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Abstract: Symmetries play an essential role in the field of physics. In this paper, we examine the
relationship between the eigen-amplitudes of four (2 × 2) symmetrical antennas and the symmetry
of the amplitudes of their sources (excitations) using mirroring effects. In our case, we find that
changing mirrors using symmetry is identical to the point group theory. By exploiting the symmetry
problem, we can show the advantage of reducing the size of the analysis domain, at least by a factor
of two or more (2, 4, and 8. . . etc.) (depending on the problem). Several simulation examples have
been developed by the MoM-GEC and HFSS to validate this approach.

Keywords: symmetries; antennas; perfect electric conductor (PEC) walls; perfect magnetic conductor
(PMC) walls; mirroring effects; eigen states; superposition; phase-shift; S-parameters; HFSS;
MoM-GEC

1. Introduction

Various commercial software packages are interested in studying symmetry problems,
such as HFSS [1], CST [2], Cadence [3], Keysight [4], Comsol [5], Optiwave [6] . . . etc. In
addition, symmetry analysis can be employed successfully in many aspects of electromag-
netic theory. It can be implemented in the differential, integral, variational and matrix
description of electromagnetic phenomenons. Therefore, Maxwell’s equations have a very
high symmetry. So, all exact solutions of the wave equations in Cartesian, cylindrical and
spherical coordinates are derived from the symmetry of these differential equations [7]. In
addition, several bibliographies have focused on the applications of symmetry in physics
and in particular in electromagnetism. The properties of an antenna array are related to
the type of symmetry that prevails in it. Group point theory is a systematic [8,9], but not
always convenient, tool to exploit this symmetry, in particular when it comes to finding the
eigenvectors and eigenvalues of an operator [10–12] .

In general, symmetry properties are used to simplify the solution of electromagnetic
phased array problems by reducing the domain analysis, where each system obeying
these (symmetry) characteristics undergoes several transformations that facilitate their
rewriting [12–14]. In this context, other special cases are the result of the symmetry intuition
(these are rare cases in electromagnetism, as explained in [15]). This is why, in this paper, we
propose a special case of eigenstates of four antennas (extendable to a subarrays symmetry
problem) given as the result of a superposition of symmetry states that are established by
combinations of axial symmetries of a perfect electric conductor (PEC) wall and a perfect
magnetic conductor (PMC) wall [13,14,16]. A technique of phase shift between two sources
based on the calculation of S-parameters is used to determine the different combinations of
symmetries [17]. Note that a superposition of symmetry states equivalent to the sources is
possible with the S parameters. This approach can be applied to several numerical methods
in electromagnetics [13,14], including the method of moments simplified by equivalent
circuits (MoM GEC) [18].
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This article is divided into four parts. First, we start by formulating the problem by
explaining how to construct the symmetries and how to use them to establish the superpo-
sition theorem to produce an eigenstate of four antennas (compared to the symmetry group
point theory). Next, a phase shift technique between these sources is used to reveal these
symmetries. Then, results are presented based on the MoM-GEC and HFSS to clarify these
symmetries. An advantage of reducing the analysis domain of the problem is discussed.
Finally, a perspective is provided and conclusions are drawn.

2. Problem Formulation
2.1. Setting Up of the Problem

Let S1, S2, S3 and S4 be four sources of self-amplitudes E1, E2, E3 and E4 of four
antennas as given in Figure 1 [13,14] . Each eigenstate of symmetry (under the condition of
the mirror effect) has an amplitude Ẽ1, Ẽ2, Ẽ3 and Ẽ4, as we are going to explain [13,14,19].
*Proper states:

Figure 1. Four antenna configuration with a combination of electrical and magnetic symmetries [13,14].

Depending on the direction (ox): we can put up a magnetic wall or an electric wall.
Similarly for the direction (oy), we can set up a magnetic wall or an electric wall, as
described in Figure 1 [16,19–34] .

The combination between the two axes (ox) and (oy) allows us to establish four states of
amplitude mirroring, which can be summarized as follows (see Table 1 of [13,14]) [12–15,20–22,35]:

States Walls Amplitudes
of sources

1 electric (ox)\magnetic (oy) 1 1 1 1
2 magnetic (ox)\magnetic (oy) 1 1 −1 −1
3 electric (ox)\electric (oy) 1 −1 1 −1
4 magnetic (ox)\electric (oy) 1 −1 −1 1

Similar to the theory of point group symmetry [8], the amplitudes of the sources are
defined as the tables (Tables 9.3. and 9.4. of [8]), extensible to other types of symmetries
(given in the same reference [8]). Note that the type of these symmetries is explained in
the same tables. For example in our case, the orthogonal excitations are of group C2v (see
Figure 9.4. of [8]).

