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Abstract: In one of our previous publications, we developed the first mathematical model for
acoustic emission from an internal point source in a transversely isotropic cylinder. The point
source, as an internal defect, is the most fundamental source generating AE in homogeneous media;
it is represented by a spatiotemporal concentrated force and generates three scalar potentials for
compressional, and horizontally and vertically polarized shear waves. The mathematical formulas for
the displacements were derived by introducing the concentrated force-incorporated potentials into
the Navier–Lamé equation. Since the publication of that paper, we detected some errors. In this paper,
we correct the errors and extend the analytical modeling to a cylindrical shell structure. For acoustic
emission in general circular cylindrical structures, we derived solutions by applying the boundary
conditions at inner and outer surfaces of the structures. Under these conditions, we solve the radial,
tangential, and axial displacement fields. Analytical simulations of the acoustic emission were carried
out at several point source locations for circular cylindrical geometries. We show that the maximum
amplitude of the axial displacement is dependent on the point source position and 2π-aperiodicity of
the cylindrical geometry. Our mathematical formulas are very useful for characterizing AE features
generated from an internal defect source in cylindrical geometries.

Keywords: acoustic emission; concentrated force-incorporated potentials; cylindrical structures;
mathematical formula

1. Introduction

Many conventional techniques applied in nondestructive testing are based on an active
mode, in which testing loadings are applied during testing to deliver signals or energy from
the outside to the test body. In contrast, the acoustic emission (AE) technique is a passive
method that does not require the application of external energy to the test structure, as AE
is generated by a material as a result of a sudden release of energy (other than heat) from
localized sources within the solid, in turn due to a failure of lattice vibrations in materials.
AE sources are usually classified as primary or secondary. Primary AE sources include
material degradations related to deformation and fracture development, whereas leak, flow,
and the fabrication process are secondary AE sources. Due to this unique characteristic, AE
techniques are uniquely applicable to structure health monitoring (SHM) [1–4].

Among the primary AE sources, crack formation and growth are the most important
practical nondestructive testing (NDT) because the detecting and monitoring of these
failures can prevent or slow further damage. Thus, in SHM, the point source (PS) is
adapted as an AE excitation source; for example in seismic displacements, crack fracture and
cleavage, and concentrated vertical step forces [5–10]. The displacements generated by a PS
were first introduced by Stokes [11]. Later, Achenbach presented mathematical formulas
for displacements in spherical geometry by defining it as a concentrated force (CF) loaded
at a point [12]. In mathematical formulas, Helmholtz potentials for the displacements were
derived in terms of scalar potentials generated by PS excitation in an infinite domain [12–14].
Although the AE generated by the PS is important for characterizing real signals observed
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in practical SHM, theoretical modeling was limited to spherical geometries in an infinite
domain. To our knowledge, no theoretical work on AE excited by an internal PS in
cylindrical geometries was reported in the literature. Most theoretical works on elastic
wave properties in cylindrical geometries focused only on wave propagation and scattering
situations with or without external perturbations [15–23].

In linear elastodynamics, the Navier–Lamé (NL) equation is the most popular and
effective method for solving the displacement fields in elastic media. In cylindrical coor-
dinates, the NL equation was solved by combining three potentials responsible for one
compression (P) wave and two shear waves (horizontally and vertically polarized; SH
and SV, respectively), using the models proposed by Morse and Feshbach [24] and Buch-
wald [25], respectively. The basic difference between the two models is that the compression
and shear parts are separated in one of them, but not the other. The two models were
examined comprehensively for the case with no body forces by Honarvar et al. [15,18] and
Sakhr et al. [20,21]. Additionally, Shatalov et al. developed a method to find exact solutions
for axisymmetric wave propagation in functional cylinders by matching continuity and
boundary conditions at layer junctions [26,27].

Previously, we constructed the NL equation specifically for displacements generated
by PS excitation in a transversely isotropic cylinder (TIC) [28] and a two-dimensional
plate [29]. As an internal defect, the CF acting in a preferent direction had both spatial and
temporal properties, represented by the delta function and time-dependent CF vector. As
the first task, Green’s function for the delta function was determined in a given geometry.
Green’s function contributes the CF distribution in a given domain. For TIC, the CF
vector contributes to the temporal Helmholtz potentials for P, SV, and SH waves based
on the Morse and Feshbach model. Contrary to ordinary potentials, these potentials are
characterized by the nature of the material defect. For discriminating from ordinary ones,
these potentials are referred to as CF-incorporated potentials (CFIPs), which reduce the
original scalar components of the NL equation into three independent partial differential
equations (PDEs) for P, SV, and SH waves. The exact solution was solved and applied to
the P, SV, and SH displacement simulations.

