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Abstract: Strip steel is an important raw material for the related industries, such as aerospace,
shipbuilding, and pipelines, and any quality defects in the strip steel would lead to huge economic
losses. However, it is still a challenge task to effectively detect the defects from the background
of the strip steel due to its complex variations, including variable flaws, chaotic background, and
noise invasion. This paper proposes a novel strip steel defect detection method based on a U-
shaped residual network, including an encoder and a decoder. The encoder is a fully convolutional
neural network in which attention mechanisms are embedded to adequately extract multi-scale
defect features and ro ignore irrelevant background regions. The decoder is a U-shaped residual
network to capture more contextual data from different scales, without significantly increasing the
computational cost due to the pooling operations used in the U-shaped network. Furthermore, a
residual refinement module is designed immediately after the decoder to further optimize the coarse
defect map. Experimental results show that the proposed method can effectively segment surface
defect objects from irrelevant background noise and is superior to other advanced methods with clear
boundaries.

Keywords: surface defect; encoder–decoder; salient object detect; attention mechanisms

1. Introduction

Strip steel has been widely used in aerospace, shipbuilding, automotive, and other
fields, and minor quality defects may adversely affect the performance and service life of
strip steel, resulting in huge economic losses [1]. Therefore, it is a crucial task to detect the
defects in the strip steel to guarantee the quality of industrial production. However, this
task is often handled manually, which is laborious and time-consuming. Thus, many auto-
matic surface defection methods based on computer vision technologies are used to detect
defect objects in the strip steel. Inspired by the human visual system, saliency detection [2]
has been used to detect defective objects by filtering out plenty of redundant background
interferences. Additionally, saliency detection has been widely to enable image under-
standing [3], person reidentification [4,5], defect detection [6], semantic segmentation [7],
and so on.

In industrial surface defect detection, the saliency object detection method is mainly
composed of methods based on traditional models or based on deep learning. The former
uses manually designed feature extraction factors to extract visual features, such as Gabor
filters [8] and wavelet transform [9], and then a classification is applied to the extracted
features to identify the corresponding defect objects [10]. However, the model is very
sensitive to changes in real-world situations and susceptible to light and cluttered back-
grounds. Recently, deep learning has been introduced into surface defect detection due
to its excellent ability to automatically learn deep features of images, which greatly solves
the problems existing in the ones based on traditional methods. Soukup and Huber [11]
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applied the convolutional neural networks to steel surface defect detection and improved
the network recognition performance using the normalized method.

Benefiting from strong representation ability, saliency detection methods based on
deep learning, especially those based on convolutional neural networks, have achieved
remarkable results [12]. However, the problems still exist in terms of target integrity and
boundary conservation. From Figure 1a, the traditional methods cannot detect defective
targets with slender features due to artificial features failing to effectively capture the global
and high-level semantic information of the defective object. In addition, the existing deep
learning methods based on saliency defect detection still have deficiencies in capturing
the complete boundary of defective objects (as shown in Figure 1b). Last but not least, it
is difficult for saliency defect detection methods to segment small defect objects from the
compact background images (see Figure 1c). In addition, from Figure 1, we can find that
inclusions account for a relatively small proportion of the defective image of strip steel;
patches often have dark and uneven illumination features; scratches have a big difference in
size and shape. Therefore, accurately detecting surface defects of strip steel is a challenging
task. Under this condition, early models fail to obtain enough features and, thus, they often
detect incomplete defect regions and mistakenly confuse the background region with the
defect region.
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Figure 1. Three common strip surface defects, as follows: (a–c) represent ordinary, close to the defects
of the edge, and the chaotic background defective image, respectively. The red box indicates the
defective region.

In order to solve the problem above, we propose a nested U-shaped residual codec
network (NURCNet) for strip steel defect detection, which consists of three submodules.
The first submodule is the encoder network, which consisting of the attention mechanism
and the fully convolutional residual network; the fully convolutional network is used
to extract rich multiscale features and the lightweight attention mechanism is to make
the extracted features pay more attention to defective objects. Between the encoder and
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the decoder, dilated convolutions with different dilation rates were used in a bridge to
enlarge the receptive field and capturing multiscale context information. The decoder is
the U-shaped residual network proposed by Qin et al. [13], since the network is able to
capture more contextual information from different scales without significantly increasing
the computational cost. The encoder–decoder forms a nested U-shaped residual codec
network. In addition, the introduction of a residual refinement network allows the model
to capture defective objects with clear boundaries.

