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Featured Application: Projection-based Augmented Reality System for Medical Applications.

Abstract: The aim of this paper was to present the development of an Augmented Reality (AR)
system which uses a 2D video projector to project a 3D model of blood vessels, built by combining
Computed Tomography (CT) slices of a human brain, onto a model of a human head. The difficulty
in building this system is that the human head contains, not flat surfaces, but non-regular curved
surfaces. Using a 2D projector to project a 3D model onto non-regular curved 3D surfaces would
result in serious distortions of the projection if the image was not uncorrected first. This paper
proposed a method of correcting the projection, not only based on the curvatures of the surfaces, but
also on the viewing position of the observer. Experimental results of this system showed that an
average positional deviation error of 2.065 mm could be achieved under various test conditions.

Keywords: augmented reality; 2D projection; CT

1. Introduction

Prior to performing medical surgery, which requires both skills and experience, the
surgeons usually perform re-examination of the patient’s data to ensure the success of
the surgery. There are many methods for visualizing patient data, and one such method
involves the use of augmented reality (AR) [1]. The current state of AR uses dedicated
devices, such as a head-mounted display (HMD) [2,3], which places additional burden on
the doctor, because the device needs to be worn constantly. In order to alleviate the doctor
of the weight of the device, a projection-based single-viewer AR system is proposed in this
paper. Such a system would interactively project a 3D model of cranial blood vessels onto a
physical 3D model of a human head, using a 2D video projector. The difficulties of such
an AR system includes a movable observer, who may accidentally block the projection
or the phantom (occlusion), projecting a 2D image onto 3D surfaces with non-regular
curves, and the demand for the accuracy required for medical applications, which can
be around only 2.5 mm when using a HMD (3D model to phantom registration error) [4]
as an interface. The problem of the movable observer may be resolved by solving for
the observer’s viewing perspective, and then updating the display accordingly. Once the
perspective of the observer is found, the other problems can then be corrected by adjusting
the projection to the surface curvatures based on the perspective of the observer. In this
investigation, the prototype of such a system was built and then tested. Such an augmented
reality system can aid medical professionals by being useful in many applications; including
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pre-surgery simulations, the training of medical students, visualizations of lesions within
the human body, etc.

Our proposed method to calculate for the observer’s perspective is through tracking
the observer’s eye(s). There are two categories of methods for tracking eye movements:
contact-based and contactless. The methods most used in contact-based eye-tracking are the
Search Coil method [5] and the Electro-oculography method [6]. The Search Coil method
uses a specially designed soft contact lens, where an induction coil is added between the
two soft lenses, and a fixed magnetic field is added around the eyeball. So, whenever the
observer’s eyeball rotates, it drives the rotation of the lens, and then the induction coil
induces an electromotive force, due to the change of the magnetic flux. The magnitude of the
induced electromotive force is used to calculate the deflection angle of the eyeball. However,
the disadvantage of this method is that this measurement method is easily affected by
the condition of the observer’s eyeball, such as fluid secretion, etc., so it is not suitable
for long-term application. Furthermore, the soft lens has a double-layer structure, which
eventually adversely affects the observer’s vision. The method of electro-oculography
attaches electrodes to the skin around the observer’s eyes to measure the voltage difference
between the retina and the cornea. The difference in voltage between the electrodes is
then used to calculate the movement pattern of the eyeball. However, the accuracy of
this method can be affected by the secretion of keratin from the skin, resulting in unstable
electrical signals. This implies that this method is also not suitable for public use.

In contact-less methods, the most common methods are the Purkinje image tracking
method (also called Dual-Purkinje-Image, DPI) [7], the Pupil Tracking method [8], and
the Infra-Red Oculography (IROG) method [9]. The DPI method uses the property that
different layers of tissues of the eyeball have different refractive indices, and their reflected
images are different. This method can achieve high accuracy, but the cost of the necessary
equipment is prohibitively high and, thus, cannot be widely used. The Pupil Tracking
method irradiates the eye with infrared and near-infrared light, and, because the pupil
has a low reflectivity for infrared rays, and the iris has a high reflectivity for infrared
rays, an image is generated between the pupil and the iris. The brightness increases as
the iris becomes larger, while the brightness becomes smaller between the iris and the
white of the eye, so it becomes easier to grasp the contour of the pupil. The direction of
eyesight can then be determined by detecting the position of the pupil. Similarly, the IROG
method also irradiates a row of infrared light on the iris, and, because the sclera almost
completely reflects the infrared light relative to the iris and pupil, when the eye rotates,
the position of the pupil and the rotation of the eye can be computed using the position
and intensity of the light reflected by the sclera. However, infrared light can cause damage
to the eye, and methods based on it are susceptible to errors caused by the influence of
external light sources.

