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Abstract: Network disassembly refers to the removal of the minimum set of nodes to split the network
into disconnected sub-part to achieve effective control of the network. However, most of the existing
work only focuses on the disassembly of undirected networks, and there are few studies on directed
networks, because when the edges in the network are directed, the application of the existing methods
will lead to a higher cost of disassembly. Aiming at fixing the problem, an effective edge module
disassembly method based on a non-backtracking matrix is proposed. This method combines the
edge module spectrum partition and directed network disassembly problem to find the minimum set
of key points connecting different edge modules for removal. This method is applied to large-scale
artificial and real networks to verify its effectiveness. Multiple experimental results show that the
proposed method has great advantages in disassembly accuracy and computational efficiency.

Keywords: directed network dismantling; non-backtracking matrix; spectral partition; minimal
dismantling set

1. Introduction

In complexity science, a network (denoted by G = (V , E) in graph theory) is com-
posed of a node set V consisting of n nodes and an edge set E consisting of m edges between
the nodes. Many real-world networks such as the Internet, WWW, large-scale power net-
works, transportation networks and interpersonal networks can be modeled in this concise
way [1]. Using this method, these networks can be regarded as a collection of nodes with
independent characteristics interconnected with other individuals. Each individual is
regarded as a node in the network, and the connection between nodes is regarded as the
edge of the network. This abstract method can intuitively show the topology of the real
network, and also provides an effective research method for understanding the state and
the function of the real network [2].

However, with the continuous development of technology and society, epidemic
viruses [3], computer viruses [4], misinformation [5], or corruption [6] have more serious
negative effects in the human world. However, removing or deactivating a part of the
key nodes through the network dismantling method in the network to decompose the
network into several isolated sub-parts can effectively protect the robustness of the network,
control the dynamic behavior of the network, and curb the negative effects in the network
mentioned above. Previous studies proved that this method to remove or deactivate the
key nodes can effectively curb the spread of epidemics in the population [7], prevent the
spread of misinformation through social networks [8] and prevent the spread of viruses in
computer networks [9]. Some studies on complex networks choose a set of node subsets S
in the network with an optimal method, and explore the influence of removing S on the
network characteristics. For example, exploring how the maximum connected (strong)
subset of the network will change after removing S, in the example of epidemics or network
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viruses transmission, if S is isolated or infected first, the impact on the speed of virus
transmission can be determined [10]?

In the actual situation, it will produce a certain cost consumption C when selecting
and removing the node subset S in the network. In the epidemic propagation model, the
vaccination of the node requires a certain socioeconomic cost. Removing different node sets
in the computer virus or public opinion propagation network consumes different resources
in the actual situation. Therefore, a combinatorial optimization problem is generated,
whereby under the influence of the constraint removal node subset S in the network, the
removal cost C is minimized. Additionally, removing nodes will destroy the network
structure and affect the function of the network, so it is necessary to remove as few nodes
as possible and find a set of nodes with the lowest removal cost C, that is, the minimum
disassembly set (we consider the most common situations where the disassembly cost is
the unit cost; the minimum disassembly set is the set with the least number of nodes) and
remove it. After the network is decomposed into multiple sub-parts that are not connected,
network disassembly is achieved [11]. Finding the minimum disassembly set is an NP-
hard problem [12]. For this kind of problem, only effective approximation algorithms or
heuristic algorithms can be found at present. For the disassembly problem, there have been
some recursive algorithms based on the degree or centrality of the nodes. For example,
in 2015, a heuristic algorithm called ’collective’ influence (CI) [13] was proposed, which
determines the ownership of the nodes in an undirected random network according to
the degree of nodes and the degree of local neighbor nodes; in 2016, Alfredo Braunstein
proposed a three-segment minimum sum (hereafter referred to as the Min-Sum) method for
dismantling large random undirected networks [11]; for large undirected random networks,
this method is a more effective dismantling algorithm. In 2019, Ren proposed a general
network disassembly (hereafter referred to as the GND) method for undirected weight
networks [14]. In addition, some relatively new disassembly methods and analyses of
disassembly [15,16] are provided, such as the disassembly algorithm based on the message
passing model (2020) [17] and the sensitive disassembly method of neighbor connection
(2020) [18].

