods: Out of 435 patients, 239 had the scans reconstructed with a single modality, and hence, were
used for training/testing, and 196 were reconstructed with two modalities were used as validation to
evaluate RFs robustness to reconstruction. During training, the dataset was split into train/test using
a 70/30 proportion, randomizing the procedure 100 times to obtain 100 different models. In all cases,
RFs were normalized using the z-score and then given as input into a Cox proportional-hazards
model regularized with the Least Absolute Shrinkage and Selection Operator (LASSO-Cox), used
for feature selection and developing a robust model. The RFs retained multiple times in the models
were also included in a final LASSO-Cox for developing the predictive model. Thus, we conducted
sensitivity analysis increasing the number of retained RFs with an occurrence cut-off from 11% to 60%.
The Bayesian information criterion (BIC) was used to identify the cut-off to build the optimal model.
Results: The best BIC value indicated 45% as the optimal occurrence cut-off, resulting in five RFs used
for generating the final LASSO-Cox. All the Kaplan-Meier curves of training and validation datasets
were statistically significant in identifying patients with good and poor prognoses, irrespective of
CT reconstruction. Conclusions: The final LASSO-Cox model maintained its predictive ability for
predicting the OS in COVID-19 patients irrespective of CT reconstruction algorithms.

Keywords: CT images; overall survival; radiomic features; LASSO-Cox

1. Introduction

The world has been battling SARS-CoV-2 (severe acute respiratory syndrome-corona
virus) for the past couple of years. The reverse transcription-polymerase chain reaction (rt-
PCR) provides the most reliable way to verify patient infection, though it cannot assess the
severity of its condition. Being a pulmonary condition, the use of chest X-ray or CT imaging
to perform damage evaluation and illness diagnosis has been established as standard
practice. One of the advantages of radiological imaging is its ability to quantify healthy
lung parenchyma compared to emphysema, ground-glass opacity, and consolidation [1].
Moreover, CT imaging enables extracting a broader range of qualitative and quantitative
information, potentially improving the development of predictive models.

However, the use of qualitative findings obtained upon radiological inspection of the
images has been proven inefficient and disappointing in the prediction of patient prognosis,
thus leading to a consensus of scientific societies (e.g., SIRM) on supporting research
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through the use of artificial intelligence (AI) as a predictive and prognostic decision support
system, especially in hospitalized patients and those admitted to intensive care [2].

AI-based solutions have been implemented in several medical sectors, including im-
age analysis [3,4]. In this landscape, widespread interest has developed towards using
radiomics, which is the extraction of quantitative measurements from radiological im-
ages [5]. Indeed, radiomic feature (RF) analysis has proved that its application can provide
an objective insight into the pathophysiology of tissues, such as inhomogeneities in the
gray level distribution within lesions, otherwise not quantifiable when relying exclusively
on human perception [6].

In patients affected by SARS-CoV-2, radiomic-based tools have been developed to
address different clinical objectives and predict various endpoints of interest, including the
identification of patients in severe and critical conditions [7], the prediction of mortality
disregarding the time to event [8] and, more rarely, the prediction of high-/low-risk sub-
groups obtained from multivariate survival analysis methods [9,10]. In this context, a recent
meta-analysis showed that CT-based RF models could successfully differentiate COVID-19
from other viral pneumonia, with a pooled sensitivity of 0.885 (95% CI: 0.818–0.929) and a
pooled specificity of 0.811 (95% CI: 0.667–0.902) [11]. These analyses have been carried out
relying primarily on clinical variables (i.e., comorbidities and laboratory findings) alone
or in conjunction with radiomic variables extracted from CT scans or X-ray projections.
In most studies, the investigated cohort comprises a small number of patients, often of a
specific ethnic group, and with a relatively short follow-up.

A critical point is that the use of RFs in the analysis pipeline works best when focusing
on the texture of the specific VOIs. However, manual delineation represents one of the
most limiting factors in a busy clinical department, being a complex, time-consuming, and
labor-intensive task [12]. For this reason, this work employed semi-automatic segmentation
methods by relying on SOPHiA DDM for lung segmentation and radiomic extraction [8].
A layer of resistance to the application of radiomic analysis into clinical practice is added
by the limited reproducibility of RFs due to acquisition and reconstruction parameters that
must be considered to obtain stable and reliable features [13].