Overall, the advantages of the proposed NURCNet can be summarized as follows:

(1) We designed a fully convolutional residual network with a lightweight attention
mechanism as the encoder to fully extract multiscale defect features which pay more
attention to defective objects;

(2) We introduced a U-shaped residual network proposed by Qin et al. [13] as the decoder
to capture more contextual information from different scales without significantly
increasing the computational cost; the encoder and decoder form a nested U-shaped
residual codec network;

(3) We proposed a residual refinement network, which is used to further optimize the
coarse saliency map of the lack of boundary information output at the encoder–
decoder stage;

(4) The thorough evaluation of the proposed NURCNet on a challenging strip steel
dataset [14] indicates that our model achieves state-of-the-art results in both regional
positioning and boundary recovery.

The rest of this paper is organized as follows: after presenting the related work in
Section 2, Section 3 describes the proposed method; Section 4 presents the experimental
results and, finally, Section 5 concludes this work.

2. Related Work

The traditional methods are as follows. Traditional methods detect defective objects
by making use of handmade features (each pixel is classified as a defect or non-defect) to
evaluate the saliency value [15,16]. For example, a novel probabilistic salience framework
was proposed by [17] to utilize two specific saliency features to represent the initial signifi-
cance of each pixel, and this changed the intensity of each pixel according to significance
during the iterative process. Huang et al. [18] took a saliency detection problem as the
task of multi-instance learning (MIL), where the super-pixels evaluated by the proposed
proposals are instances of MIL. Their work improved the accuracy of extracting significant
targets at the expense of computational cost. A novel model with two structural regular-
ization methods was constructed by Peng et al. [19], which suppose that images can be
compressed into two matrices: the low-level matrix and the low-level matrix, where the
former matrix represents the visual consistent background and the latter represents the
different foreground object regions. The disadvantage of traditional salient object detection
is that artificial features are easy to miss details due to the influence of noise and clutter.
Therefore, if the image is unevenly illuminated or the contrast between the defective and
non-defective areas is low, these hand-crafted features will limit their application due to
the difficulty of obtaining satisfactory results.

Patch-wise deep methods are discussed as follows. Inspired by the superior perfor-
mance of the image classification of deep convolutional neural networks, patch-wise deep
salient object detection methods classify patches as salient or non-salient objects from local
image pixels which are extracted from a single or multiple scales [20]. Many patch-wise
deep methods which have been proposed, such as by Zhao et al. [21], tackle low-level
saliency cues or priors and do not produce good enough saliency detection results by
proposing a multi-context deep learning framework, which employ deep convolutional
neural networks to model saliency of objects in images. For learning high-quality visual
saliency objects, Li et al. [22] proposed a patch-wise deep salient object detection method
which has fully connected layers on top of CNNs responsible for feature extraction at



Appl. Sci. 2022, 12, 11967 4 of 16

three different scales. Spatial information is missing due to the introduction of the fully
connected layer and, thus, these methods usually output coarse saliency maps.

The FCN-based methods are discussed as follows. Due to the powerful representation
ability of the fully convolutional neural network, the salient object detection methods based
on the fully convolutional neural network has been significantly improved compared to
the depth method of the patch. The methods based on fully convolutional neural networks
can extract multi-level features. The low-level features from the shallow layer are used by
fully convolutional neural network to reconstruct the spatial details, and the high-level
features codes from the deep layer are used to obtain the semantic information of the
abstract description of the object. In [23], two sub-models based on pooling operations
were used to gradually optimize the extracted features and generate the well-structured
saliency maps. Zhao et al. [24] proposed a novel model focusing on both context features
and spatial features, and this model obtains saliency images with rich boundary details by
fusing the channel attention and the spatial feature mapping spatial attention of context
feature mapping. Wu et al. [25] proposed a novel cascading framework in which the
decoder discards shallow, unimportant features to accelerate the model and directly refine
the saliency map obtained by deep feature fusion. The framework enables fast and accurate
object detection. A detailed and comprehensive survey of deep saliency detection can be
seen in the literature [12].