For the position of the observer, face detection is an effective method. There are various
features for detection used in different studies, including the Haar cascades [10–12], which
has been demonstrated not to be affected by scales difference or minimal occlusion by
hair, but is only suitable for frontal detection, and susceptible to insufficient lighting and
partial face occlusion [13]. The Histogram of Oriented Gradients (HOG) was probed [14]
for this application, and though it can be used to detect faces at slightly inclined angles, in
addition to frontal, it still fails at extreme angles. A Single-Shot-Multibox-detector (SSD)
model, combined with deep learning, were examined in [15–17], and found to successfully
detect the faces of different scale changes in the feature maps generated by the deep
learning networks, but, due to the limitation of fewer intermittent definite anchor scales,
the accuracy in detecting smaller faces may be too low. In determining the location of the
observer, a 3D spatial layout detection device would also be very helpful, in addition to
facial detection. Though electromagnetic devices have been used for spatial positioning [18],
they are not really suitable for medical environments. Recent studies in medical fields have
used optical spatial positioning devices, such as NDI’s Polaris Vicra optical tracker [19],
or Intel RealSenseTM [20] with dual-camera setup, which uses infrared cameras to track



Appl. Sci. 2022, 12, 12027 3 of 14

position of the patient or the phantom, and uses the CCD cameras to track moving objects
in 3D.

Image projection-based augmented reality for the application of neurosurgery was
proposed fairly early. Tabrizi et al. [21], in 2005, proposed a projection-based augmented
reality system, which would project the image of the region of interest in the cranial area
onto the surface of the patient’s head. One of the problems of such a system is the problem
of registration, which is the problem of seeking to align the position of the 3D model in the
computer with the real-world coordinate of the patient’s head, or a phantom representing
a head. In [21], the registration problem was solved by placing five feature markers on the
patient’s head before surgery, and also marking the positions corresponding to these five
markers in the 3D model. In this way, when projecting, the computer only has to achieve
perfect alignment with respect to the positions of these five markers to ensure projection
accuracy. Witkowski, et.al. [22] proposed another projection-based system consisting of
four parts: target tracking, head tracking, target transforming for different viewing angles,
and, finally, the projection. The heart of this proposed system is in the construction of
the 3D descriptors of the surface contours of the 3D model, and in the transformation of
the same model under different viewing angles. In the construction of the target object,
contour-based shape descriptors of the surface of the model are generated, and, then, the
distance from the center of each contour to its edges at every possible angle is calculated,
from 0 to 359. In target tracking, a red dot is first placed 45 mm above the mid-points
between the eyes to be used for tracking. The computer then calculates the viewing angle
based on the position of the red dot and its deflection from the mid-point between the eyes.

2. Methodology

The flowchart of the proposed system is shown below in Figure 1, which is composed
of four major components: the separation of blood vessels from the CT images, the align-
ment of the 3D point cloud to the real-world coordinates, adjusting the projection surfaces
with respect to the viewer, and, finally, projecting the adjusted model onto the phantom of
a head for augmented reality display. Digital subtraction angiography is used to cut out
the vascular portions from each CT image. The spatial position of the optical sensor or
RGB-Depth camera is used to align the point cloud virtual coordinate system representing
the surfaces of the head with the coordinates of the actual head in the real-world coordinate
system. The first part for adjusting the display of the 3D model according to the observer’s
perspective is to detect the face portion of the observer, which is then combined with the
extraction of facial feature points in order to not only obtain the observer’s position but
also his or her perspective. In order to adjust the display of the 3D model when using a
2D projector the scanlines are first projected onto the phantom following the computed
perspective of the observer, and the distortions of the scanlines across the surface of the
phantom are then recorded and used to calculate the slopes of changes across the surface of
the phantom. The 3D model of the blood vessels is then adjusted according to the surface
distortions, and, then, the projector projects the adjusted blood vessels onto the surface of
the phantom head.