The main purpose of this work is to present a completeness theorem applicable to AE
due to CF excitation in circular cylindrical geometries, including shell and rod configura-
tions. In Ref. [28], we confined the displacement solutions with a 2π-periodic (azimuthally
free) angular part in the tangential component. We reconstructed the displacement so-
lutions by applying a fundamental set of free-surface conditions on outer and/or inner
circumferences and 2π-aperiodicity with azimuthal functions. Absolute values of the dis-
placement fields were calculated at a given point on the outer surface, in which two modes
of the CF along the radial and axial directions were considered. To our knowledge, the
proposed method is the only one in the literature that is fully applicable to cylindrical ge-
ometries. The analytical modeling presented in this paper provides insight into the overall
AE signal process from generation and propagation to reception. We offer a systematic and
unifying solution method that can be used to evaluate the AE signal generated from an
internal crack in a cylindrical structure.

2. Green’s Function

In Ref. [28], the CF as the internal PS located at x0 is formulated in terms of an
oscillating impulse with natural frequencies of the material in a given geometry, as follows:

f = Pδ(x− x0)e−iωt (1)

where P is the force vector and ω is the predominant angular frequency (ω = 2πν) of AE.
Dirac’s delta function δ(x− x0) provides a method for solving spatial problems dealing
with a PS. Green’s function g(x; x0), defined as

∇2g(x; x0) = δ(x− x0) (2)
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Is the solution for the delta function in elastodynamics, and provides the spatial distribution
of the CF at a given time. In cylindrical coordinates, Equation (2) is expressed as

∇2[gr(r; r0)gθ(θ; θ0)gz(z; z0)] =
δ(r− r0)δ(θ − θ0)δ(z− z0)

r
(3)

where∇2 is the Laplacian in cylindrical coordinates, and the CF is located at r0, θ0, and z0. At
any point in the cylindrical domain except the CF locating point, Equation (3) becomes zero,

∇2[gr(r; r0)gθ(θ; θ0)gz(z; z0)] = 0. (4)

In cylindrical (r, θ, z) coordinates, Equation (4) can be rewritten as

r2

gr

∂2gr

∂r2 +
r
gr

∂gr

∂r
+

1
gθ

∂2gθ

∂θ2 +
r2

gz

∂2gz

∂z2 = 0.

Substituting the following relations

1
gz

∂2gz

∂z2 = κ2
z ,

1
gθ

∂2gθ

∂θ2 = −ν2,

Into the above PDE results, we obtain

r2 ∂2gr

∂r2 + r
∂gr

∂r
+
(

κ2
zr2 − v2

)
gr = 0

Note that we selected exponential, rather than oscillating, solutions in the z-direction.
This implies that the radial solutions are appropriate for the particular set of boundary
conditions under consideration. In ref. [28], we obtained the axial, tangential, and radial
components of Green’s function under certain conditions, such as the continuity and
discontinuity principles, angular symmetry for the cylindrical domain with length l and a
radius of a. The inner radius b is introduced to the shell structure as an additional radial
boundary condition.

gz(z; z0) =

{
− 1

2κz
e−κz(z0−z) 0 < z < z0 < l

− 1
2κz

e−κz(z−z0) 0 < z0 < z < l
(5)

gθ(θ; θ0) = cos[v(θ − θ0)] (v = 0,±1, ±2, · · · ), (6)

gr(r; r0) = Jv(κzr0)Jv(κzr) (b < r < a) (7)

In Equation (7), Jv is a Bessel function of the first kind of v-th order. The Bessel function
of the second kind is excluded because there is no singularity in the cylindrical domain.
The value of κz can be obtained by applying the boundary conditions at the outer or inner
surfaces of the cylindrical shell to Equation (7):

Jv(κzr)|r=a−r0
= 0 (b < r0 < r < a),

Jv(κzr)|r=r0−b = 0 (b < r < r0 < a).

As an alternative, the boundary condition gr(r; r0)|r=a = 0 was applied [30]. However,
this condition resulted in a discontinuous and asymmetric Green’s function. Selecting the first
root (rv1) of the Bessel function, rv1 = κz(a− r0) or rv1 = κz(r0 − b). These relations give

κz =

{ rv1
(a−r0)

(a + b > 2r0)
rv1

(r0−b) (a + b < 2r0)
. (8)
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For the outer surface, κz = rv1
(a−r0)

. Introducing a parameter, Aν1, we obtain Green’s
function:

g(r, θ, z; r0, θ0, z0) = Av1 Jv(κzr0)Jv(κzr) cos[v(θ − θ0)]

×
{
− 1

2κz
e−κz(z0−z) (0 < z < z0 < l)

− 1
2κz

e−κz(z−z0) (0 < z0 < z < l)
.

(9)

In ref. [28], the parameter Av1 was determined by integrating the delta function in the
cylindrical domain. The integrations of δ(θ − θ0)δ(z− zs0) for the cylindrical shell are the
same as those for the cylinder, because these two delta functions are independent of r. The
remaining problem is to integrate δ(r−r0)

r ,

πAv1 Jv(κzr0)Jv(κzr)
[
e−κzz0 + e−κz(l−z0) − 2

]
=

δ(r− r0)

r
. (10)

Multiplying both sides of Equation (10) by Jp(κzr) rdr and integrating over (b, a) gives
the following:

πAv1

[
e−κzz0 + e−κz(l−z0) − 2

]
Jv(κzr0)

∫ a
b Jv(κzr)Jp(κzr)rdr

=
∫ a

b δ(r− r0)Jp(κzr) dr.
(11)

The integrations on the left side of the above equation can be divided into two parts:∫ a

b
Jv(κzr)Jp(κzr)rdr =

{∫ a

r0

[Jv(κzr)]2rdr +
∫ r0

b
[Jv(κzr)]2rdr

}
δpv.