Most of the existing disassembly algorithms are carried out in undirected networks,
while there are few disassembly algorithms for directed networks. However, in many
real-world networks (such as WWW networks, acquaintance relationships, network email
networks, text association networks and article citation networks, etc.), the edges between
nodes are unidirectionally connected, and there is no mutual relationship in undirected
networks [19]. The existing disassembly methods are sometimes not suitable for the
disassembly of these directed networks. Compared with disassembly in the undirected
network, disassembly in the directed network needs to consider the direction of the edges
between the nodes in the network. For example, in a public opinion network, when an
incoming node (Innode) connected by a directed edge e (also known as an arc in graph
theory) is a communicator, the outgoing node of this edge (Outnode) is not likely to
be propagated by the node. When applying the undirected network-based disassembly
method to disassemble the network, this one-way relationship between nodes is sometimes
ignored, resulting in the removal of this edge e, and causing unnecessary disassembly to
affect the disassembly effect.

The influence of the internal mechanism of this network on the disassembly is ignored
in the traditional disassembly method. To solve this problem, the non-backtracking matrix
representing the edge adjacency relationship is applied as the operator of spectral division,
whereby it retains the directionality of the node relationship, and combines the disassembly
of the directed network with the spectral division method. An improved spectral disassem-
bly method for directed networks (hereafter referred to as the DIR method) is proposed;
the edges in the directed network are directly applied as the disassembly unit, and the
strongest connected subgraph of the directed network is used as the disassembly subject.
The spectral characteristics of the edge adjacency matrix (non-backtracking matrix) are
applied to the bipartition of the edge modules in the maximum strongly connected subset.
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The overlapping node set of the node sets connecting the two edge modules is then found
as the minimum disassembly set to disassemble the network until the disassembly scale
reaches the specified disassembly scale of the network (the maximum number of nodes in
the strongly connected subgraph). The excellent characteristics of the non-backtracking
matrix can be made full use of by using the DIR method, and the DIR method can greatly
protect the topology of the network during the disassembly process. Furthermore, it is
verified by experiments that the DIR method is suitable for the disassembly of directed
networks. Finally, the influence of different disassembly methods on the network structure
is analyzed by analyzing the changes of network indexes such as the clustering coefficient,
assortativity coefficient and modularity function in the disassembly process, and it is veri-
fied that the application of edge module partition to disassemble the network can greatly
retain the structural information in the networks.

2. Related Works

As described in the previous section, many network dismantling methods have been
proposed in recent years. Next, I will introduce two methods that are compared with this
article, namely the GND algorithm and Min-Sum algorithm.

GND method. This method considers the case where the node removal cost is equal
to the node weight and is not a unit cost. First, perform spectral division of the Laplacian
matrix for which the operators are node weights of the network. After the division is
successful, the node weight coverage algorithm is applied to the edges connecting different
divisions to find the minimum weight point set that can divide the network, so as to find
the minimum cost disassembly set. Compared with the previous algorithm, GND is more
general and applicable. It considers the influence of node weights in undirected networks
on the network disassembly problem. However, the operator in the GND method is a node
adjacency matrix.

Min-Sum method. Braunstein et al. proposed a three-stage Min-Sum algorithm to
dismantling networks. They first decycle a network with a variant of the Min-Sum message
passing algorithm. After all cycles are broken, they break the remaining trees into small
components until the largest component is smaller than the desired threshold. Finally, they
refine the node set of network dismantling by moving some of them back to the original
network. However, this kind of method tends to delete irrelevant nodes during the loop
removal step and then moves them back to the original network in the following node
re-inserting step, which reduces the disassembly efficiency.

However, when analyzing directed networks, most spectral methods using node adja-
cency matrices will use symmetric adjacency matrices to make the network undirected [20].
This processing method will inevitably lose some information in the network [21], resulting
in the search process for the minimum set of nodes to be disassembled in the directed
network which will add some unnecessary nodes and cause unnecessary disassembly.