For the reasons mentioned above, this study investigates the prognostic role of a
model based on RFs extracted from semi-automatic segmented VOIs using CT images
and a dedicated COVID-19 tool in a large cohort of patients. The secondary aim was
to assess the robustness of the model on a CT dataset reconstructed using two different
slice thicknesses and ad-hoc kernels, clinically adopted in our institute for improving the
visualization of mediastinum and parenchyma.

2. Materials and Methods
2.1. Patient Cohort

The patient cohort included 435 COVID-19 positive patients hospitalized between
February 2020 and May 2021. After a positive RT-PCR swab, all patients underwent a
chest CT scan during the first two days of hospitalization with at least one reconstruction
optimized for visualization of the parenchyma (Par-CT) with a slice thickness of 1 mm.
In addition, 196 out of 435 CTs were reconstructed by radiologist physicians with a dif-
ferent reconstruction protocol optimized for mediastinum (Med-CT), which had a 2 mm
slice thickness.

From a practical standpoint, parenchyma reconstruction is used to look for small
nodules with very high contrast, and, to do so, the reconstruction allows some noise to
achieve the best resolution possible. Mediastinum reconstruction is used in the lung, as well
as other regions, to look for large lesions, but with low contrast. As such, the mediastinum
reconstruction compromises a worse spatial resolution for a better display of contrast;
qualitatively, “parenchyma” images are coarser and noisier, while “mediastinum” images
appear smoother.

The CT scans were obtained using different CT scanners: Ingenuity CT (Philips
Medical Systems, Cleveland, OH, USA) for 56% of patients; a Lightspeed VCT (General
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Electric Healthcare, Chicago, IL, USA) for 41% of patients; and an ICT SP (Philips Medical
Systems, Cleveland, OH, USA) for 3% of patients. Among the datasets, high homogeneity
was observed in terms of kilo-Volt Peak (kVp): most of the CTs (91% of patients) were
acquired with 120 kV values, while only 15 patients (3%) were acquired with 140 kV and 5%
were acquired with 100 kV, according to patient characteristics. Notably, our institute set
and harmonized the acquisition protocols to obtain comparable results in terms of image
quality and dose to patients (i.e., computed tomography dose index—CTDI).

2.2. Image Segmentation and Feature Extraction

The whole set of 435 scans was uploaded to the CE/FDA-marked software SOPHiA
DDM for radiomics, which contains a COVID-dedicated tool which allows semi-automatic
segmentation of lungs and damaged volume, as well as RFs extraction from the segmented
VOI. The segmentation algorithms implemented in SOPHiA DDM are based on region-gro
techniques and thresholding methods, and require manual seed selection to start the lung
segmentation process. Inside SOPHiA software, the damaged volume was quantified by
counting voxels with values in the range [−740, −400] Hounsfield Units (HU). At the same
time, the vascular component was identified by voxel in the range [−400, 1000] HU. These
ranges are the standard values for software segmentation operations. The number of RFs
initially extracted was 180 per scan, reduced to 175 by removing the features inherent to
the discretization process, which resulted in constant variables across images. The RFs
have been extracted with the software as a black box, but it has been shown [14] that
SOPHiA DDM has good IBSI compliance compared with other commercially available
or free software. Similarly, the 196 available Med-CT scans were imported into SOPHiA
DDM for damaged lung VOIs segmentation and RFs extraction. The RFs were separately
extracted from the two identified volumes (i.e., damaged volumes and lungs), but only
those obtained from the lungs were used for model building.

2.3. Predictive Model Building

The study design for constructing a predictive model based on RFs is reported in
Figure 1 and detailed in the following sections.

2.3.1. Feature Selection

The training/test dataset was composed of 239 patients having only parenchyma
reconstructed CT scans. The 175 RFs obtained from each Par-CT scan were first scaled using
the z-score and then given as input into a Cox proportional-hazards model regularized
using the Least Absolute Shrinkage and Selection Operator (LASSO-Cox).