The character table for the C2v symmetry point group is given below (identical to the
arrangement of the source amplitudes):
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States C2v E Cz
2 σv(x, z) σ

′
v(y, z)

1 u1 1 1 1 1
2 u2 1 1 −1 −1
3 u3 1 −1 1 −1
4 u4 1 −1 −1 1

h = 4 l1 = 1 l2 = 1 l3 = 1 l4 = 1

The covering operations of the group C2v are: the identity E, C2 rotation around the
z-axis, σv plane of symmetry about the x-z-plane and σ

′
v plane of symmetry about the

y-z-plane.
The symmetry based on the combinations of electric-magnetic walls [13,14] is identical to

the point group symmetry theory [8]. Both verify the case of four antennas symmetry [8,13,14].
Let us now return to the amplitudes of the sources in the first table, By normalizing

the states , we have:

u1 =


1
2
1
2
1
2
1
2

, u2 =


1
2
1
2
− 1

2
− 1

2

 , u3 =


1
2
− 1

2
1
2
− 1

2

 and u4 =


1
2
− 1

2
− 1

2
1
2


u1, u2 , u3 and u4 are orthonormal vectors.
Then, using the theorem of superposition, any state can be written [13,14]:

E = ∑
i=1

EiVi = ∑
i=1

ẼiUi (1)

where

V1 =


1
0
0
0

 ,V2 =


0
1
0
0

, V3 =


0
0
1
0

 and V4 =


0
0
0
1



⇒ E =


V1 V2 V3 V4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Proper vectors


E1
E2
E3
E4



=


E1
E2
E3
E4


︸ ︷︷ ︸

Eigen amplitudes of the antennas

, so,

E =


E1
E2
E3
E4

 = 1
2


u1 u2 u3 u4

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




Ẽ1
Ẽ2
Ẽ3
Ẽ4

 = PẼ

The passage matrix P is unitary⇒ (P−1 = Pt).
⇒ Ẽ = P−1E = PtE
⇒

E︸︷︷︸
Amplitudes of the antennas

= P Ẽ︸︷︷︸
Amplitudes of the states (sources in symmetries)
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Each antenna self-amplitude in the total configuration of four antennas is written as
the superposition of the symmetry amplitudes (states) (all the combinations of symmetry
between electric and magnetic walls are considered) [13,14].

2.2. Symmetries and Phases

In this case, we consider only the case of two sources (a source and its image) having an
even or odd symmetry relation (in the presence of magnetic or electric planes) [13,16,26–34].
According to the theorem of image explained in [16,20–24,31–34], we can simply count the
phases established between two symmetrical or anti-symmetrical sources (in phase or in phase
opposition), as indicated in Figure 2 [13].

Figure 2. Symmetry and antisymmetry between two sources [13].

In the case of even symmetry, the phase shift established between two sources was:

ΦS12 = 0[2π] = 2kπ⇒ 2 sources are in phase (2)

Inversely, in the case of odd symmetry, the phase shift was :

ΦS12 = (2k + 1)[π] = (2k + 1)π (3)

⇒ 2 sources are in phase opposition

According to Appendix A [17], S can be written as:

[S] =

(
S11e−jΦ1 S12e−j(Φ2+Φ1)

S21e−j(Φ2+Φ1) S22e−jΦ2

)
(4)

∗ Special cases:
♦ Case of even symmetry: if we fix Φ1 = 0⇒ Φ2 = 0.
So,

[S] =
(

S11 S12
S21 S22

)
(5)

♦ Case of odd symmetry: if we fix Φ1 = 0⇒ Φ2 = π and vice versa if Φ1 = π ⇒ Φ2 = 0 .
⇒

[S] =
(

S11 S12e−jπ

S21e−jπ S22e−jπ

)
(6)

♦ In the case of an arbitrary phase shift and an odd symmetry: we define any phase Φ1
will automatically add a phase shift of π to Φ2 :
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⇒ Φ2 = Φ1 + π ⇒ Φ2− Φ1 = π (Note that this case is verified under HFSS with the
phase commands (e.g., Arg(S21)). Finally, the matrix S is written :

[S] =

(
S11e−jΦ1 S12e−j(2Φ1+π)

S21e−j(2Φ1+π) S22e−j(Φ1+π)

)
(7)

We can generalize these different cases to study the configurations of the previous
section (two by two between the four antennas). It is now possible to simulate this problem
using commercial software (such as HFSS and CST) or other software.