3. Preliminaries

In this section, we will provide a simple disassembly flow chart and introduce the
knowledge of non-backtracking matrices so that readers can understand the proposed
method more easily.

3.1. Model

As shown in Figure 1, by applying the DIR method to disassemble the directed net-
work in the figure, according to the spectral characteristics of the non-backtracking matrix,
the edge of the directed network is divided into two different red and blue modules;
overlapping nodes 5 and 6 that connect these two different edge modules were found.
By removing nodes 5 and 6 and disconnecting the edges connected to them, the directed
network can be divided into two disconnected sub-parts. Compared with the previous
disassembly method, this disassembly method for removing overlapping nodes of edge
modules requires fewer disassembly steps, does not need to find the minimum node cover-
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age set, and the corresponding disassembly cost is lower (the nodes found by the traditional
decomposition method are 5, 6, 7, 12), which is more suitable for directed networks.

Figure 1. Directed network disassembly flow chart.

3.2. Non-Backtracking Matrix

In a directed network G, i, j, k and l are all nodes in V , according to the definition
of non-backtracking random walk, but only when j = k and i 6= l, directed edge i → j
is connected to another directed edge k → l. In a directed network, B is a m ∗ m non-
backtracking matrix. This non-backtracking matrix is used to represent the adjacency
relationship of edges in a directed network, defined as

Bi→j,k→i =

{
1, if j = k and i 6= l
0, other cases

(1)

The non-backtracking matrix B is different from the adjacency matrix A, where B
takes each directed edge as an element, and represents the adjacency relationship between
the edges in the matrix; therefore, it is also called the edge adjacency matrix. The excellent
properties of the non-backtracking operator have been shown above [22], and the spectral
characteristics of the non-backtracking matrix have better performance in the network than
the node adjacency matrix A or other matrices, especially in terms of the strong separation
of its second eigenvector for the network structure division. At the same time, directed
networks in the real world tend to have relatively sparse structures and large scales. The
non-backtracking matrix B also performs well in sparse networks compared to the node
adjacency matrix A. The adjacency matrix of the edge, B, stores the relationship between
the edges in the network, and is not sensitive to the information of the nodes in the network
so as to avoid the tendency to remove the nodes with a relatively large degree during
dismantling and cause damage to the connected subset of the network [23], thus retaining
the structural information in the directed network to the greatest extent. It is also proved
by experiments that applying the non-backtracking matrix to disassemble the one-way
connection relationship of the edges in the directed network can reduce the disturbance
of the node’s topology information to the selected disassembly node set, and effectively
avoid the problem of network information loss when directly using the directed network
adjacency matrix as the spectral algorithm operator.

4. Method

In this section, we propose a method that combines edge module partition with net-
work disassembly to construct a network disassembly algorithm in the directed networks.
The non-backtracking matrix is used to store the adjacent information of the edges, and
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the non-backtracking matrix is used as the operator to construct the minimum number of
edges in the disassembly function. The edge module is divided by solving the approximate
second eigenvector of the function matrix; after the division, the minimum number of edge
sets connecting the different edge modules and the node set where the modules overlap in
the edge sets are determined. By removing this node set, the connection between different
modules is destroyed, and disassembly is finally achieved.

4.1. Disassemble the Objective Function

In this section, we consider the general case of dividing a network in two modules of
equal size according to the nature of the edges, minimizing the number of edges between
two different modules. The non-backtracking matrix is used to store the edge adjacency in-
formation in the directed network, because in the disassembly problem, we will eventually
remove all overlapping nodes on different edge modules, and the weight of the edge does
not affect the selection of the minimum node set; therefore, we set the weight of each edge
as the unit weight. We divide m edges in the edge network into two equal-sized m

2 modules
according to the corresponding characteristic. We define an index variable si→j ∈ Rm for
any directed edge i→ j, i, j ∈ N in the network, and assume that if this edge i→ j belongs
to partition module 1, then si→j = 1; if edge i → j belongs to partition module 2, then
si→j = −1. So, we obtain

1
2

(
si→jsj→k + 1

)
=


1, If two connected edges

i→ j, j→ k(i 6= k) belong to
the same edge module

0, other cases

(2)

