
Citation: Li, C.H.J.; Liang, V.; Chow,

Y.T.H.; Ng, H.-Y.; Li, S.-P. A Mixed

Reality-Based Platform towards

Human-Cyber-Physical Systems with

IoT Wearable Device for Occupational

Safety and Health Training. Appl. Sci.

2022, 12, 12009. https://doi.org/

10.3390/app122312009

Academic Editor: Alexandre

Carvalho

Received: 18 October 2022

Accepted: 18 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Mixed Reality-Based Platform towards Human-Cyber-Physical
Systems with IoT Wearable Device for Occupational Safety and
Health Training
Chi Ho Jimmy Li 1,*, Vincy Liang 2, Yuk Ting Hester Chow 3,* , Hiu-Yin Ng 2 and Shek-Ping Li 2

1 School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
2 Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom,

Hong Kong SAR, China
3 Division of Business and Hospitality Management, College of Professional and Continuing Education, The

Hong Kong Polytechnic University, Hong Kong SAR, China
* Correspondence: chli@ieee.org (C.H.J.L.); hester.chow@cpce-polyu.edu.hk (Y.T.H.C.)

Abstract: Occupational safety and health (OSH) should be regarded as a crucial challenge that affects
the public world widely. Work-related accidents and occupational illness contribute to considerable
mortality and morbidity. As technology advances, mixed reality (MR) has gained popularity. To
minimize occupational accidents occurring in the workplace and reduce human training time, an
MR-based platform for OSH training combined with CPS and IoT technology is proposed in this
paper. Multi-criteria decision-making (MCDM) and fuzzy-analytic hierarchy process (FAHP) were
applied to evaluate and select suitable gloves. Only when the MR wearable devices are improved
can a more powerful MR-based OSH training program be established. A higher immersive level of
OSH training offers people a more realistic experience. They will better understand possible risks in
workers’ future work, resulting in a lower occupational accident rate in the workplace.

Keywords: mixed reality; Internet of Things; cyber–physical systems; wearable hand device; occupational
safety and health training

1. Introduction

The Internet of Things (IoT), the Internet of Everything, or the Industrial Internet,
acts as a global network of devices and machines that can interact [1]. IoT is considered
one of the essential technology domains for the future and attracts vast attention from
various industries [2]. The IoT endpoint market has grown enormously since the idea was
published. However, robust interactions of human–to–device and device–to–device are
achieved by the IoT applications [3]. There are numerous domains of IoT applications, such
as healthcare, industries, vehicular communications, cloud computing, fog computing,
edge computing, wireless sensor networks (WSNs), data mining, cellular networks, and
many others [4]. In the future, there will be more and more devices available to interact with
the system of IoT [3]. Companies have developed IoT solutions for facility maintenance
and cold chain management applications. Taking facility maintenance as an example, with
the help of multiple sensors and IoT systems, functions such as motion detection in the
restricted area and water detection in the pump room can be achieved for the ease of facility
management [5–9].

In the age of IoT, progress allows the number of advanced IoT applications such as
smart healthcare systems, intelligent transport systems, smart energy systems, and smart
buildings [10]. Sensors are the cornerstone of IoT deployment [11–16]. They enable IoT by
collecting valuable data for better decision-making, especially for health and safety. The
capability of sensors is aimed at securing the dangerous working environment, preventing
injuries, and predicting risks. Intending to achieve the above targets, IoT sensors are helpful
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in occupational safety and health training [17–20]. Occupational safety and health (OSH) is
multidisciplinary and concerned with people’s safety, health, and welfare issues at work.
It keeps a watchful eye on workplace risks, including physical, chemical, biological, and
psychological hazards and accidents. The primary target of OSH is to make improvements
in offering a safer and healthier working environment, which means lessening the number
of occupational injuries and deaths, musculoskeletal disorders, harmful occupational
exposures, sick leave, and worker complaints [21].

IoT cannot be divorced from cyber–physical systems (CPS) to maximize advancement
opportunities. They are both sophisticated platforms that aim to enhance technological relia-
bility and expose fields of unexploited possibility [22–25]. CPS is a complex, heterogeneous
distributed system of collaborating computational factors to control physical objects [26–32].
The physical side is connected with the sensors, actuators, and hardware and transmitted
to the network and cyber layers. CPS aims to detect and realize the variations in the
natural environment, analyze the influence caused by the changes to the operation and
make decisions to answer the corresponding changes through dispatching commands to
control physical devices in the system. This feature enables remote physical environment
control [33]. Moreover, IoT is a technology that connects different independent equipment
into one communicational platform for data monitoring and processing [3,17,19,20,34]. CPS
and IoT are involved in integrating digital competencies such as computational abilities and
network connectivity with physical objects and systems to promote performance [35–39].
Examples include intelligent vehicles, smart grids, cutting-edge manufacturing systems,
and wearable medical devices [7,8,40–44]. Wireless communication plays a leading role
in the smart world. CPS and IoT are standard techniques directly interacting with innu-
merable human daily activities [33]. CPS’s cooperation with IoT can produce remarkable
progress in various industries. Fully grasping the distinctions and the relationship between
IoT and CPS is of the utmost importance [33,45–51].