Applying the normalization and orthogonality principles of Bessel functions,

∫ c

0
Jp

(
α

r
c

)
Jq

(
α

r
c

)
rdr =

c2

2
[

Jp+1(α)
]2

δpq,

And the following concepts of the delta function,

∫ a

b
Jv(κzr)Jp(κzr) =

a2

2
[Jv+1(κza)]2 − b2

2
[Jv+1(κzb)]2

∫ a

b
δ(r− r0)Jv(κzr) dr = Jv(κzr0),

To Equation (11), we obtain the constant

Av1 =
1

π
[
e−κzz0 + e−κz(l−z0) − 2

] × 2{
a2[Jv+1(κza)]2 − b2[Jv+1(κzb)]2

} . (12)

For the cylindrical problem, the corrected value of Av1 is given in (A1). Introducing
Equation (12) to Equation (9) gives the Green’s function for the Kronecker delta function:

g(r, θ, z; r0, θ0, z0) = Gv1 Jv(κzr0)Jv(κzr){cos[v(θ − θ0)]}, (13)

where

Gv1 = − 1
2κz

Av1 Jv(κzr0)×
{

e−κz(z0−z) (0 < z < z0 < l)
e−κz(z−z0) (0 < z0 < z < l)

. (14)

Since the CF direction is determined by the P vector, Green’s function is assumed to
be azimuthally independent (v = 0). In addition, it is very convenient to take the location of
the PS as the new origin and introduce relative coordinates to the location of the PS, defined
as ξ = r − r0, ϑ = θ − θ0, and η = z− z0, where ξ0 = 0, ϑ0 = 0, and η0 = 0 (hereafter,
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referred to as the PS-oriented (ξ, ϑ, η) coordinate system), Equations (13) and (14) can be
rewritten as

g(ξ, η) = G01 J0(κzξ), (15)

G01 = − 1
2κz

A01 J0(κzξ0)×
{

eκzη (z0 − l < η < 0)
e−κzη (0 < η < l − z0)

. (16)

In Equation (15), the value of ξ at a given point is the shortest distance from the PS. In
cylindrical geometry,

ξ =
√
(xi − x0i)

2 +
(
xj − x0j

)2 →
(

r0 =
√

x2
0i + x2

0j

)
. (17)

For the shell geometry, the calculation of ξ is somewhat complicated due to its hollow
interior. No linear distance exists between the two points across the hollow interior. In
Figure 1b, an arc connecting the PS and a given point is introduced. This connection should
not intersect with the hollow circle. The arc rises at a constant rate between r0 and (rp <

r0), given as R = rP−r0
θ

(
r0 =

√
x2

0i + x2
0j, rP =

√
x2

i + x2
j

)
, where θ is the angle between

the PS and a point P. If the angle, dθ, between r1 and r2 is infinitesimal, the arc length, dς,
connecting the two points, becomes a line. Applying the cosine rule to the triangle,

dς =
√

r2
1 + r2

2 − 2r1r2 cos dθ

=
√

r2
1 + (r1 + Rdθ)2 − 2r1(r1 + Rdθ) cos(dθ).
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Figure 1. (a) Geometry of a thick cylindrical shell, (b) its radial cross-section involving the point
source (PS) and a given point P, in which the red dotted line represents an arc connecting PS and P,
and (c) two forms of the PS vector along the xj and z directions used in analytical modeling.
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Assuming that cos(dθ) ≈ 1− (dθ)2

2 and (dθ)3 ≈ 0, the above equation becomes

ς =
∫ θ=θ

θ=0

√
R2 + r2

0dθ

=

√
r2

0 +
(

rP−r0
θ

)2
θ →

[
θ = arctan

( xj
xi

)
− arctan

( x0j
x0i

)]
.

(18)

Figure 2 shows the Green’s function calculated for the cylinder (a = 0.5 m, b = 0) and
shell (a = 0.5 m, b = 0.4 m). It can be shown that the calculated functions are continuous
and symmetric with respect to the PS location.
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Figure 2. Calculated Green’s function for: (a) a cylinder and (b) a shell, in which the PS locates

at
(

x0i = 0, x0j = 0
)

and
(

x0i = 0, x0j = 0.45
)

, respectively. The plots are conducted by applying

[th, r] = meshgrid(linspace(0, 2*pi, 2000), linspace(b, a, 2000)) and [X, Y] = pol2cart(th, r) in MATLAB®

(MathWorks, Natick, MA, USA). The peak position in [X, Y] corresponds to the (x0,i,x0j) Cartesian
coordinates.