Equation (2) is used to determine whether two connected edges belong to the same
module. Combined with Equation (2), we use the non-backtracking matrix as an operator
to obtain the objective function of the minimum number of disassembled edges, which is
used to find a set of edges that connect two different modules with the smallest number:

min : R = ∑
i→j,k→l

Bi→j,k→l − ∑
i→j,k→l

1
2

(
si→jsk→l + 1

)
Bi→j,k→l

=
1
2 ∑

i→j,k→l

(
1− si→jsk→l

)
Bi→j,k→l

=
1
2 ∑

i→j,k→l

(
di→jδk→l,i→j − Bi→j,k→l

)
si→jsk→l

=
1
2

sT B′s

(3)

s.t.
{

1Ts = 0,
si→j ∈ R, i→ j ∈ E

(4)

where B′ = DB− B, DB is a diagonal matrix, (DB)i→j,i→j = ∑k→l Bi→j,k→l . Equation (3)
represents the difference obtained by the logarithm of the minimized total connected edges
minus the logarithm of the edges connected inside the edge module. When two connected
edges are divided into different edge modules, si→jsj→k = −1, Bi→j,j→k = 1, the nodes
connecting the two edges needs to be removed; on the contrary, when two connected edges
are divided into the same edge module, the nodes connecting the two edges do not need
to be removed. Finally, the set of nodes that need to be removed corresponding to the set
of partitions that minimize R is the minimum disassembly set. We specify the number of
nodes whose disassembly cost is the minimum disassembly set.

1Ts = 0 in Equation (4) ensures that the two modules are of equal size. Unfortunately,
this optimization problem is an NP-hard problem. For this problem, the approximate
solution can be found by relaxing constraint si→j ∈ {−1, 1} to si→j ∈ R. According
to the Courant-–Fisher theory[24], the solution of this relaxation constraint minimum
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optimization problem can be found by analyzing the eigenvector v(2) corresponding to the
second smallest eigenvalue λ2 of B′. So, if node j connects two edges i → j, j → k(i 6= k)
corresponding to the value of the second smallest eigenvector, one of the second smallest
eigenvectors are non-negative

(
v(2)i→j ≥ 0

)
, and the other’s second smallest eigenvector is

negative
(

v(2)i→j < 0
)

; this node will be removed. Removing all such nodes in the network
can decompose the network into two sub-parts.

4.2. Divide Vector
Because the large-scale network has many edges, its corresponding second eigenvector

of B is difficult to obtain accurately [25]. The traditional power-law iterative model is
applied to perform a simple and refined approximation algorithm for the second smallest
eigenvalue. Matrix B′ has m real non-negative eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λm, and
the corresponding eigenvectors are v(1), v(2), . . . , v(m), which are orthonormal bases in Rm

space. We define the maximum degree of elements in matrix B as dmax, x, y represents the
row and column of the matrix, and the upper bound of the spectrum can be obtained by
calculating the 1-norm.

λm ≤ max
‖v‖1=1

‖(DB − B)v‖1

= max
‖v‖1=1

m

∑
x=1

∣∣∣∣∣vx

m

∑
y=1

Bxy −
m

∑
y=1

vyBxy

∣∣∣∣∣
≤ max
‖v‖1=1

m

∑
x=1

m

∑
y=1

∣∣vxBxy
∣∣+ m

∑
x=1

m

∑
y=1

∣∣vxBxy
∣∣

= max
‖v‖1=1

‖Bv‖1 + ‖Bv‖1

= 2dmax

(5)

The upper bound of the spectrum calculated by Equation (5) is λm ≤ 2dmax. In order
to calculate the approximate second eigenvector, we calculate the matrix H = 2dmax − B′,
which has the same eigenvector as B′. Therefore, the corresponding eigenvalue is now
converted into the calculation 0 ≤ ξm = 2dmax − λm ≤ . . . ≤ ξ1 = 2dmax, in which the
eigenvector v(2) corresponding to the second largest eigenvalue ξ2 is calculated. Then,
we find the eigenvector of H corresponding to the eigenvalue λ2 using the following
power-law iterative algorithm.