1.1. Wearable Hand Device

Conventional gesture recognition is conducted through wearable hand devices like
data gloves. It is a wearable sensor input device of human–computer interaction applied
for hand motion capture. When users wear the gloves and perform some hand gestures or
sign language, the data gloves can grasp the critical information of the hand gesture, such
as position, orientation, and configuration, and transfer them to the computer. Then, the
finger and hand motion is accurately transformed into real-time virtual information. A feed-
forward neural network for gesture recognition can train through adopting the collected
data. The sensors of data gloves play a vital role in acquiring gesture-related information.
Without sensors in data gloves, the hand motions will not be interpreted into digital data
and transmitted to the host computer for further analysis. The performance of sensors may
affect the degree of precision of the selected information, which directly influences hand
gesture recognition accuracy and completeness. The recognition workflow of data glove is
indicated by the following procedures. Initially, users wear the data gloves and display
different gestures in the data acquisition phase. The embedded sensors can sense the
flexing point of each joint of fingers and deliver the collected data to the microcontroller to
capture gestures. Those input signals will then be processed and become proper signals for
feature extraction. After extracting the data, the processed data are transmitted to a gesture
recognition and hand tracking system for training the algorithm, getting the recognition
rate, or others. Lastly, the hand gestures are realized and translated into corresponding
meanings. There are pros and cons of wearable hand devices. The data gloves can measure
the parameters of the hand and finger directly. They are easy to use for acquiring helpful
information with fast processing speed. However, using the data gloves for hand gesture
recognition may obtain several limitations. The data gloves are time consuming with
regard to dynamic gesture recognition. The recognition accuracy is highly dependent on
the data collection process, which cannot obtain a stable recognition performance. If the
data collection procedure is conducted well, the recognition accuracy will be higher and
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vice versa. Furthermore, this approach suffers from slow enforcement, which may not be
appropriate for real-time interactions. In addition, data gloves are immersive devices that
may result in an inconvenient operation and be less comfortable worn by the users. Data
gloves are unsuitable for long-distance control and MR-based applications [52–54].

1.2. Mixed Reality

Combining the IoT system with MR technology, the environmental parameters of the
site intended for simulation can be caught accurately, which is beneficial to the development
of an immersive situation for OSH training. Another advantage is that the operator’s
condition can be monitored for data analysis and a better case study. With the growing
trend and popularity of mixed reality (MR), augmented reality (AR), and virtual reality (VR),
the confusion about the divergence between these three innovative technologies is rising
correspondingly. Although all of these immersive techniques have common properties,
they are different. To better comprehend MR, AR, and VR and their interrelationship, the
term the continuum is used. This is bounded by an authentic environment that means
the real world and an entirely virtual environment such as VR with augmented reality
(AR) and augmented virtuality (AV). MR is defined as everything between real and virtual
environments. AR is merely a subclass of MR, and VR cannot be counted as a portion of
MR. MR is the acronym for mixed reality. Simply speaking, MR is an integration of AR
and VR [55,56]. It combines digital and real worlds to unblock the linkage between human,
computer, and environment interaction [57–63]. Users are enabled to communicate with
digital items placed in the physical world in real-time. Moreover, the virtual objects will
respond to users as real things [15,55,64]. MR should be counted as the latest immersive
technology among the three. For example, the information about a surgical room is
embedded in the actual scene. By adopting MR technology, users can interact with the data
using a surgical device. Conducting simulated surgeries repeatedly allows the surgeon
to prepare backup solutions when minimizing the chance of accidents occurring and
encountering related accidents. MR acts as a new tool that can provide an opportunity to
expand educational and training methodologies. As an immature technology in the early
stage, MR has some limitations. To experience MR, equipment, such as an MR headset for
a credible and three-dimensional experience is needed. However, head-mounted display
devices, such as the headset, HoloLens, and Google Glasses, restrain or even stop the head
movement of users. Thus, devoting more efforts to MR development and upgrading the
functionalities of wearable devices are the prerequisites for improving the immersive user
experience.

1.3. Occupational Safety and Health Training

In Hong Kong, the Labour Department is responsible for OSH issues [65]. The OSH
ordinance covers most of the workplaces that employees work in, such as factories, con-
struction sites, laboratories, offices, educational institutions, shopping arcades, and catering
establishments. Nevertheless, there are some exceptions. The Commissioner for Labour
is authorized to enforce the ordinance by improving the notices and suspending notices
to avoid imminent hazards to employees during workplace activity [65]. Under the legal
framework, OSH in Hong Kong is constructed to facilitate the all-inclusive establishment
of OSH and preserve the OSH of every society party. However, there are still some im-
perfections in real-life operations. To reduce the operation cost, some organizations may
escape from OSH ordinances. Moreover, the current regulatory framework for OSH mainly
focuses on industrial corporations, while there is no relevant constraint to other kinds
of institutions in Hong Kong nowadays. With the progress of technology and society,
more and more organizations are applying new technologies, which brings out new OSH
problems, including working under pressure, overtime, work-related hazards brought
by 3C products, and other vocational risks. To improve OSH fields that are imperfect or
undiscovered and save workers at risk for injuries, a more organized framework of OSH
management by laws is necessary. Around the globe, good OSH services have merely
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existed in 5% to 10% of employees’ workplaces in developing countries and 20% to 50% of
those from industrialized nations [66]. According to the International Labor Organization,
nearly 1.9 million people suffer from occupational diseases, and 2.3 million employees die
annually from work perils [67]. Construction is one of the industries with the most severe
accident or injury rates. A study revealed that exposure is crucial for construction work-
ers’ injuries [68]. OSH ought to have high precedence on the international agenda, while
improving OSH infrastructures and systematic preventive approaches in industrializing
countries is prolonged. Under the circumstance, education and training within the OSH in
advance of employment might be vital. Basic knowledge and compliance with rules are
two essential elements that OSH training focuses on it. To prevent risks and establish a
culture of prevention, training in safety rules is a lever to be activated.