The Cox proportional-hazards model is widely used in survival analysis to study
time-to-event data presenting censored occurrences and covariates that may change over
time. The LASSO-Cox was chosen to predict the patient’s OS. The Par-CT dataset was split
into training and test sets following a stratified 70/30 split. The best hyperparameter, in
particular, the penalty parameter, (λ) choice were obtained with glmnet cross-validation
function to solve the minimization problem of the partial likelihood. The final feature
selection was performed with the glmnet function specifying the previously estimated
λ value.

The Lasso regularization method was chosen because it shrinks to exactly zero the
coefficients relative to the superfluous features compared to other approaches (e.g., Ridge
or elasticNet) which make the parameters small but never zero. Hence, this regularization
phase also works as a feature selection step. These operations were repeated 100 times by
changing the seed of the random process leading the training and test sets while keeping
the stratified nature of the groups. A score of frequency was calculated for the LASSO-Cox
selected features, evaluating the number of times that each feature appeared in the built
models to guarantee the robustness of the feature selection phase (named occurrence rate).
Sensitivity analysis was conducted by increasing the cut-off of the number of retained
features which resulted from each of the 100 developed models. The occurrence cut-off of
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each variable was regularly increased in steps from 10% to 60%. The number of RFs versus
the occurrence cut-offs were determined, while the Bayesian information criterion (BIC)
versus the occurrence cut-offs was used to identify the optimal model. The significance
of the prediction was assessed through the p-value associated with the Kaplan-Meier
survival curves obtained from the scores given as output by the optimal model determined
following the procedure mentioned above. The Hazard Ratio (HR) was computed by taking
the exponential of the coefficients associated with each RF. Values greater than one indicate
that higher values in the feature are associated with increases in the risk of death, whereas
values smaller than one indicate that higher values tend to indicate lower risks.

The analysis was performed in R Studio version 4.0.2.
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Figure 1. Study design relies on the following steps: [1] identification of a dataset of 239 patients with
high-resolution CT (Par-CT), grouped into training and test sets following a stratified 70/30 split,
iterating the process 100 times. These datasets were used for the 100 LASSO-Cox feature selection.
The optimal number of RFs for inclusion in developing the LASSO-Cox model was determined using
the BIC values. The final model was validated using a dataset of 196 having high and standard CT
reconstruction (Par-CT and Med-CT, respectively). In all the datasets, 175 RFs were extracted using
SOPHiA DDM.

2.3.2. Bayesian Information Criterion (BIC)

The Bayesian information criterion is a well-known general approach to model selec-
tion that favors more parsimonious models (i.e., with fewer features) over more complex
models. This is obtained by adding a penalty based on the number of parameters being
estimated in the model [15,16]. Operatively, the Bayesian information criterion, also known
as Schwarz’s Bayesian criterion (SBC), can be computed for one or several fitted model
objects, for which a log-likelihood value is calculated using the following formula:

BIC = − log(L) + npar ∗ log(nobs)

where npar represents the number of RFs, L is the likelihood of the model, and nobs is the
number of observations in the fitted model. In our case, using the best lambda obtained
from cross validation, the best BIC value (i.e., the minimum) was obtained with npar = 5
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and nobs = 239, corresponding to the number of features in the fitted model trained on the
entire Par-CT dataset, respectively.

BIC is a variant of AIC with a stronger penalty for including additional variables to
the model, it tries to find a parsimonious model that is more likely to be the “truth”. The
smaller the value that is considered, the better the BIC. According to [16] guidelines, if
the differences in BICs between compared models are 0–2, 2–6, 6–10, or greater than 10,
then the evidence in favor of the model with the smallest BIC can be considered ‘weak’,
‘positive’, ‘strong’, or ‘very strong’, respectively.

2.3.3. ICC Analysis

Intraclass Correlation Coefficient (ICC) two-way mixed-effects single-rater model
approach (shortly ICC3) was used to determine if identified RFs—by using the LASSO-
Cox-based pipeline described in Section 2.3.1—were stable (in terms of concordance and
robustness) in both the Par-CT and Med-CT datasets, for the investigated patients. Cal-
culation of the ICC metric was performed using the irr package. Conventionally, it is
considered the agreement has been divided into four levels: poor for ICC3 < 0.5, moderate
for 0.5 ≤ ICC3 ≤ 0.75, good for 0.75 < ICC3 < 0.90 and excellent for ICC > 0.9 [17].