Algorithm 1 can find an approximate eigenvector corresponding to λ2; we can use our
orthogonal eigenvector basis to represent any random vector v = ∑m

i=1 ϕiv(i); the second
step of the algorithm can guarantee ϕ1 = 0 and ϕ2 6= 0. Finally, by multiplying the vector v
by the linear operator Hk, we obtain

Hkv =
m

∑
i=2

ϕiv(i) ∝ ϕ2v(2) +
m

∑
i=3

ϕi

(
ξi
ξ2

)k
v(i) (6)

Since λ3 > λ2, there is
∣∣∣ ξi

ξ2

∣∣∣ < 1, and we obtain ϕi

(
ξi
ξ2

)k
v(i) → 0. When the scale of

the index k (the number of iterations) of the operator H is O
(
log(m)1+ε

)
, v tends to be the

expected value E
[∣∣∣λ2 − vT Bv

vTv

∣∣∣]→ 0 of the eigenvalue λ2 corresponding to B′, where m is
the number of edges of the real network.
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Algorithm 1: Approximate feature vector algorithm

input: Non-backtracking matrix B, network edge number m, v1 = (1, 1, . . . , 1)T

output: Approximate second eigenvector v
1: Randomly select vector v on the unit sphere;
2: v← v− vT v

vT v1
· v1;

3: For i = 1 to τ(m);
4: v← Hv

‖Hv‖ ;
5: End for;
6: Return v.

4.3. Directed Network Disassembly

Algorithm 2 provides a recursive solution that can repeatedly disassemble a network
to a specified scale. The number of nodes in the maximal strongly connected subset GSC is
defined as the disassembly scale. In this algorithm, we intend to disassemble the directed
network until the disassembly scale is smaller than the target scale C. The above algorithm
is also defined according to this idea. The input of the algorithm is the node-edge topology
of the directed network. The final output is the minimum node disassembly set and the
required disassembly cost when the directed network is disassembled to a specified scale;
in the first step of the algorithm, the maximal strongly connected subset of the network is
taken as the disassembly subject of the directed network, which can filter out the nodes
and edges in the network that are not related to network disassembly; this can further
improve the disassembly efficiency of the directed network. The selection of the strongly
connected subset as the disassembly subject can be directly compared with the connected
subset of the commonly used undirected network, which can avoid undirectional networks
to meet the undirected network disassembly conditions and cause redundant disassembly.
The process is controlled by judging the size of the strongest connected subset of the
network; the minimum disassembly set and disassembly cost are initialized to 0 in step 2;
the Laplacian matrix of the non-backtracking matrix of the maximum strongly connected
subgraph is generated in step 3 for the next division of the edge module; in the fourth
step, the eigenvector corresponding to the second eigenvalue is obtained by calculating
H = 2dmax − B′ and applying the eigenvector approximation algorithm, which is used to
divide the edge module; the overlapping node set between edge modules is found and
removed in the entire network G in step 5 and 6; the node to be removed is added to the
disassembly set and the maximum strongly connected subset and disassembly set of the
network in step 7 are updated; the minimum disassembly set and disassembly cost are
updated in step 8; whether the maximum strongly connected subset size of the network
reaches the target disassembly size is determined in step 9. This recursive algorithm
can obtain the set of nodes that disassemble the directed network into a minimum set of
connections between different edge modules of a specified size.

Algorithm 2: Directed network disassembly algorithm (DIR method)
input: Network G

output: Minimum disassembly set Ls, minimum disassembly cost c
1: Select the maximum strongly connected subgraph GSC in the network and calculate its
non-backtracking matrix BGSC according to Equation (1);
2: Initialize Ls, c to 0;
3: Calculating B′ corresponding to BGSC by Equation (3);
4: Use algorithm 1 to obtain the division vector v and divide the maximum strongly
connected subgraph into two edge modules;
5: Find the edge set connecting the two edge modules and create a partition subgraph;
6: Find the overlapping node set S in the partitioned subgraph;
7: Remove S from network G and update network G;
8: Merge S into Ls and update Ls, c, and BGSC ;
9: If the size of the largest strongly connected subgraph GSCsize < target disassembly size C,
return Ls and c;
Otherwise, go back to step 3.
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4.4. Algorithm Complexity