1.4. Problem Description and Objectives

In addition, preliminary research about MR-based training should be counted as
another problem. VR was more commonly used than MR for safety training, and training
was prominent in the maintenance of workplace safety. Due to the lack of research in
MR-based training, there might not be a significant chance to incorporate IoT and CPS in
the training applications. Enriching MR content using IoT requires new architectures to
handle the complexity of MR integration within the IoT platform. The functionality of CPS
lies in conducting cloud-based data analysis in the cyber layer [69–71]. An MR technology-
based OSH training enables trainees to explore hazardous situations without exposure
to real-life threats. Thus, a lack of research in MR-based training can be a significant
obstacle to uplifting the training quality and effectiveness. Referring to the study by the
Bureau of Economic Analysis [72], the estimated expenditure on work-related accidents
and occupational illnesses is around USD 200–550 billion. The data disclosed that OSH
is a fundamental challenge in the workplace worldwide. Hence, this research expects
to achieve two objectives. The first objective is to minimize errors or accidents in the
working environment to protect workers from exposure to health and safety risks. The
second objective is to reduce the training time to ensure work sufficiency by using new
technical apparatus. Adopting advanced technologies is of utmost importance to ensure the
occupational accident rate can be declined. To overcome insufficient research in MR-based
OSH training and the absence of MR application with CPS and IoT for OSH training,
employing CPS and IoT techniques to establish a better-quality MR-based platform for
OSH training should be considered as one of the suitable solutions. Therefore, the main
research questions that need to be addressed are as follows:

1. How could an MR-based environment be assisted for OSH training?
2. How could HCPS be adopted for OSH training under an MR-based environment?

2. Theoretical Background and Related Works

This section reviews state-of-the-art research in MR-based training platforms and the
use of IoT and CPS-based system architecture for OSH training.

2.1. IoT-Based Occupational Safety and Health

IoT has proved to be one of the leading exponents in communication and attracted
considerable research attention in the twenty-first century. It allows vast amounts of items,
including sensors, electric apparatus, or vehicles, to be connected to the Internet, offering
helpful information, data, and resources [17,19,20,34,73]. IoT is not merely knowledge and
communication technology but also technology in the safety and health sector. It plays
a crucial role in healthcare and ambient monitoring applications. For instance, wireless
sensors adopted in different spots observe surrounding environments, and sensors of
wearables can be attached to workers’ bodies to measure physiological conditions. The
collected information will then be transmitted to the cloud infrastructure and delivered to
target receivers [74]. In addition, construction is a challenging field from the viewpoint of
OSH. The safety and health of workers are momentous considerations on a construction
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site. Mishaps of all kinds at the construction site will cause occupational injuries and
illness to workers, hence decreasing their working effectiveness as well as changing their
life permanently [75]. The emergence of IoT and its concomitant technologies such as
wearables have raised interest in the OSH of health and safety monitoring applications
and building work [74]. As the health status of workers and environmental parameters of
the construction site are collected, proactive prevention can be taken after data analysis to
lessen the occupational accident rate in the construction industry [41,43,76–80]. In short, IoT
provides instant and consistent support in monitoring various human and environmental
metrics. Therefore, IoT-based OSH can improve the safety and productivity of the industry
and minimize workers’ health impacts [18,80–83].

2.2. CPS-Based Occupational Safety and Health

The cyber–physical system (CPS) is also known as an intelligent ICT system. This
system consists of interconnected, interdependent, cooperative, and autonomous features.
It provides computing and communication capabilities to monitor and control physical
objects in various applications. The concept and functionalities of CPS can be applied in
the workplace to enhance the OSH [18,20,42,82,84–87]. Generally, the notion of CPS can
be demonstrated as an imagination infrastructure. It is comprised of two layers, includ-
ing the physical and cyber layers [88–92]. The physical layer consists of physical entities
located in physical 3D space to implement particular jobs and communicate with each
other physically. The entities might be composed of sensors and actuators or equipped
with proper sensors and actuators. Spatially distributed telecommunication nodes and
computing networks are part of a cyber-layer. This is connected to sensors or actuators
and immersed in the natural environment [93]. As mentioned above, CPS contains various
sensors and actuators employed to monitor abundant parameters of workers’ health and
the surrounding environment. These assume that the data processing units, transmitters,
and receivers are installed in sensors and actuators. Hence, the workers’ health states and
corresponding working environment can be monitored and controlled by data processing
to guarantee the OSH [88–92]. Utilizing real-time monitoring, the health status of laborers
can be observed by measuring primary physiological coefficients like heart rate, body
temperature, breathing rate, and work comforts like work posture, underclothing tempera-
ture, and humidity. Moreover, workplace hazards such as exposure to poisonous chemical
matters, noise, and optical radiation can be detected. After analysis, these collected data
will warn workers about the emergence of risky situations. Furthermore, the protective
systems will activate after surpassing a high-risk threshold value. Therefore, CPS should be
considered a tool to improve OSH. Hence, it should be adequate to prevent workers from
being exposed to the risks of health hazards and prone to disease. Furthermore, healthcare
and medicine applications are on a medium scale. The adoption of CPS in this domain
helps to monitor the workers’ health conditions and take necessary responses to ensure
their safety and health.