Coarse-to-fine deep methods are as follows. Recently, lots of refinement subnetworks
have been proposed to capture richer border information or to obtain a better structure.
Liu et al. [26] proposed a deep hierarchical saliency network that can gradually improve
the details of the saliency map by learning various global structural saliency cues. To
obtain global context information, a pyramid pooling module and a multistage refinement
mechanism were proposed to optimize saliency mapping [27]. Later, ref. [28] proposed
to locate salient objects in the global scope, and then improve them through local bound-
ary refinement modules. Although these methods have greatly improved the detection
efficiency, there is still large room for improvement in terms of the fine structure segment
quality and boundary recovery accuracy.

3. Methodology

In this section, we proposed a nested U-shaped residual codec network (NURCNet)
for strip steel defect detection, which is composed of the following three submodules:
the encoder network, decoder network, and refinement network. Figure 2 shows the
framework of NURCNent, where the encoder is a fully convolutional residual network, to
extract both the rich low-level spatial details and high-level contextual information, and an
attention block followed each residual block makes the extract multiscale defect features,
paying more attention to defective objects. Similar to [13], a U-shaped residual network is
designed by composing a convolutional network with U-shaped residual blocks (URBs).
Unlike Qin et al. [13] of which both the encoder and the decoder use U-shaped networks to
extract salient object features, we only use the U-structure in the decoding stage to reduce
the model complexity. Furthermore, a U-shaped residual block is designed to extract defect
object features and reduce the computational cost. Finally, a refinement network followed
the decoder network to further optimize the coarse saliency map of the lack of boundary
information output at the encoder–decoder stage.
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3.1. Encoder Network

The encoder network is to draw both the rich low-level spatial details and high-
level contextual information and, therefore, ResNet-34 [29], a fully convolutional residual
network, is selected as the backbone network of the encoder to extract defect features,
while skip-layer connections in the network are used to avoid the disappearance of the
gradient. Specifically, the backbone network consists of a convolutional layer and four
basic residual blocks (e.g., “conv2_x”, “conv3_x”) of ResNet-34. As shown in Figure 2, the
input convolution layer and the four residual blocks are all from ResNet-34. Moreover,
unlike ResNet-34, the input layer has 64 channels with a kernel size of 3 × 3 and a stride of
1 rather than a kernel size of 7× 7 and a stride of 2, and a maximum pooling operation with
a stride of 2 is added at the end of the first convolutional layer of the backbone network to
increase the range of the receptive fields.

In recent years, the attention mechanism has been widely used in object detection tasks
because it can make the network pay more attention to the task-relevant area. Therefore, a
lightweight convolutional attention module is embedded into the residual blocks of the
backbone network, which is defined as RM-a (a∈1, 2, 3, 4). The RM-a consists of residual
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basic block, a channel attention submodule, and a spatial attention submodule, as shown
in Figure 3. In the channel attention submodule, the maximum pooling aims to extract
the significant feature of each channel, and the average pooling is used to capture the
whole statistics feature of the channel. Following the pooling operations, a multilayer
perceptron (MLP) squeezes the spatial information obtained by pooling operations and
finds the importance of features per channel, focusing more on the channel with a greater
amount of information. In the spatial attention submodule, the maximum pooling aims to
highlight the saliency feature of local regions, and the average pooling is used to integrate
global spatial information. Following the pooling operations, a convolution layer with the
kernel size of 7 × 7 is used to generate a spatial attention map, which help the encoder
network to emphasize the significant regions and suppress the spatial noise. Finally, the
input of the RM and the final output of the spatial attention submodule are added through
the skip connection operation to enhance the representational ability of the network.
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Figure 3. The structure of the attention module (RM).

To further capture the global information, we designed a dilated convolution block
composed of three dilated convolutional layers with a dilation rate of 1, 2, and 4, respectively
(kernel size = 3× 3, channel = 512). The advantage of dilated convolution is that it increases
the receptive field without loss information and, thus, enhances the ability of the location
and segmentation of large defect objects [30]. Furthermore, through adjusting dilation rates,
multiscale context information with different receptive fields is obtained [31].