2.3.4. Model Evaluation through Survival Curves

The RFs and the coefficients obtained via LASSO-Cox-based feature selection were
used to predict the patients’ OS in both the Par-CT and Med-CT validation databases
(including only patients having both the available clinical reconstructions). Thus, it was
possible to test the impact of the OS model versus the CT reconstruction approach. The
models’ ability to divide patients with good and poor prognosis was assessed using Kaplan-
Meyer curves and long-rank tests. The level for statistical significance after a Bonferroni
correction for multiple testing was chosen as p-value < 0.001 (i.e., 0.05/50) conducted on
the 50 compared models based on an occurrence rate from 10% to 60%.

2.3.5. Area under Curve (AUC)

To evaluate the performance of the LASSO-Cox approach, receiver operating charac-
teristic (ROC) curves were calculated using the predicted values by the model determined
on the validation databases (i.e., Par-CT and Med-CT) with respect to the patient death.

3. Results
3.1. Patient Cohort

The surviving patients (357 of out 435, corresponding to 82% of the cohort) were later
re-evaluated, and the median [range] follow-up for the cohort was 45 days [1, 948].

In this study, the subset of patients with only parenchyma reconstruction (239 patients)
was used to train/test the model based only on radiomic features. The training/test
population comprehended a total of 154 out of 239 (64%) males and had a median age
[range] of 69 years [21, 99], while the validation population was composed of a total of 130
out of 196 (66%) males and a median age [range] of 68 years [23, 98].

A comparison of the survival for the training and test population was conducted to
assess whether there were statistical differences in population survival. The Kaplan-Meyer
curve indicated no statistical difference between the two groups (p-value = 0.49).

3.2. Image Reconstruction and VOI Delineation Results

The comparison between Par-CT and Med-CT images for a representative patient
of the validation dataset from the SOPHIA segmentation process, as can be seen in the
respective Figure 2a,b, were highly influenced by the type of reconstruction, leading to
differences in volumes of the estimated VOIs.
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Figure 2. Axial CT images of the same representative patient using the same slice height, extracted from
the validation databases, i.e., (a) Par-CT and (b) Med-CT. The purple and red zones are those identified
by SOPHiA DDM as COVID-19 damage (hazy) and high density (Vascular tree), respectively.

3.3. LASSO-Cox for Feature Selection

The features with non-zero coefficients in the 100 LASSO-Cox-based models predict-
ing the OS, i.e., non-trivially contributing to the models, are reported in Supplementary
Material, Table S1. Sensitivity analysis of the occurrence cut-off, conducted on the training
dataset, revealed that the p-values obtained from the long-rank test comparing patients with
the predicted score higher or lower than the median predicted value (mtraining) increased
with the occurrence cut-off. At the same time, as expected, the number of RFs decreased, as
reported in Figure 3a.

The difference in BICs between the adjacent models to the one with the smallest BIC
was between two and six, indicating ‘positive’ evidence in favor of the identified optimal
model. The calculated LASSO-Cox-based model using the high occurrence RFs was able
to predict the OS of the validation datasets using the mtraining as cut-off and the same RFs,
but extracted from Par-CT and Med-CT images. The best BIC value was associated with
an occurrence rate of 44–45% selecting five prognostic RFs (i.e., area density enclosing
ellipsoid, cluster shade, intensity histogram quartile coefficient of dispersion, minimum
value, normalized zone distance non-uniformity).
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the 100 calculated LASSO-Cox models. (b) The p-values of Kaplan-Meier curves comparing patients
in the training and verification datasets (i.e., Med-CT and Par-CT) with a score higher or lower than
the cut-off determined on the training dataset (mtraining). The red horizontal line indicates p = 0.001.