2.3. Types of Hand Wearable Device

The concept of wearable intelligence has been broadly explored in the past decades.
Numerous emerging technologies offer convenience to daily human life, especially for
old and disabled people [94]. The adoption of hand wearable devices is not new to our
world. Hand data gloves are applied in various study domains, including medical surgery,
game, virtual reality, and shopping applications [95]. Data gloves achieved a high accuracy
rate suitable for medical surgery. In gaming, gestures are the most interactive module for
game control. Even iPods, iPhones, or iPads use gestures on mobile video game platforms.
Gestures must be recognized first, and hence the data glove is employed. The data glove is
designed to replace static and fixed keyboards and mice to promote a sense of immersion. It
permits users to interact with the computer more authentically and naturally [96]. In the as-
pect of rehabilitation, the hand wearable device is of utmost importance. A research project
revealed that the incidence of strokes has risen twofold in low-income and middle-income
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countries in the last three decades [97]. Stroke is the primary cause of physical disability.
After having a stroke, complications such as upper limb hemiparesis are common [98].
Stroke patients can use smart gloves outside of the therapy clinics without supervision by
therapists or healthcare providers. Researchers have explored adopting state-of-the-art
techniques to enable hearing and speech-impaired people to communicate and build ties
with others. A sensory glove can collect and record information for dynamic and static
signs to facilitate the accuracy of sign language or gesture recognition in real-time and
interpret the meaning into words [95]. Therefore, the invention of wearable hand devices
such as data gloves provides a more natural and resultful approach to communication,
particularly for people with special needs. Furthermore, wearable hand device usage is
being explored continuously to bring humankind convenience.

Hand Wearable Devices Related to Safety and Health

Nowadays, safety and well-being at work should be recognized as urgent affairs for
numerous industries. Wearable devices are one of the most hopeful solutions to eliminate
or mitigate the hazard of mental and physical accidents in the working environment.
Organizations are broadly employing wearables to perform different tasks to improve
workplace safety [67]. Hand wearable devices are one practical example of wearables for
OSH monitoring. In the high-temperature workplace, protective gloves can release heat-
related warnings and alert messages to support and protect firefighters or workers [93]. The
embedded wireless system in protective gloves consists of an analog temperature sensor
for observing temperature on the opisthenar of a worker, a barometer for detecting the
changes of atmospheric pressure, and a thermocouple for measuring contact heat as well
as providing haptic feedback in the event of risky situations by miniature vibration motors
that are embedded in the flexible part of the glove. Thus, this powerful hand wearable
device has emerged for substituting occupational risks, injuries, and diseases [99]. Latent
hazards such as workers located in a dangerous area, the worker being under high physical
demands or fatigue, and the danger of worker exposure to musculoskeletal disorders can be
effectively avoided or lessened by inferring from the collected information [100]. Therefore,
the advanced sensors and technologies offer plenty of chances for real-time monitoring
to maintain adequate workplace safety and health management and identify OSH risks
through timely feedback. Since OSH is a global priority, the potential of hand wearable
technology will enable a new path toward maintaining OSH. Adopting hand wearable
electrons in the workplace is being promoted to uplift employees’ health and well-being.
In conclusion, occupational hazards can be identified, reduced, eliminated, and controlled.

2.4. Research Gap

In IoT-based OSH, there are limited studies investigating the potential advantages
of IoT-based professional safety and health solutions to society. More comprehensive
knowledge-sharing research results are necessary to demonstrate the societal and economic
benefits of utilizing IoT technologies in the working environment to guarantee OSH [75].
Furthermore, privacy and security issues cannot be separated from IoT-related techniques.
Insufficient information about the data collection processes in the worksite forms results
in distrust of the technology [67]. Due to data security being of the utmost importance
for personal health information, the IoT network system should collect more subjects to
validate and uplift the reliability and privacy level [74]. In addition, researching user-
centered approaches in the occupational IoT for retaining OSH would prove significant.
In CPS-related OSH, context-awareness has been used in applications for running CPS to
guarantee workers’ safety in the working environment. However, only a few studies have
been published for this specific domain. For instance, more than 300 ICT solutions related
to safety in the systematic inventory can be applied in the smart working environment; only
a few of them are related to context awareness [93]. The result reveals that the development
of CPS for OSH as an essential research field is still lacking. As CPS is a broad research
area, further interdisciplinary research and revolutionary activities must offer bases in
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CPS’s hardware and software components design. As a result, the main goal of ensuring
OSH for workers can be achieved. In the domain of hand wearable device that is relevant
to OSH, only a few worksite hand wearables have undergone rigorous field studies and
comprehensive verification against standards. With insufficient peer-reviewed information,
it could be challenging to confirm the efficacy and safety of hand wearable devices in the
market. Moreover, very few studies have investigated the social resistance to adopting hand
wearable devices. The degree of acceptability is more crucial than the related functions and
benefits in modern times [67]. Consequently, exploring the appropriate methods to boost
the acceptance of hand wearable technologies at work is a prerequisite for preserving OSH
and getting rid of the research gap.

3. System Architecture and Methodology
3.1. Human–Cyber–Physical System

A human–cyber–physical system (HCPS) should be considered a natural extension
of CPS. ICT supports human communication and collaboration with cyber and physical
systems [101]. The HCPS is among the most popular aspects of computing science and
technology, communication, control engineering, and ICT application communities. The
HCPS connects humans, material processes, social medias, and cybernetics to be a compre-
hensive system to distinguish intelligence communication, varied integration, and grand
design [102]. According to Liu and Wang [101], HCPSs are established for using ad-hoc
processes, especially in infrastructure establishment. Significant developmental fields are
essential to the state economy and human well-being. Due to the possible enabling compe-
tence in digitizing human life and social and economic activities, most industrial countries
and territories have developed tactics beyond 2020, including the Made in China 2025,
German (European Union) Industry 4.0, and USA Industry Internet.