3.2. Decoder Network

Inspired by U2-Net [13], a U-shaped residual decoder network is proposed by com-
posing a convolutional network with designed U-shaped residual blocks (URB) which
draw multi-scale features without degrading the feature map resolution. In salient object
detection and other segmentation tasks, convolution kernels with a size of 1 × 1 or 3 × 3
are often used by classic convolutional models, including ResNet [29] and VGG [20] for
feature extraction. However, the receptive field of the convolution kernel is too small to
capture global information and, thus, the output features of the shallow layer only contain
local feature size. As discussed in Section 3.1, dilated convolution can be used to enlarge
the receptive fields to extract both local and non-local features [32]. The shortcoming of
running multiple dilated convolutions is that it consumes much more computation time
and memory resources [31]. Pooling techniques, including upsampling and downsampling,
are often used to prevent this issue [23]. Therefore, URB is designed by combining dilated
convolutions and pooling techniques into U-shape residual blocks, as shown in Figure 2.

Figure 4 shows the structure detail of each URB (Cin, k, and Cout), where k represents
the number of channels in the internal layers, and Cin and Cout represent the input and
output channels, respectively. The URB firstly obtains the intermediate feature map G1(x)
from the input feature mapping x with size of H ×W × Cin using a convolutional layer
with a kernel size of 3 × 3 and a channel number equal to Cin. Then, URB feeds G1(x) as
input into a U-shaped structure pyramidal feature hierarchy network with downsampling
(upsampling) pools to reduce (expend) feature map sizes, where the bottom-up pathway
is to extract multi-scale space and context features, outputting U (G1(x)). The top-down
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pathway and concatenation connections of the U-shaped network fuse low-level feature
maps with high space information and high-level maps with high semantical information
to enhance the ability of locating defect objects. Finally, there is a skip connection that
merges local features and multiscale features G1 (x) + U(G1(x)) through addition. This
structure is designed to enable the URB to immediately extract features of multiple scales
from the residual block.
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Figure 4. Illustration of the proposed residual U-shaped residual blocks (URB).

The computational overhead of the URB is small due to downsampling (upsampling)
used for reducing (expending) feature map sizes. In order to further reduce the computing
complexity, two convolutional layers with kernel sizes of 1 × 3 and 3 × 1 were used to
replace a convolutional layer with a kernel size of 3× 3. Furthermore, a dilated convolution
layers with a kernel size of 3 × 3 and dilation rate equal to 2 was designed as the bridge
between the bottom-up pathway and top-down pathway to extend the URBs’ receptive
fields.

3.3. Refinement Network

In order to effectively utilize the features of defect objects, a deep supervision mecha-
nism [33] was proposed to supervise the coarse saliency map generated by each URB of
the decoder network, as shown in Figure 2. Furthermore, a residual refinement network
(RN_1D) consisting of one-dimensional filters is proposed to further refine the last pre-
diction map of the URB output, as shown in Figure 5. We choose the last prediction map
because of its richer significant information.

Here, RN_1D uses maximum pooling in the bottom-up way to adjust the feature size
and reduce calculation complexity. The reason why we use the maximum pooling operation
instead of average pooling is that small defects are easily lost in average pooling. The
maximum pooling can solve this problem well and make the URB more concerned about
significant defective areas. As with URB in Section 3.2, we use one-dimensional 3 × 1 and
1 × 3 convolutions instead of 3 × 3 convolutions, which greatly saves on computational
costs. A dilated convolutional layer with a kernel size of 3 × 3 and a dilation rate equal to
2 was used as the bridge between the feature extraction layer (bottom-up pathway) and
feature fusion layers (top-down pathway), which not only obtains the large receptive field,
but also improves the detection accuracy. A batch normalization [34] and a ReLU [35]
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activation function follows this dilated convolutional layer. Furthermore, non-overlapping
max pooling is used for downsampling in the feature extraction layer (bottom-up pathway),
and bilinear interpolation is utilized for the upsampling in the feature fusion layers (top-
down pathway). Finally, we use the prediction map after the refinement network as the
final prediction map of the NURCNet.
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3.4. Loss Function

Most of the previous salient object detection methods have always used cross-entropy
for training loss. When these methods capture target objects, it is difficult to obtain com-
plete details, resulting in blurred boundaries or incomplete detection results. Inspired by
Qin et al. [36], a hybrid loss is constructed to supervise the network and to learn more
detailed information concerning boundary location and structure capture. The fusion loss is
composed of binary cross-entropy (BCE) [37], boundary intersection over union (boundary
IoU) [38], and structural similarity (SSIM) [39]. Therefore, the total loss of NURCNet is
defined as follows:

Lall =
K

∑
k=1
L(k)bce + L

(k)
iou + L

(k)
ssim (1)
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where K denotes the total number of the outputs. As described in Sections 3.2 and 3.3, our
NURCNet is deeply supervised with five outputs, i.e., K = 5, including four outputs from
the encoder–decoder network and one output from the refinement network.