The Kaplan-Meyer curves generated from the LASSO-Cox model were obtained with
an occurrence rate higher than 45% in all the datasets and using mtraining as the cut-off are
shown in Figure 4a–c for the training, Par-CT, and Med-CT validation sets, respectively.
The behavior reported in Figure 4a–c was observed in the models obtained with all the
cut-offs, except for those with an occurrence cut-off higher than 49%, since they retained
only two RFs to be included in the LASSO-Cox models.
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Figure 4. The Kaplan-Meier curves of OS versus time, expressed in days, in (a) training, and the two
validation datasets, i.e., (b) Par-CT and (c) Med-CT. Patients are grouped using the LASSO-Cox-based
score higher or lower that the median value calculated using the training dataset.

Table 1 reports the values of the coefficients associated to each of the RFs indentified
in the final LASSO-Cox model.

In addition, Table 1 reports the ICCs obtained from the consistency analysis.
Based on Hazard Ratio values (Table 1), higher values of “intensity histogram quartile

coefficient of dispersion” and “normalized zone distance non-uniformity” were associated
with a higher risk of death. In contrast, “area density enclosing ellipsoid”, “cluster shade”,
and “min value” were associated with reduced risk.
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Table 1. Features included in the final Cox proportional-hazards model with their respective co-
efficients, hazard ratios, and ICCs computed by comparing the values in Med-CT with those in
Par-CT.

Feature Name Cox-Coef. Hazard Ratio ICC [Range] p-Value (ICC)

Area density enclosing ellipsoid −0.30425 0.7377 0.87 [0.82, 0.90] <0.0001
Cluster shade −0.32886 0.7197 0.83 [0.79, 0.87] <0.0001
Intensity histogram quartile coefficient of
dispersion 0.65043 1.9163 0.85 [0.81, 0.89] <0.0001

Min value −0.12927 0.8787 0.17 [0.03, 0.30] 0.0081
Normalized zone distance non-uniformity 0.32209 1.3800 0.52 [0.41, 0.61] 0.1800

To confirm the prognostic capability of the five LASSO-Cox-identified prognostic RFs,
Figure 5 reports the box plots of RFs values extracted from the Par-CT and Med-CT subsets,
as well as the risk score obtained by the final model, divided into dead and alive patients.
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Figure 5. Boxplots of the standardized values of the features included in the final model for the
196 patients used as validation, divided by reconstruction type (left side of each plot: Med-CT, right
side of each plot: Par-CT) and by final outcome (blue: alive, orange: death). The plots are relative
to (a) area density aligned ellipsoid, (b) cluster shade, (c) intensity histogram quartile coefficient of
dispersion, (d) min value, (e) normalized size non-uniformity, and (f) value predicted by the model
in the validation datasets. The red horizontal line corresponds to the median obtained using the
training dataset.

Figure 5a–c reports the box plots of “area density enclosing ellipsoid”, “cluster shade”
and “intensity histogram quartile coefficient of dispersion”, respectively. These figures
show similar behaviors of RFs in alive and dead patients, irrespective of the two recon-
struction approaches.

Moreover, for Med-CT, the feature “min value” (Figure 5d) collapsed to almost the sin-
gle value of −1020 HU, likely due to the voxel dimension in the reconstructed images. This
justifies the very low agreement found in the ICC analysis. Notably, the predictive value of
the LASSO-Cox-based model was statistically significant among groups (i.e., remains infor-
mative). Since there is only a single value in the model for Med-CT, this amounts to adding
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a constant for all patients. While not improving the ability to separate the population, this
does not create any confusion either, providing an overall null effect for Med-CT and a
net positive effect for Par-CT. The values of “normalized zone distance non-uniformity”
extracted from Par-CT are overall higher than those obtained from Med-CT (Figure 5e),
likely explaining the moderate agreement found with ICC analysis (Table 1). However, the
relative behavior of the RFs extracted from CT images using the two reconstructions is very
similar, except for the RF “min value”. Thus, the model maintains its predictive ability in
both validation datasets.

The ROC curves were calculated, and the respective AUC values were 0.764 (0.663–0.866)
and 0.748 (0.637–0.858), using the predicted values by the LASSO-Cox model in the Par-CT
and Med-CT datasets, confirming the good performance of our classifier.