According to Zhou, Zhou, Wang, and Zang. (2019), the HCPS is related to human,
physical, and cyber parts to realise a better information flow from physical to virtual.
Human responsibilities and roles are dramatically changed in the industry caused of
evolutionary fabricating techniques [101]. In the case of the HCPS, human and physical
systems gain assistance from digitalizing and focusing on valued jobs and enlarging
production by adopting machines or robots [73]. Moreover, the power of human resources
and creativity can be freed up due to a progressively intelligent physical system that makes
humans achieve the targets in an easier way. In the domain of intelligent fabricating,
technical mechanisms, and the approach to constructing the technological architecture can
be disclosed by HCPSs. To conclude, designing, constructing, and employing HCPSs in
different cases and at diverse levels are the principles of intelligent manufacturing with
safety training. With the rapid establishment of improved actuation, sensing, embedded
computing, and AI, a harmonious human–machine–intelligence collaboration paradigm
can be created by a HCPS. Hence, the HCPS becomes applicable in wider domains and
more sophisticated health care and industrial circumstances [102].

The HCPS is proposed majorly for the OSH training to reduce the overall accidences
and errors that appear during the actual working environment. The purpose of presenting
a human-related CPS under the MR-based environment is to combine the traditional cyber-
layer architecture with the MR environment for a simulation that could be capable of data
analysis and forecasting. The human element is involved because the architecture requires
human involvement during the physical layer, assisted with IoT devices. Therefore, the
HCPS architecture is proposed with the MR-based environment for the OSH training.
Figure 1 shows the conceptual diagram of the Human–Cyber–Physical System under
the mixed reality-based training platform, while Figure 2 shows the system level of the
human–cyber–physical system in OSH Training. The MR-based training platform is majorly
considered for the digital part of sensor control, integration, perception, motion risks, and
to provide discussion on the human. The aim is to digitalize the OSH training under an MR-
based virtual environment and represent the models, information, and knowledge within
the cyber layers. This system could combine the physical parts of the human operation,
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gloves for simulating the actual operation, and the actual working environment to further
nearly-real-time synchronization from physical to cyber layers. The framework is proposed
to consider human involvement within the traditional CPS. Under the system level, the
proposed framework could further combine the information for forecasting and prediction.
A closed-loop architecture is proposed with different stakeholders in OSH training.
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3.2. Wearable Hand Device

To construct a wearable device that can fit most users, some ergonomic analyses have
been carried out in the planning stage. First, the average dimension of the adult hand is
obtained, shown in Table 1. There is a slight variation in the measurement between the
hand sizes of adult males and females. The construction material of gloves is determined
in the next step. It would be made of elastic material to adopt the variation. The sensing
device is based on Table 2. In order to fulfill the requirements concluded in the ergonomic
analysis, two kinds of sensors are chosen. They are accelerometers with gyroscopes and
flex sensors. The accelerometer measures linear acceleration in mV/g along one or several
axes, while the gyroscope measures angular velocity in mV/deg/s. Through inputting the
data from the accelerometer and gyroscope into the set location in the MR-based training
platform, the virtual hands’ moving direction and destination can be fully represented by
virtual hands. Figure 3 shows the proposed wearable hand device. A coin-shaped vibrator
on each fingertip stimulates the feedback of interacting with different objects while using
the gloves. To make the user experience closer to reality, a wide range of vibration strength
and lasting time could be set. A clicker is located on the left side of the second joint of the
index finger. It is used to act as a confirm key.

Table 1. The average dimension of the adult hands.

Gender Average Length Average Breadth

Male 18.9 cm 8.4 cm
Female 17.2 cm 7.4 cm

Table 2. Sensing device analysis.

Sensor Type Usage Relationship with Project

Temperature sensors • Detect a person’s skin temperature
[103] Track trainer’s skin temperature

Position sensors
• Detect linear position.
• Detect rotary position.
• Detect angular position.

Track the movement of fingers, such as
bending

Motion sensors [104] • Detect gesture or hand motion Track trainer’s gesture during work
(formal gesture or not)

Force sensors [104] • Detect the level of force used by the trainer’s hands Track trainer’s applied force to the glove

Accelerometer with
gyroscope [105]

• Detect linear movement and orientation of the
gloves Track the position of the whole hand

Before the construction of the glove, circuitry should be tested to ensure that there are
no potential connection mistakes and component failures. If the step is not implemented
before the construction of the glove, it will be difficult to distinguish between a connection
mistake and a component failure, resulting in a waste of time and effort. The ESP32
datasheet provides information about the function of each pin. Pin 3V3, IO26, and GND are
used for the button. Pin 3V3, GND, IO22, and IO21 are used for the MPU. Pin 3V3, IO2, and
GND are used for the flex sensor. Pin IO4, 3V3, and GND are used for the heartbeat sensor.
A flex sensor detects the movement of fingers by changing the numerical value of resistance.
The sensor has a resistance of around 7000 to 13,000 ohms when in a flat situation. During
bending fingers, the resistance value would increase—at least two times of flat resistance
value when a 180-degree pinch bend is obtained. The proportion of the bend level and the
resistance value can be found through calculation. Then, the fingers’ level can be estimated
by analyzing the reading shown on the Arduino platform. A flex sensor is located above
each of the fingers. An accelerometer with gyroscope and microcontroller is placed in the
gloves’ middle. All the flex sensors and accelerometers with a gyroscope are connected
to the microcontroller by wire. To achieve the target of a wireless wearable, a battery box
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placed on the first half of the forearm is connected to the microcontroller to act as a power
source. Still, the range of the flex sensor is minimal. Having a high starting value, the flex
sensor can reach the peak of the range very quickly, which is less than ideal for measuring
the bend of the finger. It may be impossible to distinguish between a 90-degree bend and a
100-degree bend if the flex sensor reaches the limit while a slight bend is applied. Therefore,
a voltage divider is a simple circuit that divides a large voltage into a smaller one, where
Vin indicates the 3V3 pin, R1 is the flex sensor, Vout is the IO pin, and R2 is a 50 k ohm
resistor. With the implementation of the voltage divider, the starting value of the flex sensor
is decreased, and the bend applied to the sensor can be distinguished easily.
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3.3. Multi-Criteria Decision Making (MCDM)

Three kinds of gloves can be easily bought at a relatively low cost. For these reasons,
they have the highest priority in consideration. They are labor gloves, slip-proof gloves,
and nylon gloves. A multi-criteria decision-making (MCDM) analysis has been built for
evaluation shown in Figure 4. The goal, criteria and alternatives are also shown in Figure 4.
A survey was conducted to obtain the opinion and perception of the glove’s selection
assessment. One hundred questionnaires were distributed to the participants through
Google Forms in 2021. All the questionnaires are received from undergraduate students in
Hong Kong. Table 3 shows the summarized results.
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Table 3. Multi-criteria consideration.