The BCE loss [37] is one of the most often used losses in binary classification and
segmentation, defined as follows:

Lbce = −∑
r,c

Gr,clog(Sr,c) + (1− Gr,c) log(1− Sr,c) (2)

where Gr,c ∈ {0, 1} is the ground truth label of the pixel (r, c) and Sr,c is the predicted
probability of being defective object.

The SSIM [39] is originally proposed for image quality assessment, and it captures the
structural information of an image. Let X= {xj: j = 1,..., N2} and Y= {yj: j = 1, . . . , N2} be the
pixel values of two corresponding patches cropped from the predicted probability map S
and the binary ground truth mask G, respectively; the SSIM is defined as follows:

Lssim = 1−
(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (3)

where µx, µy and σ2
x , σ2

y are the mean and standard of x and y, respectively, σxy is their
covariance, and C1 = 0.012 and C2 = 0.032 are used to avoid dividing by zero.

Boundary IOU [38] loss is adopted to further penalize the inaccurate classification,
and it is defined as follows:

Liou = 1−

H
∑

r=1

W
∑

c=1
S(r,c)G(r,c)

H
∑

r=1

W
∑

c=1
[S(r,c)+G(r,c) − S(r,c)G(r,c)]

(4)

4. Evaluation Metrics

Evaluation metrics are essential for evaluating the effectiveness of algorithms and,
traditionally, the mean absolute error (MAE) [40] is one of the most frequently used metrics
for the saliency object detection. The MAE aims to measure the dissimilarity between the
predicted saliency map ypred and the ground truth ygt, defined as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ygt
i − ypred

i

∣∣∣ (5)

where N is the number of test saliency defect images.
However, MAE is inadequate for the strip steel defect detection problem due to the

sparsity of defect objects. In lieu of MAE, other assessment metrics, including the weighted
F-measure (WF) [41] score and structure-measure (SM) [42] are frequently adopted in the
research community to evaluate the performance of models for strip steel defect detection.
The WF is designed based on the precision (the proportion of true foreground pixels in the
predicted foreground pixels) and recall (the proportion of predicted foreground pixels in
the true foreground pixels). Specifically, the precision and recall are defined as follows:

Recall =
TF

TF + FB
, (6)

Recall =
TF

TF + FB
, (7)

where TF, FF, and FB indicate the number of foreground pixels predicted as foreground pix-
els (true foreground), background pixels predicted as foreground pixels (false foreground),
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and foreground pixels as background pixels, respectively. Based on precision and recall,
WF is defined as follows:

WF =
(1 + β2)·Precisionw

(β2·Precisionw + Recallw)
(8)

where β, often set to be 1, is a coefficient for adjusting the relative importance of precision
with respect to recall. Therefore, f-measure is a harmonic mean between recall and precision.

The SM [42] is another often used measure to evaluate the performance of models for
the strip steel defect detection, defined as follows:

S = α ∗ so + (1− α) ∗ sr (9)

Where So is an object-aware structural similarity evaluation definition, and Sr is a
region-aware structural similarity evaluation definition. Therefore, SM is a structural
similarity evaluation metric, which simultaneously considers the object-aware and region-
aware structural similarity between the predicted saliency map and ground truth. We set
α = 0.5 in our implementation.

The boundary quality is an important indicator for evaluating the detection effect of
the model. The Pratt’s figure of merit (PFOM [43]) is often used to evaluate the boundary
quality of predicted saliency map, defined by the combination of three factors, namely
the missed detection of the real edge, the misunderstanding of the pseudo-edge, and the
positioning error of the edge. Formally, PFOM is defined as follows:

PFOM =
1

max(Ne, Nd)
∑Nd

k=1
1

1 + βd2
k

(10)

where Ne and Nd are the number of ideal and real edge points, respectively, dk is the pixel
miss distance between the k-th ideal edge point and the corresponding detected edge point,
and β is a scaling constant chosen to 1/9 to provide a relative penalty between smeared
edges and isolated, but offset, edges.