Finally, we can generalize the case of [S] parameters adapted to four-antennas structure
in each symmetry state (in the presence of all combinations of magnetic and electrical walls),
which is written as follows [13,14,17]:

[S] =


S11e−jΦ1 S12e−j(Φ2−Φ1) S13e−j(Φ3−Φ1) S14e−j(Φ4−Φ1)

S21e−j(Φ2−Φ1) S22e−jΦ2 S23e−j(Φ3−Φ2) S24e−j(Φ4−Φ2)

S31e−j(Φ3−Φ1) S32e−j(Φ3−Φ2) S33e−j(Φ3) S34e−j(Φ4−Φ3)

S41e−j(Φ4−Φ1) S42e−j(Φ4−Φ2) S43e−j(Φ4−Φ3) S44e−j(Φ4)

 (8)

The symbols Φ1, Φ2, Φ3 and Φ4 are parameters that depend on the nature of the
symmetry (odd\even) used at each configuration. The particular cases of odd-even sym-
metries of Equation (8) will be treated in the same way as the case of two sources (see
Equations (5)–(7)). Algebraically, the superposition of the S parameters is possible as the
sources amplitudes, as proposed in the previous section.

3. Results

To distinguish the different cases of symmetry, it is necessary to use the phases of the
physical quantities J, E, H and the coupling parameters S, Z, Y, . . . etc. In our case, we used
the MoM-GEC and HFSS as simulation tools (see Figure 3). In this context, several results
were shown to validate this approach. First, we validated the MoM GEC and HFSS on the
input impedance of the planar dipole antenna used in the four antennas configuration, as
indicated in Figure 4 [18]. After that, a validation based on the boundary conditions of
four antennas was proven by the surface currents described by the guide modes and test
functions, solved with MoM GEC, as given in Figures 5 and 6 [18].

Figure 3. Example of a four symmetric antennas configuration with amplitudes of 11−1−1 (under
HFSS): (ox) electrical walls, (oy) magnetic walls.

A limitation with the MoM-GEC is shown to differentiate the different cases of sym-
metries. According to the MoM GEC formulation, the coupling parameters Z, Y and S are
independent of the phase shifts of the excitation sources (From the coupling expression
Z = 1

At [Zi,j ]−1 A ) [18]. These phase shifts will be caused only by the amplitudes of the surface
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currents JS and the surface electric field ES (JS and ES are complex numbers). We were able
to differentiate these different symmetries with the MoM-GEC using the surface current
phase of the four-antennas structure, as given in Figures 7 and 8. It is an advantage for
HFSS to show and distinguish these symmetries with the coupling parameters Z, Y and S
by using the commands Arg(S), Arg(Y) and Arg(Z) (or the HFSS Phase commands).

Figure 4. Input impedance seen at the source of one of four antennas given by the MoM GEC method
and the HFSS tool (Validation) [18].

Figure 5. Distribution of the current density for (2 × 2) phased half-wavelength planar dipoles
described with the guide’s modes functions at f = 5.4 Ghz, α0 = 0 rad m−1 and β0 = 0 rad m−1

(MoM-GEC method) [18].
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According to Figure 9, we considered Arg(S12) between the interaction of two sources
of the configuration 1111 (two symmetrical sources in-phase) and Arg(S12) between the
interaction of two sources of the configuration 11-1-1 (two anti-symmetrical sources in phase
opposition). We found a phase shift of angle π is established between Arg(Ssymmetric sources

12 )

and Arg(Santi symmetric sources
12 ) , at any point of the frequency band [0 20] GHz, as depicted

in Figure 9.
This verifies, Arg(Ssymmetric sources

12 )− Arg(Santi symmetric sources
12 ) = π (or = 180◦) (also,

Arg(Zsymmetric sources
12 )− Arg(Zanti symmetric sources

12 ) = π) which seems to follow the equa-
tion: Φ1 −Φ2 = π and the reasoning which follows Equation (6). In our case, we used
two frequencies, 3.9948 Ghz and 11.8029 Ghz, on the whole frequency band. At each
frequency, if we add or subtract their values (between Arg (S21) of two symmetrical sources
and Arg (S21) of two antisymmetrical sources), we find a phase shift of 180 degrees. Note
that we checked this difference on the whole frequency band. Finally, we can distinguish
the cases of symmetries by the introduction of phase shift in the matrix of [S] parameters,
as explained in the previous section.

Figure 6. Distribution of the current density for (2 × 2) phased half-wavelength planar dipoles
described with the trial functions (test functions) at f = 5.4 Ghz, α0 = 0 rad m−1 and β0 = 0 rad m−1

(MoM-GEC method) [18].

Figure 7. Current Je’s phase (or Angle) of a symmetry configuration with an electric wall along (ox)
and a magnetic wall along (oy): the amplitudes of the excitations are 1111 (MoM-GEC method).
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Figure 8. Current Je’s phase (or Angle) of a symmetry configuration with a magnetic wall along (ox)
and a magnetic wall along (oy): the amplitudes of the excitations are 11−1−1 (MoM-GEC method).