Cost Comfortability Processability Flexibility

Cost 1 5 4 7

Comfortability 1
5

1 1
2

3

Processability 1
4

2 1 3

Flexibility 1
7

1
3

1
3

1

Fuzzy Analytic Hierarchy Process (FAHP)

The fuzzy-analytic hierarchy process (FAHP), which would be used to get rid of the
weight of criteria, is shown in Table 4 [106–109].

Table 4. Attribute of FAHP.

1 2 3 4

Attribute or criteria Cost Comfortability Processability Flexibility

The most critical step in AHP is creating the pairwise comparison matrix. This pairwise
comparison matrix is created with the help of a scale of relative importance. The values in
the scale of relative importance are quiz numeric values. These values can be converted to
fuzzy numbers shown in Figures 5 and 6 [110–112].
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Fuzzification is used in the fuzzy system. It can cause covert linguistic gum in the
membership function. As the shape of the membership function is triangular, it is known
as a triangular membership function.

µ(x) = Ã = (1, 2, 3) (1)

µÃ(x) is the fuzzy value. (1, 2, 3) are fuzzy numbers associated with the membership
function. These fuzzy numbers are the triangle’s lower, middle, and upper ends on the
x-axis, shown in Table 5.

Table 5. The fuzzy scale of relative importance [110–112].

Numeric Value Fuzzy Number

Equal 1 (1,1,1)

Moderate 3 (2,3,4)

Strong 5 (4,5,6)

Very strong 7 (6,7,8)

Extremely strong 9 (9,9,9)

Intermediate values

2 (1,2,3)

4 (3,4,5)

6 (5,6,7)

8 (7,8,9)

On the scale of relative importance, the quiz numbers such as 1,3,5,7,9 are spirited
with fuzzy numbers. It seems that assigning a single number to any thumb is not justified.
Moderate has the given number (2, 3, 4), which are the triangle’s lower, middle, and upper
points. The corresponding triangle is the membership function for the moderate. The
intermediate membership functions are shown in the red lines. Table 6 shows the pairwise
comparison matrix.

Table 6. Pairwise comparison matrix.

Price or Cost Storage Space Camera Looks

Cost 1 5 4 7

Comfortability 1
5

1 1
2

3

Processability 1
4

2 1 3

Flexibility 1
7

1
3

1
3

1

Price or Cost Storage Space Camera Looks

Cost (1,1,1) (4,5,6) (3,4,5) (6,7,8)

Comfortability 1
5

(1,1,1) 1
2

(2,3,4)

Processability 1
4

(1,2,3) (1,1,1) (2,3,4)

Flexibility 1
7

1
3

1
3

(1,1,1)

Referring to the fuzzy scale of relative importance, the corresponding fuzzy number
can replace the numeric value, but the fractional values are not converted into a fuzzy
number.

Ã−1 = (l, m, u)−1 = (
1
u

,
1
m

,
1
l
) (2)
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Using the above equation, the fractions can be converted to fuzzy numbers. Table 7
shows the fuzzified pairwise comparison matrix.

Table 7. Fuzzified pairwise comparison matrix.

Price or Cost Storage Space Camera Looks
The Fuzzy Geometric

Mean Value
~
r

Fuzzy Weights w̃

Cost (1,1,1) (4,5,6) (3,4,5) (6,7,8) (2.91, 3.44, 3.94) (0.428, 0.610, 0.859)

Comfortability (
1
6

,
1
5

,
1
4

) (1,1,1) (
1
3

,
1
2

,
1
1

) (2,3,4) (0.58, 0.74, 1) (0.085, 0.131, 0.218)

Processability (
1
5

,
1
4

,
1
3

) (1,2,3) (1,1,1) (2,3,4) (0.80, 1.11, 1.41) (0.117, 0.196, 0.309)

Flexibility (
1
8

,
1
7

,
1
6

) (
1
4

,
1
3

,
1
2

) (
1
4

,
1
3

,
1
2

) (1,1,1) (0.30, 0.35, 0.45) (0.044, 0.063, 0.099)

The geometric mean is used to calculate the weights. The fuzzy geometric mean value
r̃i can be calculated by the equation as shown below [106–112].

Ã1 × Ã2 = (l1, m1, u1)× (l2, m2, u2) = (l1 × l2, m1 × m2, u1 × u2) (3)

Here is the equation for adding two fuzzy values to get the summation:

Ã1 × Ã2 = (I1, m1, u1)× (I2, m2, u2) = (I1 × I2, m1 × m2, u1 × u2) (4)

Hence, fuzzy weights can be calculated.

w̃i = r̃i × (r̃1 + r̃2 + · · ·+ r̃n)
−1 (5)

In order to get the weights wi, the center of area equation should be adopted: Wi = ( l+m+u
3 ).