5. Experiments and Discussion
5.1. Experimental Setup

We verify the performance of our model on the public strip steel dataset SD-saliency-
900 [14], which includes 900 cropped images with a size of 200 × 200 pixels. Furthermore,
in this dataset, there are three defects, namely inclusions, patches, and scratches.

Inspired by [44], we use a standard training set to compare the proposed method
with various deep models. This training set contains 810 images, of which 540 images
(180 images per defect type) are randomly picked from the original dataset and 270 noise
images (90 images per defect type) are obtained by using the disturbing method of salt
and pepper noise (ρ = 10%). Similar to [44], in the training process, each image is resized
to 256 × 256 and randomly cropped to 224 × 224, and then normalized by (1− µ)/σ.
The parameters of the encoder network are initialized through initialization strategy [45]
instead of using a pretrained ResNet-34 [29]. The batch size was set to be 8, and the number
of training steps was 50K due to the fact that the loss converges after 50K iterations without
adopting a validation set, as shown in Figure 6. We use the RMSprop optimizer [46] as
the optimizer with a learning rate equal to 0.001 and an alpha equal to 0.9. During the
test, we first adjust the image to 256 × 256 and then input it into the network to obtain its
saliency map. To keep the resolution of the input and output images consistent, bilinear
interpolation is used to restore the saliency map.
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We implement the proposed model using the Pytorch framework [47] and train all
experiments with an NVIDIA TITAN Xp GPU. With the acceleration of the GPU, the whole
training process takes approximately 7 h. When testing, our model only requires 0.035 s to
process a 200 × 200 image.

5.2. Ablation Analysis
5.2.1. Structural Analysis

In this subsection, we perform an ablation study to analyze the seven configurations
of the proposed NURCNet using mean absolute error (MAE), the weighted F-measure
(WF), and structure-measure (SM) metrics, as shown in Figure 7 and Table 1. From Figure 7,
we observe that the proposed model with all components, i.e., attention, URB, and RRS_ID,
captures more detailed information concerning defect objects and, thus, achieves the best
performance. Table 1 further validates the observation, as the performance of the model
gradually improves with the addition of each key component, and the model with all
components has the best prediction results in terms of MAE, WF, and SM. In addition,
Table 1 shows that NURCNet reduces MAE by 26% and, respectively, improves WF and
SM by 3.2% and 1.4% compared to the baseline model. This observation indicates that all
the key components in the proposed model are useful and necessary for obtaining the best
defective object detection results.
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Figure 7. Visual comparison of saliency detection results under the models composed of the different
key components. From left to right, as follows: (a) input image; (b) ground truth; (c) baseline (B);
(d) B + attention; (e) B + URB; (f) B + URB + RN_1D; (g) NURCNet-URB*; (h) NURCNet-RN_1D*;
(i) NURCNet.
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Table 1. The results of using different key components.

Structural MAE WF SM

Baseline (B) 0.0162 0.9059 0.9244
B + attention 0.0153 0.9048 0.9258

B + URB 0.0140 0.9182 0.9310
B + URB + RN_1D 0.0139 0.9223 0.9377
NURCNet-URB* 0.0143 0.9154 0.9321

NURCNet-RN_1D* 0.0146 0.9139 0.9320
NURCNet 0.0120 0.9350 0.9378

5.2.2. Loss Analysis

On the NURCNet architecture, we verify the rationality of hybrid loss through a series
of comparative experiments using different loss terms, as shown in Figure 8 and Table 2.
From Figure 8, we can observe that the proposed model with fusion loss captures more
rich border details of defect objects, and that the interference of non-defective information
is well removed; thus, our NURCNet output a saliency defect map of the clear boundary.
Table 2 shows that NURCNet (i.e., the fusion loss items) offers better performance compared
to other variations. In addition, compared to the counterpart adopting widely-used cross-
entropy loss Lbce, the WF and SM are, respectively, increased by 2.5% and 0.56%, while the
MAE is reduced by 14%.
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Figure 8. Visualization of the results of different losses. (a) Strip steel surface images; (b) ground
truth; (c) Lbce; (d) Liou; (e) Lssim; (f) Lbce + Lssim; (g) Lbce + Liou; and (h) Lall (ours). Red boxes
indicate areas where defects are incomplete.

Table 2. The results of different losses.