4. Discussion

In this work, CT images acquired on a population of 435 patients affected by SARS-
CoV-2 were analyzed to assess the robustness in the ability of a radiomic-based LASSO-Cox
model in the prediction of patient OS when faced with different reconstruction algorithms.

In the literature, similar models have rarely been validated on large datasets obtained
in different conditions from those employed during the acquisition of the training set
(e.g., Med-CT vs. Par-CT or training images). Despite these unfavorable conditions, our
validation datasets represent a real-world setting representative of clinical practice during
the SARS-CoV-2 pandemic.

To the best of our knowledge, this represents the largest patient cohort analyzed with
this methodology and the only one where a comparison between different reconstruction
methods is made. Table 2 summarizes similar studies reported in literature [7,9,18,19]
compared to this study.

Table 2. Comparison of similar studies.

Ref.
Patients

[Train/Test/
Validation]

Follow-up
Length
(Days)

Segmentation
Type (Tool) Predictors Modelling Outcome Performance

[7] 167
[NS/NS/NA] NS

Manual
(ITK-Snap) 2D
extraction on

CXR

RFs from lesion
only in CXRs Adaboost Death AUC = 0.71

[9] 96
[66/30/NA] 62

Semi-automatic
(LungSegmenta-

tion Kit
GE)

Demographics,
Laboratory

tests and RFs

Lasso-Cox
Proportional

Hazard
OS, death AUCtest = 0.871

[18]

EarlyCT 317
[212/105/NA]
LateCT 175

[139/36/NA]

~30
Automatic

DenseNet121-
FPN

Demographics,
Comorbidities,

RFs

Lasso-Cox
Proportional

Hazard

Poor
outcome

AUCtest,early =
0.816

AUCtest,late =
0.976

[19] 152
[106/46/NA] NS

Manual by
radiologist with

3d Slicer

Laboratory
tests,

radiological
score, RFs

XGBoost Death AUCcombined =
0.95

This
study

435
[167/72/196] 948

Semi-automatic
(Sophia

Radiomics DDM)
RFs

Lasso-Cox
Proportional

Hazard
OS, death

AUCPar-CT =
0.764

AUCMed-CT =
0.748

Abbreviations: Poor outcome indicates death, need for mechanical ventilation, ICU admission. OS: overall
survival. NS: Not specified. NA: not applicable.
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In previous studies [7,8,19,20], multiple attempts have been made to predict poor
prognosis in patients, be it by predicting the outcome of death, the need for artificial
ventilation, or admission to the Intensive Care Unit (ICU). In all these previous cases,
the studies did not perform a time-to-event analysis like the one shown in the present
study. Table 2 summarizes studies [7,8,19,20] investigating RFs extracted from CT images
as predictors of death, OS, or poor outcomes. The AUC values of the developed models
ranged from 0.71 to 0.976. This variability can be explained by the fact that the ROC curves
are related to a binary classification of patients based on survival without taking time
into account. The model developed in the present study is optimized to separate patients
according to survival rates, whereas binary classification models, such as those developed
in [7,19,20], are optimized to predict only the event of mortality.

Compared with [9], which followed a similar approach to our own, the AUCs are
in concordance when only considering the use of RFs as input variables. Furthermore,
Ke et al. [9] implemented a combined approach with clinical laboratory tests, as well as
comorbidities and demographic information. The abovementioned approach resulted in
improvements in the predictive ability of their model developed on the exclusive use RFs.

Compared to [9,10], which had almost 80/90 total patients, the number of subjects
analyzed in our study is between three and four times larger. Both studies [9,10] used a
Lung Intelligence kit (General Electric Healthcare, Milwaukee, WI, USA) and required the
expertise of a radiologist. Furthermore, both studies limited analysis to a single CT image
reconstruction, which is not necessarily representative of standard hospital procedures
where the diagnostic question may lead to different types of reconstruction. The AUC
values reported in our study refer to RFs extracted from two validation datasets (i.e., Par-
CT and Med-CT) generated using the same raw data with two different reconstruction
approaches applied by radiologists in a real-world setting. In this context, our model results
were predictive of OS, although without the use of additional clinical information, which
could be missing in a busy department during a pandemic.