The weights could be used as the requirement for further calculation. The total of the criteria
weight is 1.058, which is not acceptable. Only when the normalized weights are equal
to one can the normalized weights be applied for further calculation. Table 8 shows the
fuzzufied pairwise comparison matrix and Table 9 shows the eleven-point spherical fuzzy
linguistic term scale.

Table 8. Fuzzified pairwise comparison matrix.

Fuzzy Weights w̃ Weights wi

Cost (0.428, 0.610, 0.859) 0.633

Comfortability (0.085, 0.131, 0.218) 0.145

Processability (0.117, 0.196, 0.309) 0.207

Flexibility (0.044, 0.063, 0.099) 0.068

Weights wi Normalized weights

Cost 0.633 0.633
1.058

= 0.601

Comfortability 0.145 0.145
1.058

= 0.138

Processability 0.207 0.207
1.058

= 0.197

Flexibility 0.068 0.068
1.058

= 0.065

Total 0.633 + 0.145 + 0.207 + 0.068 = 1.058 0.601 + 0.138 + 0.197 + 0.065 = 1
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Table 9. Eleven-point spherical fuzzy linguistic term scale [110–112].

Linguistic Terms Spherical Fuzzy Number

Extremely low [0.045, 0.955 0.045]
Very low [0.135, 0.865 0.135]

Low [0.255, 0.745 0.255]
Fair [0.335, 0.665 0.335]

Medium [0.410, 0.590 0.410]
Good [0.500, 0.500 0.500]

Very good [0.590, 0.410 0.410]
High [0.665, 0.335 0.335]

Very high [0.745, 0.255 0.255]
Exceptionally high [0.865, 0.135 0.135]

Excellent [0.955, 0.045 0.045]

4. Results and Discussion

To illustrate our results, the construction industry has been chosen to be the target
industry, and strip, trip, or fall-related accidents are the focus. In addition, the primary
product of this project will be a glove that interacts with an MR device on hand movement.
A reinforcement fixing at height MR training for construction site workers is suggested in
order to combine these two elements.

4.1. Programming

The program follows a simple structure of four steps shown in Figure 7. The first step
is to summon the serial monitor; the second one is to set up the pin mode, the third one is
to read the data, which could either be digital or analog, and the last one is to print out the
data on the serial monitor.
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4.2. Experiments

Four experimental results will be demonstrated in this section: acceleration and
coordinate, heartbeat, finger bending, and confirm button. When the glove moves in
and out, the reading in acceleration X changes rapidly, indicating that coordinates in
and out are the x-axis of the glove. When the glove moves left and right, the reading in
acceleration Y changes quickly, meaning that the coordinates left and right are the y-axis
of the glove. When the glove moves up and down, the reading in acceleration Z changes
rapidly, indicating that coordinates up and down are the z-axis of the glove. Secondly, the
reading of the heartbeat sensor was around 3400~4095, which is not the exact number of
heartbeats, such as 60~100 beats (average heart rate). The interpretation of the heartbeat
sensor reading failed due to limitation of knowledge. The heartbeat sensor is currently
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useless, which should be improved in future work. Thirdly, for the finger bending, the raw
reading of the flex sensor is around 0~4000 and interpreted into angles (0~180 degrees)
displayed in the video. The interpretation is made according to the following steps:

# Wear the glove and perform three finger positions: flat, 90-degree bends, and 180-degree
bends. Record the raw readings of these three positions.

# Analyze the raw readings and interpret them into angles logically.
# Develop a program to perform the interpretation using the logic developed.

During step 1, the raw readings of the flex sensor are found in Table 10. There-
fore, if the primary reading is less than 1500, FA is 0; otherwise, if the raw reading is
less than 3500, FA is 90; otherwise it is 180. The intermediate angle can be calculated
roughly by raw reading minus the previous boundary (1500 or 3500) times the bound-
ary difference over 90 degrees. For example, if the raw reading is 2450, the angle will
be (2450 − 1500)/(3500 − 1500/90) = 42.75-degree. Table 11 shows the pseudo-code of the
finger bending and flex loop. Fourthly, the button reading is a test for button confirmation.
The button reading will change from zero to one when the button is pressed and return to 0
when the button is released. Whenever it detects a one, it means a confirmation that can be
used in a menu control.

Table 10. Finger angle and raw reading boundary.

Finger Angle (FA) Raw Reading Boundary

0-degree less than 1500

90-degree less than 3500

180-degree less than 4000

Table 11. The pseudo-code of the finger bending and flex loop.

1 //Flex Loop

2 int Flex = analogRead(Flex_Pin);

3 //Serial.print(“Flex: “);

4 //Serial.println(Flex);

5 int FA = 0;