The setup of the proposed system is shown in Figure 2. The processing of the data is
as follows. First, the areas in the images containing blood vessels and bones are manually
marked and, then, Ostu threshold and region growing methods are used to separate them
from the images. In order to avoid over-segmentation, the Digital Subtraction Angiograph
(DSA) [23] is used, which is an algorithm that augments blood vessel centerlines with their
radii, and structures such as bones are subtracted from the image in order to constrain the
3D reconstruction of the blood vessels. Finally, small nodules and noise are removed from
the 3D model. An example is shown in Figure 3.
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2.1. Image Alignment

In order to align the 3D model of the blood vessels, the real-world space coordinates
and the CT image space coordinate must be aligned by calculating for the transformation
matrix based on the two coordinate groups. In order to achieve this goal, an Iteration
Closest Point (ICP) algorithm is used. The ICP method is based on the one proposed by
Besl [24], which aligns floating point data to reference point data, so that the conversion re-
lationship between the two sets of data can be obtained and used to calculate the geometric
transformation matrix. Based on the characteristics of the data, the determination of the
initial point of search is important in this ICP algorithm. There is no guarantee of reaching
the global optimum. So, a modification in the form of adding a perturbation mechanism
should help the algorithm reach a better solution even if a random initial starting point is
used. The modified ICP algorithm is as followed:

1. Let the floating point group corresponding to the patient’s facial features, extracted
from the camera image, be F, where F = {fi(x,y,z),1 ≤ i ≤ Nf}, and let the floating data
point group corresponding to the facial features, extracted from the CT images, be R,
where R = {rj(x,y,z),1 ≤ j ≤ Nr}.

2. Pick a random point from F, assume it is f, and seek its closest corresponding point in
R by calculating the minimum distance between f and R, d, as:

d ( f , R) =
1
M

min
j∈(1,...N)

‖ fi − rj ‖ (1)

where M is the normalizing constant.
3. Calculate the median distance, Median, of all the distances. Assume the distances are

re-arranged in order, then:

Median(d) = dj, where j =

{ N f
2 , N f is odd

N f +1
2 , N f is even

(2)

4. Assign weight to each pair, based on the distance between each pair of points.

Wi =

{
1, i f di < median
median

di
, otherwise (3)
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5. Calculate the root mean squared error (RMS):

RMS =

√√√√ 1
N f

N f

∑
i=1

Wi·di (4)

6. Calculate and record the transformation matrix, T, of current pairs. If the termination
condition, based on RMS, is reached, output T as the final transformation matrix.
However, if the termination condition is not reached, but the RMS value is smaller
than the previous iteration, then replace the optimal transformation matrix with the
current T.

7. If the termination condition is not reached, a perturbation mechanism is used; that is,
applying a perturbation matrix on the current pairings. The probability of perturbation
is based on the Gaussian distribution. The purpose of perturbation is allowing the
search outside the current solution space, which may be small, and can allow for a
locally optimum solution.

8. Restart the ICP again.

The flowchart of the modified ICP algorithm is shown in Figure 4.
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2.2. Capture the Position of the Observer

In this study, the RealSenseTM camera was used to capture the position of the observer.
The position of the observer was determined by using facial features. The Max-Margin
Object Detector (MMOD) algorithm [25,26] was used to detect the observer’s face in the
camera images, then five-point facial key points detection was performed to locate the
edges of both eyes, and the nose tip [27], as shown in Figure 5.
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Figure 5. The five-point facial feature points used in face detection.