Figure 9. Arg (S12) and Arg (Z12) between two sources of four antennas in two different symmetry
configurations 1111 and 11−1−1: The frequency range from 0 to 20 GHz . (Simulation under HFSS)
(It checks Φ2−Φ1 = π (See after Equation (6)).

4. Advantage of Symmetry

Reducing the analysis domain is an advantage for symmetry problems [13,14,35]. In
this section, we explain how symmetry reduces the computational domain of the used
problem. Each symmetry plane reduces the computation by a factor of 2 [1–4]. Suppose that
in our computation, we use two symmetry planes disposed axially along the two directions
(ox) and (oy), for each symmetry state, which reduces the computation by a factor of four
(2 × 2 = 2 + 2) [12–14]. According to the superposition theorem, each eigenstate of four
antennas is the sum of four symmetry states [12–14], so in total, this reduces the calculation
by a factor of 16 (4 × 4 = 4 + 4 + 4 + 4).
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5. Conclusions

This paper presented the connection between the eigen-amplitudes of the four anten-
nas and the symmetry of the amplitude of the associated sources (states) through mirror
effects. A validation with the theory of symmetry point group is completed. In addition, a
phase shift technique has been used to highlight all combinations of symmetry between
electric and magnetic walls disposed along (ox) and (oy) axis. To distinguish these different
symmetries, a method of calculating the S-parameters is introduced. Note that the main
advantage of symmetry is to reduce the domain of analysis. As a perspective, we can apply
this symmetry approach to (largely extended) antenna sub-arrays with different source
amplitudes, using periodical walls outside of four antennas. So, it reduces more and more
the computing time and memory space.

Author Contributions: Conceptualization, H.B.; methodology, H.B. and A.T.; software, H.B. and
A.T.; validation, H.B. and A.T.; formal analysis, H.B.; investigation, H.B. and A.T.; resources, A.T.;
data curation, H.B. and A.T.; writing—original draft preparation, H.B. and A.T.; writing—review and
editing, H.B. and A.T.; visualization, H.B. and A.T.; supervision, A.T.; project administration, A.T.;
funding acquisition, A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This project received a part of the funding from the Laboratory Sys’Com-ENIT (LR-99-
ES21)-National Engineering School of Tunis ENIT, Tunis, Tunisia, 1002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first part of this work is elaborated in collaboration with Henri Baudrand
INP -N7 Toulouse. The authors thank Junwu TAO INP-N7 Toulouse for his help.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MoM-GEC Method of Moment combined with the Generalized Equivalent Circuits
HFSS High-frequency structure simulator
CST Computer Simulation Technology simulator
PEC Perfect electric conductor
PMC Perfect magnetic conductor
C2v Symmetry point group of class C2v

Appendix A. Technique to Count the Phase Shift between Two Sources (Particular
Cases of Odd and Even Symmetries)

This method explains how to calculate the phase between two sources. By the same
reasoning established in [17], we imagine a line tracing placed at the input of a quadrupole
of known parameter [S] (for example a source and its image), as proposed in Figure A1. This
case is considered general to produce the phase shift between two sources by the addition
of a line portion. This line segment provides a phase shift Φ1 related to the propagation (in
our case, related to the source (S1) and its image (S2)).

If we first assume that the output is matched, then a2 = 0, and
the input reflection coefficient undergoes two times the phase shift, so

S
′
11 = S11e−(2jΦ1) (A1)

The transmission coefficient from the input to the output undergoes the phase shift
once, so

S
′
21 = S21e−(jΦ1) (A2)
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If we now assume that the input is matched, then a1 = 0, and
the reflection coefficient seen from the output does not change

S
′
22 = S22 (A3)

The reflection coefficient from the output to the input undergoes the phase shift only
once, so

S
′
12 = S12e−(jΦ1) (A4)

In short, it leads to

[S
′
] =

(
S11e−2jΦ1 S12e−j(Φ1)

S21e−j(Φ1) S22

)
(A5)

When the change concerns the two reference planes at the two accesses of a quadrupole,
similar reasoning leads to (See Figure A2 [17]):

[S] =

(
S11e−j2Φ1 S12e−j(Φ2+Φ1)

S21e−j(Φ2+Φ1) S22e−j2Φ2

)
(A6)

Figure A1. A portion of line added at the input of a quadrupole of known matrix [S] to reconstruct
the phase established between 2 sources: we can work on the cases of symmetries as particular cases
where the sources are in phase or opposition of phase) [17].

Figure A2. Line traces added to the input and output of a quadrupole of known matrix [S] [17].
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