3. Displacement Fields Generated by a Point Source

The NL equation for the displacement field u in an elastic and homogeneous medium
subject to a local body force f is given by [31]

(λ + 2µ)∇(∇·u)− µ∇× (∇× u) + f = ρ
∂2u
∂t2 , (19)

where λ and µ are the Lamé constants, and ρ is the density of the media. The displace-
ment field u in cylindrical coordinates proposed by Morse and Freshbach involves three
potential functions Φ for the P wave, Xêz for the SH wave, and Ψêz for the SV wave. The
representation of u for cylindrical geometries is given by

u = ∇Φ +∇× (Xêz) + a∇×∇× (Ψêz), (20)

where a is the radius of the cylinder. For the displacement field generated by the force
vector P due to an intrinsic point defect, the three potential functions Φ, X, and Ψ are
correlated with the force vector P (referred to as CFIPs). CFIPs in the PS-oriented

(
ξi, ξ j, η

)
Cartesian coordinates are defined as

Φ = ∇·Pφ =
∂(Pφ)

∂ξi
+

∂(Pφ)

∂ξ j
+

∂(Pφ)

∂η
, (21)
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Xêz = −∇× Pχ = −
[(

∂Pχ

∂ξi

)
−
(

∂Pχ

∂ξ j

)]
êz, (22)

Ψêz = ∇× Pψ =

[(
∂Pψ

∂ξi

)
−
(

∂Pψ

∂ξ j

)]
êz, (23)

where φ, χ, and ψ are scalar functions for P, SH, and SV waves, respectively. These scalar
functions are expressed by

φ
(
ξi, ξ j, η, t

)
= φ

(
ξi, ξ j, η

)
e−iωt,

χ
(
ξi, ξ j, η, t

)
= χ

(
ξi, ξ j, η

)
e−iωt,

ψ
(
ξi, ξ j, η, t

)
= ψ

(
ξi, ξ j, η

)
e−iωt.

Combining Equations (19)–(23) with Equations (1) and (2), and replacing the Lamé
constants and ρ by the longitudinal wave speed

(
cP =

√
λ + 2µ/ρ

)
and transverse wave

speed
(
cS =

√
µ/ρ

)
leads to

∇2φ + k2
pφ +

k2
p

ρω2 g = 0, (24)

∇2χ + k2
s χ +

k2
s

ρω2 g = 0, (25)

∇2ψ + k2
s ψ = 0, (26)

where kp = ω
cp

and ks =
ω
cs

, corresponding to the angular wavenumbers of the P and the
S waves, respectively. The solutions of these PDEs in the PS-oriented (ξ, ϑ, η) cylindrical
coordinates are as follows:

φ(ξ, ϑ, η) = Am Jm(αξ)Jm(αξ) cos(mϑ)e−ikηη −
k2

p

ρω2
G01

α2 − κ2
z

Jm(κzξ), (27)

χ(ξ, ϑ, η) = Bm Jm(βξ) sin(mϑ)e−ikηη −
k2

p

ρω2
G01

β2 − κ2
z

Jm(κzξ), (28)

ψ(ξ, ϑ, η) = Cm Jm(βξ) cos(mϑ)e−ikη η , (29)

where α2 = k2
p − k2

η and β2 = k2
s − k2

η . The corrections for the particular solutions in
Ref. [28] are given in Appendix A.

In the same manner as in ref. [28], the force vectors Ps acting in the radial
(

Pj
)

and
the axial (Pz) directions are introduced to solve for Φ, Xêz, and Ψêz. By substituting
Equation (27) into Equation (21) with coordination conversion, we obtain the CFIP for the
P wave

Φj = PjΞ

[
Amj

∂Jm(αξ)

∂ξ
cos(mϑ)e−ikηη −

k2
p

ρω2
G01

α2 − κ2
z

∂Jm(κzξ)

∂ξ

]
, (30)

Φz = Pz

[(
−ikη

)
Amz Jm(αξ) cos(mϑ)e−ikηη −

k2
p

ρω2
∂G01

∂η

1
α2 − κ2

z
Jm(κzξ)

]
. (31)

In Equation (31),

Ξ =
ξi
ξ

δij +
ξ j

ξ
=

a cosϕ− x0i√
ξ2

i + ξ2
j

δij +
a sinϕ− x0j√

ξ2
i + ξ2

j

, (32)
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where ϕ is the angle between an observation point and the xi axis. Similarly, we obtain the
CFIP for the SH wave

Xj = −PjΣ

[
Bmj

∂Jm(βξ)

∂ξ
sin(mϑ)e−ikηη −

k2
p

ρω2
G01

β2 − κ2
z

∂Jm(κzξ)

∂ξ

]
, (33)

Xz = −Pz

(
∂χ

∂ξi
δiz −

∂χ

∂ξ j
δjz

)
= 0, (34)

where

Σ =
ξi
ξ
−

ξ j

ξ
δij =

a cosϕ− x0i√
ξ2

i + ξ2
j

−
a sinϕ− x0j

ξ
δij. (35)

The CFIP for the SV wave is given by

Ψj = −PjΣCmj
∂Jm(βξ)

∂ξ
cos(mϑ)e−ikηη , (36)

Ψz =

[
Pj

(
∂ψ

∂ξi

)
− Pi

(
∂ψ

∂ξ j

)]
= 0. (37)