The time complexity of the approximate feature vector is equal to the number of
iterations τ(m) multiplied by the product of matrix H and vector v, namely O

(
τ(m)m2),

where m is the number of network edges.
The complexity of performing a bisection for the entire network is O

(
m2τ(m)

)
. The

complexity of performing another bisection on the two modules with an approximate size
of m/2 after the division is 2 ·O

((m
2
)2

τ(m)
)

. The complexity of another bisection for the

four modules with an approximate size of m/4 after division is 4 ·O
((m

4
)2

τ(m)
)

. Until

O(GSC) = 1, the complexity of another bisection for m/2 = 2log2(m)−1 modules with an

approximate scale of 2 after division is 2log2(m)−1O
((

m
2log2(m)−1

)2
τ(m)

)
. The total time

complexity is as follows:

O
(

m2τ(m)
)
+ 2 ·O

((m
2

)2
τ(m)

)
+ 4 ·O

((m
4

)2
τ(m)

)
+ . . . + 2log2(m)−1O

((
m

2log2(m)−1

)2
τ(m)

)

=
log2(m)−1

∑
i=0

2iO
((m

2i

)2
τ(m)

)
= O

(
m2τ(m)

)log2(m)−1

∑
i=0

1

2

= O
(

m2τ(m) log2(m)
)

(7)

The computational complexity of the dismantling recursive algorithm is O
(

m2τ(m) log2(m)
)

.

For a sparse network, τ(m) = log(m)1+ε at moment ε > 0 and there is an upper bound
1/ log

(∣∣∣ ξ2
λ3

∣∣∣) [14]; therefore, a better dismantling effect can be obtained. The computational

complexity is O
(
m2 log(m)3+ε

)
at this moment.

In the algorithm, the space required for each non-backtracking matrix is O
(
m2), the

recursive depth is O(log(m)), and the required space complexity is O
(
m2 log(m)

)
, where

m is the number of network edges.

5. Experimental Results

In order to verify the applicability of the DIR method in directed networks, it is used in
artificial directed ER networks, BA networks and real networks, and the disassembly results
are compared with two commonly used methods (GND algorithm and Min-Sum method).
The dataset of Table 1 is selected in the experiment, and the experimental comparison is
carried out in different artificial directed networks and large-scale real networks (for the
convenience of comparison, the disassembly scale and disassembly cost in this paper are
both proportional).

Table 1. Network dataset.

Network Name Number of Nodes n Number of Edges m Node Connection Probability p Average Degree

ER random network 1000 approximately equal to 10,000 0.01 10
BA random network 1000 approximately equal to 10,000 10

Email-EU-core network 1005 24,929 24.80
Weki-vote network 8297 103,689 12.50

Some scholars, e.g., Ren [14] have proved that the GND method has a higher dis-
assembly efficiency than other algorithms such as Min-Sum and information transfer in
undirected networks when the network disassembly cost is the unit cost (number of nodes)
and non-unit cost (based on node degree). When the disassembly scale is the same, the
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GND method has a lower disassembly cost than other algorithms, and the GND method
can destroy the network structure with a smaller disassembly cost. This method has better
performance than other algorithms in the disassembly of undirected networks. The DIR
method is compared with the GND method and Min-Sum method, considering that the
disassembly cost is the unit cost (i.e., the number of nodes).