The Max-Margin Object Detection (MMOD) algorithm is a maximum edge object
detector, based on the Convolutional Neural Network (CNN), and can help solve the
problem which occurs when the observer is so far away from the camera that the features
cannot be correctly identified. Once the feature points are identified, the center between
the two eyes is set as the position of the observer. Once the position of the observer
is determined in the real-world, a virtual camera, representing the observer, is placed
in the virtual world of the 3D model and faces the position of the 3D model of blood
vessels. The movements of the observer in the real-world is matched by the corresponding
movements of the virtual camera in the virtual world. The position of the patient or the
phantom head is not tracked, but only the location of the observer. The RealSenseTM camera
can rotate a total of 120 degrees, i.e., 60 degrees to each side of the patient, which is sufficient
for the proposed application and so was set as the parameter used in the experiment.

2.3. Three Dimensional Model Surface Correction

The steps to surface correction are as follows:

1. Project a square matrix of scanlines onto the head of the patient or phantom.
2. Use a video camera to capture the distortions of the scanlines on the surface. An

example of the scanlines projected onto a head phantom is shown in Figure 6.
3. Thin the captured scanlines in order to obtain a more accurate representation of the

matrix, obtaining a matrix of regions.
4. Determine which regions are still fully closed by using the flood filling algorithm

from the center of each region. This is useful for obtaining the coordinates of the
intersections of the scanlines.

5. Mark out each region and obtain the coordinates of the intersections.
6. In order to reduce calculations, the user is asked to mark out regions of interest (ROI).
7. Geometric corrections are performed for each region in the ROI. An example of a

blood vessel before and after adjustment is shown in Figure 7.
8. Project the result.
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3. Experimental Results

The hardware setup for the experimental was as follows: 1. IntelTM i9 computer
with 32 GB of memory and one NVIDIA® RTX2080Ti display card. 2. Two RealSenseTM
D435 cameras. 3. One Optoma ML750 video projector. 4. Two head phantoms. The head
phantoms and the markers used in the experiments are shown in Figure 9.
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Figure 9. Head phantom 1 (left), and head phantom 2 (middle and right).

The first head phantom had five markers, P1–P5, and the second phantom had four
markers (Q1–Q4). The first experiment was conducted to determine the best face detector
out of the following four algorithms: the OPENCV implementations of the Haar-cascade
based face detector [28], the DNN-based face detector [29], the Dlib implementation of
HOG and Linear SVM face detector [30], and the MMOD face detector [31]. Evaluation
was based the precision of the detection of the five feature key points mentioned above,
as well as six to eight feature key points or facial landmarks which not only captured the
points mentioned above, but also the surface around the mouth and the face.

The second part of the experiment was to test the proposed method for any deviation
in the projection. In this experiment, both head phantoms were used. The deviations
were calculated based on the distance from the locations of markers placed on the head
phantoms being projected from the actual markers, and from the perspective of a stationary
observer. This was followed by an experiment of the observation from a different location.
Lastly, the observation moved again, and the light in the laboratory was dimmed. This part
of the experiment was repeated five times, and the results shown in the tables below were
the average of the five runs.

3.1. Experiments for Speed

First, we tested the speed of each implementation, by calculating the frames-per-
second for display. The following figure, Figure 10, illustrates the results.
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3.2. Experiments for Accuracy

Second, the accuracy of capturing the feature points was examined. For this part of
the experiment, the Face Detection Data Set and Benchmark (FDDB) [32] was used, which
contained 5171 faces with position labels. The results of this experiment are shown in
Table 1.

Table 1. Accuracy comparison of four different methods in face detection.

Algorithm Precision Std. Deviation Recall Std. Deviation

Haar 80.23% 5.12% 44.56% 30.04%

HOG + SVM 83.78% 4.45% 48.61% 28.41%

DNN 89.33% 2.17% 70.94% 13.86%

MMOD 98.14% 1.08% 80.26% 9.79%

The second part of this set of experiments was to test the proposed method for
any deviation in the projection. In this experiment, both head phantoms were used.
The deviations were measured based on the distance from of the locations of markers
placed on the head phantoms being projected from the actual markers, and from the
perspective of an observer in front of the camera at different angles. Every experiment in
this part was repeated five times, and the results shown in the tables below were the average
of these five runs. Table 2 shows the average results for an observer with uncovered face.

Table 2. Deviations of the projections of markers from physical markers on head phantoms in mm.

Deg. P1 P2 P3 P4 P5 P.Avg. Q1 Q2 Q3 Q4 Q Avg.