All three CFIPs for the P, SH, and SV waves were completely determined in the given
CF direction. In ref. [28], detailed derivation of the displacement components for the
cylindrical geometry are described in terms of Φ, X, and Ψ. For the cylindrical geometries,
applying gradient, divergence, and curl operators, Equation (20) results in the displacement
components in the (r, θ, z; r0, θ0, z0) coordinates as

u = ur r̂ + uθ θ̂+ uzẑ,

where ur, uθ , and uz are the radial, tangential, and axial displacements, respectively. In the
(ξ, ϑ, η) coordinates, these displacement components are as follows:

ur =
∂Φ
∂ξ

+
1
ξ

∂X
∂ϑ

+ a
∂2Ψ
∂ξ∂η

, (38)

uθ =
1
ξ

∂Φ
∂ϑ
− ∂X

∂ξ
+

a
ξ

∂2Ψ
∂ϑ∂η

, (39)

uz =
∂Φ
∂η
− a
(

∂2Ψ
∂ξ2 +

1
ξ

∂Ψ
∂ξ

+
1
ξ2

∂2Ψ
∂ϑ2

)
. (40)

Substituting Equations (30), (33), and (36) into Equations (38)–(40) gives the displace-
ment d component due to Pj as

udj = Pj

(
AmjF1

dj + BmjF2
dj + CmjF3

dj + F4
dj

)
e−iωt. (41)

Notably, the component F4
d f (f = j or z) is obtained from the particular solutions for P

and SH potentials associated with Green’s function. In this paper, the components F4
d f in

ref. [28] is corrected.
For the radial component urj,

F1
rj = Ξ

∂2 Jm(αξ)

∂ξ2 cos(mϑ)e−ikηη , (42)

F2
rj =

mΣ
ξ

∂Jm(βξ)

∂ξ
cos(mϑ)e−ikηη , (43)
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F3
rj= ikηaΣ

∂2 Jm(βξ)

∂ξ2 cos(mϑ)e−ikηη , (44)

F4
rj = −Ξ

(
k2

p

ρω2

)
G01

1
α2 − κ2

z

∂2 Jm(κzξ)

∂ξ2 . (45)

For the tangential component uθ j

F1
θ j = −

mΞ
ξ

∂Jm(αξ)

∂ξ
sin(mϑ)e−ikηη , (46)

F2
θ j = −Σ

∂2 Jm(βξ)

∂ξ2 sin(mϑ)e−ikηη , (47)

F3
θ j = −

ikηamΣ
ξ

∂Jm(βξ)

∂ξ
sin(mϑ)e−ikηη , (48)

F4
θ j = −Σ

(
k2

s
ρω2

)
G01

1
β2 − κ2

z

∂2 Jm(κzξ)

∂ξ2 . (49)

For the axial component uzj,

F1
zj = −ikηΞ

∂Jm(αξ)

∂ξ
cos(mϑ) e−ikηη , (50)

F2
zj = 0, (51)

F3
zj = −aΣ

[
∂3 Jm(βξ)

∂ξ3 +
1
ξ

∂2 Jm(βξ)

∂ξ2 − m2

ξ2
∂Jm(βξ)

∂ξ

]
cos(mϑ)e−ikηη , (52)

F4
zj = −Ξ

(
k2

p

ρω2

)
∂G01

∂η

1
α2 − κ2

z

∂Jm(κzξ)

∂ξ
. (53)

Similarly, the displacement d due to Pz is expressed by

udz = Pz

(
AmzF1

dz + BmzF2
dz + CmzF3

dz + F4
dz

)
e−iωt. (54)

For the radial component urz,

F1
rz = −ikη

∂Jm(αξ)

∂ξ
cos(mϑ) e−ikηη , (55)

F2
rz = F3

rz = 0, (56)

F4
rz = −

(
k2

p

ρω2

)
∂G01

∂η

1
α2 − κ2

z

∂Jm(κzξ)

∂ξ
. (57)

For the tangential component uθz,

F1
θz =

ikηm
ξ

Jm(αξ) sin(mϑ)e−ikηη , (58)

F2
θz = F3

θz = F4
θz = 0. (59)

For the axial component uzz,

F1
zz = −k2

η Jm(αξ) cos(mϑ)e−ikηη , (60)

F2
zz = F3

zz = 0, (61)
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F4
zz = −

(
k2

p

ρω2

)
∂2G01

∂η2
1

α2 − κ2
z

∂Jm(κzξ)

∂ξ
. (62)

As expressed by Equations (41) and (54), the displacement components involve the
coupling constants Am, Bm, and Cm. These constants can be determined directly by applying
a fundamental set of linear elastic boundary problems. The outer and inner surfaces of
the cylindrical shell studied in the present paper are stress-free. Thus, the following

stress components are zero at ξi and ξ j, satisfying
√
(ξi + x0i)

2 + (ξi + x0i)
2 = a for the

outer circumference and
√
(ξi + x0i)

2 + (ξi + x0i)
2 = b for the inner circumference in

Equation (17) for the shell
σrr = σrθ = σrz = 0. (63)