Figures 2 and 3 are the disassembly results of different methods in different directed
networks, where the corresponding curves of disassembly scale and disassembly cost are
provided. The ordinate disassembly scale is the proportion of the number of nodes in the
largest (strongly) connected subgraph, and the abscissa disassembly cost is the proportion
of the number of nodes in the smallest disassembly set when disassembly is at the scale
shown in the ordinate. As shown in Figure 2, in a dense ER random network, when the
required disassembly size is less than 0.25, the disassembly cost of the DIR method is
smaller than that of the GND and Min-Sum methods; in the artificial BA directed network
with an average degree of 10, the disassembly cost of the DIR method is significantly lower
than that of the other two methods. Additionally, in the relatively sparse real directed
network (Figure 2), when the network is disassembled to the same specified scale, the
DIR method has a lower cost than other methods. The reason for the difference is that
methods such as GND and Min-Sum take the largest connected subgraph in the network
as the disassembly subject. The DIR method takes the largest strongly connected subset
of the network as the disassembly subject. When the network is dense enough, the size
of the largest strongly connected subgraph and the connected subgraph in the directed
network is not hugely different; however, in the relatively sparse network (such as the
Weki network), the cost of applying the maximum strongly connected subgraph of the
directed network for disassembly is significantly lower than that of the GND and Min-Sum
methods. The experiments show that the DIR method has the advantage of lower cost in
directed network disassembly, which shows the efficiency of the DIR method in directed
network disassembly.

Next, we explore the impact of different disassembly methods on the network structure.
By applying different disassembly methods to different networks and comparing the
clustering coefficient [26] and assortativity coefficient [27] of the disassembly process
network, the superiority of the DIR method to retain the network structure information to
a great extent is proved.

Figure 2. Curve graph of the disassembly cost and disassembly scale of directed ER random network
and directed BA random network.
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Figure 3. Curve graph of directed real network disassembly cost and disassembly scale.

The clustering coefficient in graph theory is used to measure the degree of node
aggregation. There is evidence that in most real-world networks, especially in social
networks, nodes tend to create relatively tightly connected groups; this possibility is often
greater than the average probability of randomly establishing a relationship between two
nodes. A network such as G = (V , E) is formally composed of a set of nodes and edges
between nodes, with edges connecting nodes. The neighborhood Ni of a node vi is defined
as its adjacent node, Ni =

{
vj : eij ∈ E ∨ eji ∈ E

}
. The local clustering coefficient Ci of a

node in a directed network is

Ci =

∣∣∣{ejk : vj, vk ∈ Ni, ejk ∈ E
}∣∣∣

ki(ki − 1)
(8)

As an alternative to the global clustering coefficient, Watt and Strogatz [19] use the
average of local clustering coefficients of all vertices as the overall clustering level of
the network.

C =
1
n ∑

i
Ci (9)

Here, we compare the influence of the DIR and the other two disassembly methods
on the degrees of node connection in the network by observing the change of the global
clustering coefficient of the network during the disassembly process, and then explore the
impact on the network structure.

The experiment first disassembles the artificial ER random network and the BA net-
work; the relationship between the disassembly cost and the clustering coefficient is shown
in Figure 4. When the disassembly cost is less than 0.7 in the artificial ER random network,
the curve of the average clustering coefficient corresponding to the DIR method is more
stable than the curve of the GND and Min-Sum method, and it also reaches a stable state
first in the BA network. The DIR method has less disturbances for the clustering coefficient
of the whole network compared to the GND and Min-Sum method, which reflects the su-
periority of removing overlapping nodes between modules by dividing the edge modules.
The influence of the DIR method on the network structure is smaller than that of directly
deleting nodes in the network; in the ER random network, the three methods will increase
the network clustering coefficient with the disassembly in a certain period of time. This
is because the disassembly has caused an increasing number of nodes in the network to
appear in clusters. The result of the experiment in the real network is shown in Figure 5. It
can be seen that in the real-world directed network, with the increase in the disassembly
cost, the three disassembly methods will reduce the clustering coefficient in the network,
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which is related to the sparsity of the real network. The dismantling of the nodes of the
real network will reduce the agglomeration between nodes and the connection between
groups will become sparse; however, it can still be seen from the graph that the curve
corresponding to the DIR method is more gentle than the GND and Min-Sum methods.
The influence of this aggregation phenomenon on the real network during the disassembly
process is smaller than that of the two methods; and relatively speaking, the Min-Sum
method will have a more obvious impact on the aggregation phenomenon of the network,
because the Min-Sum method tends to remove nodes with large degrees in the network
and is less able to protect the structural information of the network.