6 if (Flex ≤ 1500){

7 FA = 0;}

8 else if (Flex ≤ 3500){

9 FA = (Flex − 1500)/(2000/90);}

10 else if (Flex ≤ 4000){

11 FA = (Flex − 3500)/(500/90);}

12 else{

13 FA = 180;}

14 Serial.print(“Flex: ”)

15 Serial.print(FA);

16 Serial.println(“ degree”);

Reinforcement fixing is chosen as the planned MR training to utilize gloves, as many
hand movements will be included. In addition, the fixing will be performed at a height
inspired by the scaffolding game from Motive Force. Furthermore, a real hoop with a sensor
will be used in this MR training. The trainee should perform the reinforcement fixing while
standing in the right position; otherwise, a fall of dead animation will be displayed and the
trainee will fail the MR training shown in Figures 8 and 9.
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The performance result is shown in Table 12. There are 30 participants involved in the
experiments with two sets of testing: the traditional method and an MR-based platform
with the glove. Three movements are adopted: acceleration and coordinate, finger bending,
and confirm button. Each movement has been randomly generated and repeated ten times.
The results show that the MR-based platform resulted in a higher accuracy rate and a
lower error rate. Still, the processing time is much longer than the traditional method’s
simulation. This might be because the participants are not familiar with the glove or the
MR-based platform. VR and AR technology has become more viable over the decade
and has started to be applied in different aspects of work such as video games, industrial
training, education, etc. On the other hand, the number of occupational injuries in the past
decade [1] has shown that OSH has become more important as society advances. Different
types of work require training before hiring to ensure employees fulfill their job duty
correctly and safely. However, some movements may be challenging due to cost or safety
issues. For example, surgical training is costly as different organs and tools are needed for
medical students. Site workers who work at height will also require training, but it will be
hazardous if the activity occurs at a high location. Therefore, MR technology has become a
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trend in training aspects as it can simulate different environments, which can be costly or
dangerous. In addition, as MR is a program, it can be easily standardized, which is positive
when designing a training course. Although MR training is viable and trending nowadays,
it still has limitations. Most of the MR controllers are standardized into point-and-click
control. It is hard for this control method to simulate precise movement that are used in
reality, such as surgical movements. Furthermore, those controllers are mainly made by
motion sensors, which cannot affect real situations such as heat or pressure. Therefore, we
propose this project to modify the current MR controller and make it more compliant with
the actual working environment.

Table 12. Performance results.

Traditional Mixed Reality Platform

Accuracy

Acceleration and coordinate 92.50% 95.00%

Finger bending 94.00% 95.50%

Confirm button 97.00% 97.75%

Errors ratio

Acceleration and coordinate 13.25% 11.25%

Finger bending 5.00% 4.25%

Confirm Button 0.25% 0.20%

Processing time

Acceleration and Coordinate 8.00 ± 3.0 s 13.00 ± 5.0 s

Finger bending 5.00 ± 2.0 s 7.00 ± 2.5 s

Confirm Button 2.00 ± 1.0 s 2.50 ± 1.5 s

OSH involves workplace safety, health and welfare issues. It aims at providing a
better working environment to employees in a modern society by using laws, standards,
and programs. A company with good OSH standards can improve its brand image and
employee morale. OSH concerns workplace hazards such as chemical, physical, biological,
psychological, and accidents. Hence, the workplace is improved the workplace by removing
or reducing such risks. Employers must provide a safe and healthy working environment
for their employees in modern society by following the principle of OSH. For example,
wearing a safety helmet on construction sites is one of the OSH requirements in many
construction companies. Complying with good OSH standards in the workplace can ensure
employees’ safety and health, boosting their working efficiency. It can also reduce the
chance of accidents, thus preventing loss of time in construction sites or even loss of human
resources. In addition, a company with good employee welfare can increase its brand
image, thus attracting more talented people to join the company and increasing company
competitiveness. On the other hand, maintaining a reasonable OSH manner requires
personnel to handle related issues. Usually, big companies have a safety, health, and quality
department responsible for OSH progress status; extra funds are required. Therefore, OSH
can be a burden for small companies and may slow down the work process as everything
has OSH standards or rules to follow, and employees may make an extra effort to comply
with OSH requirements.

5. Concluding Remarks

Every injury due to an occupational accident is heart-breaking news. It can be com-
monly agreed that all efforts will improve OSH. We believe that accidents can be avoided
with good quality training. Therefore, developing a better-quality MR-based OSH training
program is our primary aim, achieved by improving the current MR wearable devices. The
results show that the overall accuracy is higher in the traditional training platform rather
than the MR-based platform. Still, the participants may need more time to become familiar
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with the glove. Once they get used to it, the operation time and the error ratio should be
lower compared to the traditional method. It is hoped that this can increase the immersive
level of the training. Thus, the trainees will better understand potential dangers in their
future work. The MR-based platform could further provide suggestions to the trainee for
corrections and improvement. Hopefully, it can reduce occupational accidents, especially
in the construction industry. In future, more complicated tasks could be designed under the
proposed platform and might also include tasks related to human–robot interaction [85–87].

The following factors can be improved in the future to enhance the prototype. The first
factor that can be improved in the future is the accuracy of the prototype. According to the
experiment’s data, the flex sensor’s current bending rate is not accurate enough, and the
sensing range of the heartbeat sensor cannot provide the expected data. In order to tackle
the issues, using more professional sensors may be a feasible solution. In addition, for
the sensing range of the flex sensor, a correction factor should be introduced to reduce the
difference among different individual hands. Such a correction factor should be calculated
by further study in the future. The second factor that can be improved in the future is
the usability of the prototype. In this project, only the prototype of the wearable glove is
developed, which has not yet been adopted for the MR-based OSH platform. To improve
the usability of our prototype, an MR training program based on the received result (e.g., a
training program on reinforcement fixing at height) should be designed and developed in
the future. One of the aims is to create a unity 3D hand model linked with the glove and the
MR training game. Moreover, to further enhance the usability of the prototype, feedback
systems (e.g., vibration, temperature change, etc.) and IoT between different wearable
devices (e.g., jackets, shoes, etc.) should be considered in the future. The final factor that
can be improved in the future is user experience. The prototype is now constrained by USB
wire (work as power supply and data transfer) due to the limitation of time and skill. As
an improvement, wireless signal transfer (e.g., Bluetooth and Wi-Fi) can be considered in
the future, while a portable power supply (e.g., battery box) can be added to the prototype.
Cabling can be improved in the future to minimize hindering users’ movement. Based on
the HCPS proposed in this paper, the future work of the cybersecurity could be considered
and developed. The data transmission functionality could be developed and adopted by
the blockchain for further analysis. Under the environment and framework we proposed
and developed, similar gloves could be tested with multiple tasks for ensuring OSH before
the actual operation.
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