0 1.51 1.58 1.51 1.54 1.5 1.528 1.61 1.43 1.48 1.58 1.525

+10 1.53 1.54 1.53 1.5 1.58 1.536 n.a. n.a. n.a. n.a.

+20 1.54 1.55 1.54 1.51 1.53 1.534 1.57 1.54 1.67 1.61 1.598

+30 1.7 1.54 1.52 1.55 2.21 1.704 n.a. n.a. n.a. n.a.

+40 2.21 1.52 1.5 * 1.52 1.688 1.68 1.71 1.66 1.7 1.688

+50 2.5 1.55 1.7 * 1.54 1.823 n.a. n.a. n.a. n.a.

+60 2.4 1.52 1.78 * 1.54 1.81 1.69 1.62 1.73 1.77 1.703

−10 1.57 1.97 1.53 1.51 1.51 1.618 n.a. n.a. n.a. n.a.

−20 1.58 1.96 1.52 1.52 1.74 1.664 1.55 1.64 1.7 1.66 1.638

−30 1.56 2.4 1.56 1.51 1.68 1.742 n.a. n.a. n.a. n.a.

−40 1.53 2.33 1.58 1.59 * 1.758 1.51 1.49 1.47 1.53 1.5

−50 1.58 2.21 1.89 1.54 * 1.805 n.a. n.a. n.a. n.a.

−60 2.2 * 2.38 1.76 * 2.113 1.73 1.68 1.74 1.76 1.728

Total Avg. 1.717 1.625

*—visually blocked, unable to measure; n.a—no experiment was performed at this setting.

This was followed by an experiment conducted when a mask covered the observer’s
mouth, simulating a surgeon as observer. Again, the deviation measurements were taken
at different angles, and are shown in Table 3.
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Table 3. Deviations from markers on head phantoms in mm with masked observer.

Deg. P1 P2 P3 P4 P5 P.Avg. Q1 Q2 Q3 Q4 Q Avg.

0 1.62 1.75 1.71 1.64 1.66 1.676 1.78 1.83 1.76 1.85 1.805

+10 1.66 1.78 1.81 1.68 1.7 1.726 n.a. n.a. n.a. n.a. .

+20 1.7 1.77 1.68 1.76 1.71 1.724 1.86 1.84 1.79 1.81 1.825

+30 1.84 1.89 1.76 1.89 1.73 1.822 n.a. n.a. n.a. n.a.

+40 2.31 1.75 1.71 * 1.64 1.8525 1.91 1.88 1.93 1.94 1.915

+50 2.52 1.81 1.74 * 1.67 1.935 n.a. n.a. n.a. n.a.

+60 2.64 1.74 1.89 * 1.91 2.045 1.68 1.77 1.86 1.71 1.755

−10 1.59 1.67 1.64 1.77 1.64 1.662 n.a. n.a. n.a. n.a.

−20 1.91 1.67 1.76 1.72 1.69 1.75 1.37 1.69 1.58 1.92 1.64

−30 1.86 1.99 1.73 1.68 1.81 1.814 n.a. n.a. n.a. n.a.

−40 1.84 2.6 1.78 1.76 * 1.995 1.84 1.93 1.78 1.82 1.843

−50 1.76 2.6 1.86 1.61 * 1.958 n.a. n.a. n.a. n.a.

−60 2.1 * 2.8 1.86 * 2.253 1.76 1.71 1.77 1.83 1.768

Total Avg. 1.862 1.793

*—visually blocked, unable to measure; n.a—no experiment was performed at this setting.

Lastly, the observer was not only masked, but the light in the laboratory was dimmed,
simulating using a projector with low lumens. The results are shown in Table 4.

Table 4. Deviations from markers on head phantoms in mm with masked observer and dim light.

Deg. P1 P2 P3 P4 P5 P.Avg. Q1 Q2 Q3 Q4 Q Avg.

0 2.16 2.39 2.86 2.44 2.54 2.478 2.56 2.43 2.12 2.41 2.38

+10 2.34 2.76 2.45 2.67 2.78 2.6 n.a. n.a. n.a. n.a. .