Figure 4. Curve graph of disassembly cost and clustering coefficient of directed ER random network
and directed BA random network.

Figure 5. Curve graph of real network disassembly cost and clustering coefficient.

The coefficient of assortativity is used to measure whether the network is assortative
or disassortative. It is used to investigate whether the nodes with similar values of degree
in the network tend to be connected to its approximate nodes. It can be characterized
by the Pearson coefficient r (degree-degree correlation). r > 0 indicates that the entire
network presents an assortative structure, and the nodes with large degrees tend to be
connected to the nodes with large degrees. r < 0 indicates that the entire network presents
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disassortativity, and r = 0 indicates that there is no correlation in the network structure.
In the experiment, the change of the network structure by the dismantling of the DIR
method is analyzed by observing the influence of the dismantling process on the network
assimilation index.

As shown in Figures 6 and 7, the changes of the assortativity in the network of the
DIR method are less in number than in the other two methods. Whether in the ER random
network or in the real network, when the disassembly cost is less than 0.7, the blue curve
is more gentle, the change of the global assortativity of the network is smaller, and the
influence of removing the overlapping nodes between the edge modules on the assortativity
of the network is smaller than that of the GND and Min-Sum methods.

Figure 6. Curve graph of disassembly cost and assortative coefficient of directed ER random network
and directed BA random network.

Figure 7. Curve graph of real network disassembly cost and assortativity coefficient.

The module degree [28] is used as a performance index to measure the community
division. It is used to see the impact on the structure of the network community when we
disassemble the network. The module degree function is Q = 1

2 ∑i,j aijδ
(
ci, cj

)
, where aij is

an element in the point adjacency matrix A, ci, cj is the community to which node i and j
belong to, and δ

(
ci, cj

)
is the membership function. If i and j are in the same community, it

is 1, otherwise it is 0.
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The calculation of the module degree Q in the disassembly process of the DIR method
is shown in Figure 8. It can be seen that when the disassembly cost is less than 0.8 in
the picture, the module degree Q increases with the increase in the disassembly cost.
It shows that the removal node in the disassembly process also deletes the inter-group
edges between different communities, which plays a certain role in promoting effective
community division. When the cost is greater than 0.88, the disassembly will destroy the
inter-group edges within the community and cause the modularity Q to decrease sharply.

Figure 8. Curve graph of disassembly cost and module degree Q of real network.

In summary, the directed network disassembly (DIR) method we proposed in all the
experiments has a higher disassembly efficiency than the GND and Min-Sum methods
in both artificial directed networks and real directed networks. When the network is
disassembled to the same scale, the DIR method incurs the lowest cost; at the same time,
by comparing the clustering coefficient and the assortative coefficient in the disassembly
process, it is also proved that the DIR method can reduce the influence of disassembly
on the network clustering coefficient and the assortative coefficient in the disassembly
process, and can also effectively retain the information in the network; the influence of
the DIR method on network modularity is also explored through experiments. When the
disassembly scale is less than a given threshold, the DIR method has a certain promoting
effect on network community division.

6. Conclusions

An effective disassembly method is proposed for the disassembly of directed net-
works; the method combines edge module division with network disassembly, using a
non-backtracking matrix to construct the function of the minimum number of edges for
edge disassembly, and finds the overlapping nodes between edge modules to obtain the
approximate solution of the eigenvector of the cost function. Different from the traditional
undirected network disassembly method, the DIR method considers the unidirectional
relationship between nodes in the directed network, makes full use of the excellent spectral
characteristics of the non-backtracking matrix to divide the directed network, ensures the
efficiency of disassembly and reduces the impact of disassembly on the overall structure
of the network by removing the overlapping nodes between the edge modules during
the network disassembly process. By comparing the DIR method with other methods
in different artificial directed networks and real directed networks, it is proved that the
DIR method is efficient in the network disassembly of directed networks. At the same
time, it is also verified that the partition of the edge module applied to the application of
non-backtracking operators in the network disassembly leads to a low disturbance of the
network structure. The experimental results show that using this method to disassemble
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the network can achieve lower costs and protect the structure information in the directed
network to a great extent.
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