The findings of this study, obtained from chest CT scans and analyzed with a multivari-
ate approach, are based on more comprehensive and nuanced information than what can
be found with multiple univariate analyses of chest XRs, as conducted in [7,21]. Another
substantial difference with [21] is that the segmentation was automatically performed with
a manual validation through a dice coefficient, which could not be done in the present
work due to the semi-automatic nature of the segmentation. Despite looking at different
endpoints (i.e., survival instead of onset of severe/critical illness), our results move in
the direction suggested in [22], using radiomics as a fundamental step of the analysis.
Finally, both [9,18] used an approach similar to the one reported in this study. Wu et al. [18]
analyzed a similarly sized cohort with the additional distinction of early/late CT scan
acquisition with respect to symptom onset as declared by the patient. Dividing these two
populations, they reported testing AUCs of 0.862 and 0.977. However, in their study they
also had access to demographic information, as well as comorbidities of the patients, which
improved the predictive ability of their model. The same considerations hold for [9] which
also had available laboratory findings to describe each patient. In both [9,18], the reported
maximum follow-up was shorter than the one reported in this study.

This study also presents some limitations, the first of which is the reliance on the
application of a semi-automatic segmentation tool obtained with commercial CE market
software, which does not allow much versatility.

The second limitation is that we used RFs extracted from the lungs. This approach
agrees with the observation by Xiao et al. [10], who reported that analyzing the lesion with
radiomic features instead of the entire lung does not improve their model predictive abilities.

Hence, semi-automatic segmentation may have introduced some biases in the VOIs,
potentially affecting the quality of RFs. A fully manual segmentation of the volume at risk
can provide a more accurate delineation of VOI, although such tasks are rarely feasible in
daily clinical practice. For this reason, AI-based approaches are in use for automatic or
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semi-automatic segmentation of VOIs in order to develop predictive models of the outcome,
e.g., for external beam radiotherapy [23].

The features extracted with the software SOPHIA DDM have been shown to be largely
IBSI compliant [14]. However, the extraction only produced the category of original features
without allowing the use of filters (i.e., wavelet filters), which proved largely informative
in [10] and may explain the reduced, although statistically significant, separation in the
Kaplan-Meyer curves presented in this study.

Unfortunately, not having access to radiomic analysis after filtering makes the com-
parison of the features building the multivariate models quite difficult due to the lack of
overlap between the findings.

Regarding the prognostic features, one of the prognostic features was the “minimum
value”, which can be directly obtained after segmentation of the image and corresponds to
the lowest intensity of HU within the VOI. Another prognostic feature was the “intensity
histogram quartile dispersion coefficient” which measures the dispersion of the discretized
intensity distribution and represents a more robust alternative to the intensity histogram
coefficient of variance.

Another feature retained in the final LASSO-Cox model was the “area density enclos-
ing ellipsoid”, listed as a morphological feature that represents the ratio between the area of
VOI and of the enclosing ellipsoid. The model retained the RF “cluster shade”, which quan-
tifies the skewness and uniformity in the gray-level co-occurrence matrix (GLCM)-based
features. By design, the higher the computed cluster shade, the greater the asymmetry of
the gray-level distribution.

The last prognostic feature was the “normalized zone distance non-uniformity”, listed
in the gray-level distance zone-based features. This feature is a normalized version of
the zone distance non-uniformity feature, which measures the distribution of zone counts
over the different zone distances. This parameter is low when zone counts are equally
distributed along zone distances.

Finally, this study did not use clinical information, laboratory findings, or patient co-
morbidities which, as has been shown in the literature, might lead to further improvements
in the performances of the predictive models [8–10]. This is because we would then focus
analysis on image-extracted RFs, since our objective was to assess the predictive value of
RFs extracted from high-resolution CT and look at differences in the model application due
to image two types of image reconstruction, in which clinical information may only have
an indirect effect.

Overall, our method seems to be robust and able in identifying COVID-19 patients
with good and poor prognosis, irrespective of reconstructions adopted in the clinical
practice in our institute.
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