+20 3.7 3.1 2.87 2.64 2.31 2.924 2.11 2.27 2.19 2.45 2.255

+30 2.51 1.97 1.88 2.34 1.92 2.124 n.a. n.a. n.a. n.a.

+40 3.41 2.67 2.46 * 2.74 2.82 2.55 2.43 2.69 2.17 2.46

+50 2.57 2.44 2.41 * 2.67 2.523 n.a. n.a. n.a. n.a.

+60 3.11 2.87 2.92 * 2.96 2.965 2.16 2.58 2.41 2.09 2.31

−10 2.21 2.34 2.4 2.41 2.39 2.35 n.a. n.a. n.a. n.a.

−20 2.37 2.6 2.78 2.61 2.21 2.514 2.76 2.88 2.43 2.22 2.573

−30 2.7 2.44 2.56 2.17 2.67 2.508 n.a. n.a. n.a. n.a.

−40 3.57 3.24 3.51 3.09 * 3.353 2.08 1.98 2.34 2.06 2.115

−50 3.87 3.8 3.66 3.91 * 3.81 n.a. n.a. n.a. n.a.

−60 3.14 * 3.02 2.86 * 3.007 2.61 2.14 1.92 2.68 2.338

Total Avg. 2.767 2.347

*—visually blocked, unable to measure; n.a—no experiment was performed at this setting.

Examples of projection of blood vessels onto one of the head phantoms for an observer
at different degrees are shown in Figure 11. In projecting the blood vessels, the colors of the
background were adjusted for better viewing of the blood vessels.
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3.3. Experiments for Systems Comparison Purposes

The last experiment was designed to test the accuracy of the NDI system against our
proposed system. The viewing angle was assumed to be 0, and both head phantoms were
used. The first phantom was laid face up to test the five marker points, and the second
phantom was laid first with the right side up, and then with the left side up. The following
table, Table 5, shows the average errors of these two systems.

Table 5. Performances of NDI vs. Proposed System on the head phantoms.

System P1 P2 P3 P4 P5 P.Avg. Q1 Q2 Q3 Q4 Q Avg.

NDI 1.34 1.81 1.62 1.55 1.83 1.63 1.53 1.62 1.67 1.69 1.630

Proposed 1.54 1.51 1.58 1.51 1.5 1.528 1.48 1.37 1.41 1.53 1.448

4. Discussion

Figure 10 shows that performance of the MMOD system in facial features detection
was the slowest of the methods tested. However, in terms of accuracy, as shown in Table 1, it
was the best performer. Since the speed performance of the MMOD method was acceptable
for the five feature points, it was then incorporated into the proposed system. The results
of the second set of experiments showed the average positional deviation for the first head
phantom, and the total average errors averaged to around 2.18 mm, while for the second
head phantom the average error was around 1.95 mm, so the total average for both heads
was around 2.065 mm. This value was quite acceptable for medical applications, since [4]
shows that 2.5 mm for HMD is acceptable. It is noted that dimming the light resulted in
slightly larger errors for both head phantoms, so it is suggested that a projector with high
lumens should be used for our proposed system.
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In the last experiment that was performed, which was to compare the existing NDI
system with our proposed system, in terms of accuracy, on the phantoms. Even though the
experiment was not exhaustive, it did show that, under regular conditions, the proposed
system could perform as well as the NDI system.

5. Conclusions

In terms of setup, when compared to the NDI system [19], the proposed system is less
bulky, and more portable. This study used the RGB-D camera setup to capture the features
and locations of the phantom, which were then converted to cloud points for registration
and alignment; a lighter process, which costs less. In order to examine the proposed system
under various conditions, two different head phantoms with different marker locations
were used. In addition, the observer was moved to different positions to test different
viewing angles. The average values of multiple experiments were recorded, and the results
showed that the proposed system could perform well, even under strict requirements.
The proposed system, under tested conditions, could perform as well as the NDI system,
though less bulky and costing less.

The future of this research will try to extend the location to other parts of the human
body, so that the prospects of this system are not restricted to only teaching and training.
The efforts put into the research of building this system instilled appreciation for the efforts
of other investigators in developing methods to build a more accurate model of the human
brain, such as the investigation in [33] into relationships between electroencephalogram
(EEG) synchronization and emotions.
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