In ref. [28], by using the stress displacement relations, we obtained a system of linear
algebraic equations for the TIC, given bya11 f a12 f a13 f

a21 f a22 f a23 f
a31 f a32 f a33 f

Am f
Bm f
Cm f

 =

b1 f
b2 f
b3 f

, (64)

where f = j for Pj and f = z for Pz.
For Pj, all elements in Equation (64) are nonzero, as given by

a11j = Ξ
{
−
(

c12
m2

ξ2 + c13k2
η

)
∂Jm(αξ)

∂ξ + c12
1
ξ

∂2 Jm(αξ)
∂ξ2 + c11

∂3 Jm(αξ)
∂ξ3

}
× cos(mϑ) e−ikηη ,

(65)

a12j = (−c11 + c12)
mΣ
ξ

[
1
ξ

∂Jm(βξ)

∂ξ
− ∂2 Jm(βξ)

∂ξ2

]
cos(mϑ)e−ikηη , (66)

a13j = ikηaΣ
{
(c12 + c13)

1
ξ

[
−m2

ξ
∂Jm(βξ)

∂ξ + ∂2 Jm(βξ)
∂ξ2

]
+ (c11 + c13)

∂3 Jm(βξ)
∂ξ3

}
× cos(mϑ)e−ikηη ,

(67)

a21j =
(c11 − c12)

2
(2mΞ)

[
1
ξ2

∂Jm(αξ)

∂ξ
− 1

ξ

∂2 Jm(αξ)

∂ξ2

]
sin(mϑ) e−ikη η , (68)

a22j = −
(c11 − c12)

2
Σ
[

m2

ξ

∂Jm(βξ)

∂ξ
+

(
2− 1

ξ

)
∂2 Jm(βξ)

∂ξ2 +
∂3 Jm(βξ)

∂ξ3

]
sin(mϑ)e−ikηη ,

(69)

a23j = (c11 − c12)

(
ikηamΣ

ξ

)[
1
ξ

∂Jm(βξ)

∂ξ
− ∂2 Jm(βξ)

∂ξ2

]
sin(mϑ)e−ikη η , (70)

a31j = −2c44
(
ikηΞ

)∂2 Jm(αξ)

∂ξ2 cos(mϑ) e−ikηη , (71)

a32j = −c44

(
ikηmΣ

ξ

)
∂Jm(βξ)

∂ξ
cos(mϑ)e−ikηη , (72)

a33j = c44aΣ
[
− 2m2

ξ3
∂Jm(βξ)

∂ξ +
(

1+m2

ξ2 + k2
η

)
∂2 Jm(βξ)

∂ξ2 − 1
ξ

∂3 Jm(βξ)
∂ξ3

− ∂4 Jm(βξ)
∂ξ4

]
cos(mϑ) e−ikηz,

(73)

b1j = −
(

k2
p

ρω2

)
Ξ

α2 − κ2
z

[
c11G01

∂3 Jm(κzξ)

∂ξ3 + c12
G01

ξ

∂2 Jm(κzξ)

∂ξ2 + c13
∂2G01

∂η2
∂Jm(κzξ)

∂ξ

]
,

(74)

b2j =
(c11 − c12)

2

(
k2

s
ρω2

)
Σ G01

1
β2 − κ2

z

[
1
ξ

∂2 Jm(κzξ)

∂ξ2 − ∂3 Jm(κzξ)

∂ξ3

]
, (75)
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b3j = −c44

(
k2

p

ρω2

)
2Ξ

α2 − κ2
z

∂G01

∂η

∂2 Jm(κzξ)

∂ξ2 , (76)

For Pz,

a11z = ikη

[(
c12

m2

ξ2 + c13k2
η

)
Jm(αξ)− c12

∂Jm(αξ)

∂ξ
−c11

∂2 Jm(αξ)

∂ξ2

]
cos(mϑ) e−ikηη , (77)

a12z = a13z = 0, (78)

a21z = (c11 − c12)
(
ikηm

)[
− 1

ξ2 Jm(αξ) +
1
ξ

∂Jm(αξ)

∂ξ

]
sin(mϑ) e−ikηη , (79)

a22z = a23z = 0, (80)

a31z = −2c44k2
η

∂Jm(αξ)

∂ξ
cos(mϑ) e−ikη η , (81)

a32z = a33z = 0, (82)

b1z = −
(

k2
p

ρω2

)
1

α2−κ2
z

[
c11

∂G01
∂η

∂2 Jm(κzξ)
∂ξ2 + c12

1
ξ

∂G01
∂η

∂Jm(κzξ)
∂ξ

+c13
∂3G01

∂η3
∂Jm(κzξ)

∂ξ

]
,

(83)

b2z = 0, (84)

b3z = −c44

(
k2

p

ρω2

)
∂2G01

∂η2
1

α2 − κ2
z

[
∂2 Jm(κzξ)

∂ξ2 +
∂Jm(κzξ)

∂ξ

]
, (85)

For Pz, by substituting Equations (77)–(85) into Equation (64), we derive

Amz =
b1z
a11z

=
b3z

a31z
. (86)