Loss MAE WF SM

Lbce 0.0141 0.9120 0.9325
Liou 0.0145 0.9110 0.9251
Lssim 0.0151 0.9001 0.9231

Lbce +Liou 0.0142 0.9160 0.9324
Lbce +Lssim 0.0144 0.9082 0.9285
Lall 0.0120 0.9350 0.9378

5.3. Comparison Results and Discussion

The proposed NURCNet is compared with eight of the conventional or deep learning
saliency detection methods, i.e., RCRR [48], 2LSG [49], BC [50], SMD [19], PoolNet [23],
PiCANet [51], CPD [25], and BASNet [36]. Table 3 presents the corresponding results of the
nine methods.
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Table 3. Comparison of results from nine competitive methods.

Methods MAE WF SM PFOM

PCRR 0.2552 0.2557 0.5302 0.3138
2LSG 0.2587 0.3007 0.5368 0.3530

BC 0.1519 0.3733 0.5881 0.3352
SMD 0.1994 0.3613 0.5840 0.3748

PoolNet 0.0345 0.7263 0.8213 0.7060
PiCANet 0.0351 0.7521 0.8490 0.7547

CPD 0.0353 0.7235 0.8308 0.7343
BASNet 0.0160 0.9033 0.9235 0.8880

NURCNet 0.0139 0.9137 0.9511 0.9065

From Table 3, we can find that NURCNet achieves excellent performance on four
evaluation metrics, i.e., MAE, WF, SM, and PFOM. Specifically, compared to RCRR, 2LSG,
BC, SMD, PoolNet, PiCANet, CPD, and BASNet, NURCNet reduces MAE by 94.5%, 94.6%,
90.8%, 93%, 59.7%, 60.4%, 60.6%, and 13.1%, respectively, and improves WF (SM) by 257.3%,
203.8%, 144.7%, 152.9%, 25.8%, 21.5%, 26.3%, and 1.2% (79.4%, 77.2%, 61.7%, 62.9%, 15.8%,
12.0%, 14.5%, and 3%), respectively. Furthermore, we observe from Table 3 that NURCNet
achieves more accurate identification of defect contours. Specifically, NURCNet improves
PFOM by 188.9%, 156.8%, 170.4%, 41.9%, 28.4%, 20.1%, 23.5%, and 2.1% when compared
to RCRR, 2LSG, BC, SMD, PoolNet, PiCANet, CPD, and BASNet, respectively. These
results indicate that the performance of the NURCNet is better than the eight state-of-
the-art models. Therefore, our model will be a better choice in industrial defect detection
applications.

Table 4 records the comparison of the model size (MB) and the average running time
(seconds per image) on the SD-Saliency-900 dataset. In Table 4, “M” presents that the code
is written in MATLAB, “C” means that the code is written in CAFFE, and “P” denotes
that the code is written in PYTORCH. It can be found that our model only needs 0.037 s
to detect a 200 × 200 image, which makes our model stand out among all models. In real-
world industrial defect detection, lightweight models are highly sought after by factories.
However, our model size is slightly large when compared with the other models. Therefore,
in future work, we will adopt some lightweight techniques to reduce the size of our model.

Table 4. Comparison of the model size and the average running time.

PCRR 2LSG BC SMD PoolNet PiCANet CPD BASNet Ours

Code M M M + C M + C P P P P P
Size - - - - 260 180 183 332 263
Time 1.095 0.639 0.054 0.319 0.030 0.116 0.055 0.046 0.035

6. Conclusions

In this paper, we propose a novel nested u-shaped residual codec network (NURCNet)
to improve conventional convolutional neural networks (CNNs) for the industrial defect
detection problem. The embedding of the dilated convolution, attention mechanism,
and fusion loss ensures that NURCNet can capture abundant details without increasing
the calculation amount too much. In the encoder, we use a fully convolutional neural
network and attention mechanism to extract both the rich low-level spatial details and
high-level contextual information. Then, to aggregate multiscale deep features, we utilize
the U-shaped decoder to progressively integrate deep features in a top-down way. the
encoder and decoder forms a nested U-shaped residual codec network. Finally, a residual
refinement network is introduced to further optimize the coarse saliency map which is
output by the encoder–decoder stage. Experimental results show that, compared to the
eight state-of-the-art models, our model has the best performance in the industrial defect
detection problem. In addition, our NURCNet model does not require any postprocessing.
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