Equation (86) allows us to obtain the value of κz at a given point on the circumference.
The only remaining task to complete the displacement fields is to introduce retardation

times into the CF P in Equation (1). The CF is an impulsive force acting at the PS-oriented
origin ξi = 0, ξ j = 0, and η = 0 at t = 0. The arrival time τ of the signal at position

(
ξi, ξ j, η

)
must be considered. The arrival times of the P and S waves propagating with velocities cP
and cS are given as

τP =

√
ς2 + η2

cP
, τS =

√
ς2 + η2

cs
, (87)

respectively, where ς is given by Equation (18). Introducing P0 and b parameters, deter-
mining the amplitude and duration of the wave, respectively, yields the CF acting in the f
direction as

P = P0 f (t− τ)e−b(t−τ). (88)

In the simulation, P0 =1.0 × 1010 N s−1 and b = 1.0 × 10−5 s−1.
Finally, the displacements generated by Pf can be obtained as

ur f = Pf

[
(t− τP)

(
Am f F1

r f + F4
r f

)
+ (t− τS)

(
Bm f F2

r f + Cm f F3
r f

) ]
e−iωt, (89)

uθ f = Pf

[
(t− τP)

(
Am f F1

θ j

)
+ (t− τS)

(
Bm f F2

θ f + Cm f F3
θ f + F4

θ f

)]
e−iωt, (90)

uz f = Pf

[
(t− τP)

(
Am f F1

z f + F4
z f

)
+ (t− τS)

(
Bm f F2

z f

)]
e−iωt. (91)

For practical purposes, the P, SH, and SV waves are introduced as

uP
f = Pf (t− τP)

(
Am f F1

d f + F4
r f

)
e−iωt → (d = r, z and θ), (92)
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uSV
f = Pf (t− τS)

(
Cm f F3

d f

)
e−iωt →→ (d = r, z and θ), (93)

uSH
f = Pf (t− τS)

(
Bm f F2

d f + F4
θ f

)
e−iωt → (d = r, z and θ). (94)

4. Simulations

In ref. [28], simulations of the displacement fields in TIC were confined to the case for
the azimuthal independence (m = 0) of wave propagation. In this paper, we extended the
simulation to the case of azimuthally dependent tangential displacements, i.e., 2π-aperiodic
solutions. Stainless steel cylindrical structures (a = 0.50 m, l = 2.0 m, ρ = 7.80 × 103 kg/m3,
cP = 5.98 km/s, cs = 3.30 km/s, and ν = 155.4 kHz) were used as the test specimens. First,
we determined kη from Equation (86), resulting in two solutions of Amz.

A1
mz =

b1z
a11z

∣∣∣∣
ξ=ς

·or→ A2
mz =

b3z

a31z

∣∣∣∣
ξ=ς

. (95)

On the outer circumference, kz =
rv1

(a−r0)
, the first root of the function

f (η) =
(

b1z
a11z
− b3z

a31z

)∣∣∣∣
ξ=ςo

= 0, (96)

Was solved at a given PS location as a function of η (= l− z0) and the shortest distance
ςo from the PS to a given point (0.5 m, 45◦, η) on the outer circumference of the cylindrical
structures. Figure 3 shows the dependence of kη/π on η for the cylinder (b = 0) and shell
(b = 0.4 m). As shown in the figure, the kη values are independent of the inner diameter b.
When PS is located on a radial axis, the dependence of the η-dependency of kη values is
very simple: all values are divided into two groups with even m and odd m. It should be
noted that the kη values are almost independent of ϑ.
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Using these kη results, we simulated the displacement fields at the outer surfaces of
the cylinder (b = 0 m) and cylindrical shell (b = 0.4 m). Figure 4 shows the 2π-periodic
(m = 0) displacements and their wave properties at the (0.5 m, 45◦, 1 m) position, generated
by the Pf PS located at the center of the cylinder

(
x0i = 0, x0j = 0, z0 = 1 m

)
. The Pj and

Pz excitations produce an axial displacement stronger than the radial and tangential dis-
placements. For the Pj excitation, the displacement results in the P wave are the main wave,



Appl. Sci. 2022, 12, 12032 13 of 19

with a minor SH wave and very weak SV wave. In Figure 4, the displacement amplitudes
generated by Pz excitation differ significantly from those generated by the Pj excitation,
in which the Pz excitation produces only the P wave. For the Pj excitation, the maximum
values of urj and uzj at the (0.5 m, 45◦, 1 m) position were 6.7 and 17.4 nm, respectively,
while for the Pz excitation they were 22.1 and 127.0 nm, respectively. The amplitudes of the
displacements due to Pz excitation are much stronger than those due to the Pj excitation.
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The angular dependence of the displacement was also calculated as a function of m
(m = 0, 1, and 2), as shown in Figure 5. For m = 0, when the PS is located at the center of
the circular plane, the angular dependences of urj, uzj, and utj arise only from Ξ and Σ,
defined in Equations (32) and (35), respectively. For Pz excitation, the displacements of urz
and uzz are free from these factors. When the distances from the PS to the circumference are
not equivalent, the angular dependences of the radial and axial displacements are highly
significant. These effects are due not only to Ξ and Σ, but also to the superposition of the
Bessel functions involved in the displacement Equations. When m is nonzero, additional
azimuthal factors, m, cos(mϑ), and sin(mϑ), result in complex angular dependency. It
should be noted that at a certain angle, some aij values of urj, uzj, and urz in Equation (64)
become too small to cause the sudden increase in displacement, hereafter referred to
as “computational divergency”. Figure 6 shows the angular dependence of a relatively
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strong uzz generated by two PSs located at x0i = 0, x0j = 0.45 m and z0 = 1 m, and
x0i = 0.35 m, x0j = 0.35 m and z0 = 1 m. For the first PS, the distance from the PS to the
point at ξi = 0, ξ j = 0.5 m, and η = 0 on the outer surface is the shortest with ς = 0.05 m.
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For this case, tan−1
(

ξ j
ξ j

)
= 90

◦
. For the second PS, the distance along tan−1

(
ξ j
ξ j

)
= 45

◦

is the shortest from PS (ς = 0.005 m). Spectra of the angular dependences of the dis-

placement fields are symmetric with respect to θ = tan−1
(

ξ j
ξ j

)
. As shown in Figure 6,

the uzz displacements at a point very close to the PS (ς = 0.005 m) are extremely large.
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Remarkably, Pz excitation of 1 N produces a P wave with a maximum amplitude of tens
of centimeters.
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z = 1 m for the cylinder (a = 0.5 m, b = 0 m), generated by the PS located at (a) (0 m, 0.45 m, 1 m), and
(b) (0.35 m, 0.35 m, 1 m).

Similarly, the displacement fields and their wave properties excited by the PS were
also calculated as a function of m (m = 0, 1, and 2) for the shell (a = 0.5 m, b = 0.4 m). Figure 7
shows the angular dependences of the axial component uzz generated by two PSs located
at x0i = 0, x0j = 0.45 m and z0 = 1 m, and x0i = x0j = 0.35 m and z0 = 1 m. There is no
difference in the spectral features of the corresponding angular dependences between the
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cylinder and shell geometries. However, the maximum amplitudes of the shell are much
smaller than those of the cylinder. Figure 8 shows 2π-periodic (m = 0) displacements at
the (0.5 m, 45◦, 1 m) position. For the shell, the most striking feature of the displacement
fields is the tangential displacement utj due to Pj excitation, the amplitude of which is
comparable to that of the axial displacement uzj, as shown in Figure 8a.
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5. Conclusions

In this paper, we provided a mathematical model for AE generated by an intrinsic
PS in cylindrical geometries, including a cylinder and shell. As an internal crack, the PS
produces CFIPs for P, SH, and SV waves. Introducing CFIPs into the NL equation provides
solutions for the radial, tangential, and axial displacements, involving azimuthal functions
in cylindrical geometries. The main advantage of our model is that it provides an exact
solution for the AE features from PS generation, propagation, and reception in cylindrical
geometries. In conjunction with experimental data, this mathematical model can be used
for NDT of cylindrical structures.
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Appendix A

Erratum: Kim, K.B.; Kim, B.K.; Lee, S.G.; Kang, J.-G. Analytical Modeling of Acoustic
Emission Due to an Internal Point Source in a Transversely Isotropic Cylinder [28].

The integration range on the left side of Equation (34) should apply from 0 to a.
Therefore, Equation (36) should be read

Av1 =
1

π
[
eκzz0 + e−κz(l−z0) − 2

] × 2

a2[Jv+1(aκz)]
2

(
κz =

rv1

a− r0

)
. (A1)

PDE for φr is given by

∂2φξ

∂ξ2 +
1
ξ

∂φξ

∂ξ
+

(
α2 − m2

ξ2

)
φξ = −

k2
p

ρω2

(
1

φϑφη

)
G1 J0

( r01

a
ξ
)

.

The solution of this PDE is a linear combination of the homogeneous (φξh) and partic-
ular (φξ p) solutions. For an inhomogeneous equation,

d2u
dz2 +

1
z

du
dz

+

(
1− ν2

z2

)
u = Zµ(λz),

The Korenev’s particular solution is given by [32]

u =
Zν(λz)
1− λ2 , λ 6= 1.

After applying this solution to PDE of φr, Equations (66)–(68) should be read

φξ p = −
k2

p

ρω2

(
1

φϑφη

)
G1(η)

1

α2 −
(

r01
a−r0

)2 Jm

(
r01

a− r0
ξ

)
r01

α(a− r0)
6= 1, (A2)

φ(ξ, ϑ, η) = φr(ξ)φθ(ϑ)φz(η)

= [Amr Jm(αξ)][Amθcos(mϑ)]
(

Aze−ikηη
)
− k2

p
ρω2 G1(η)

1

α2−
(

r01
a−r0

)2 Jm

(
r01

a−r0
ξ
)

, (A3)

χ(ξ, ϑ, η) = Bm Jm(βξ) sin(mϑ)e−ikηη −
k2

p

ρω2 G1(η)
1

β2 −
(

r01
a−r0

)2 Jm

(
r01

a− r0
ξ

)
, (A4)

Respectively.
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