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Abstract: Demand prediction for postal delivery services is useful for managing logistic operations
optimally. Particularly for holiday periods, namely the Lunar New Year and Korean Thanksgiving
Day (Chuseok) in South Korea, the logistics service increases sharply compared with the usual period,
which makes it hard to provide reliable operation in mail centers. This study proposes a Multilayer
Perceptron-based weighted ensemble method for predicting the accepted parcel volumes during
special periods. The proposed method consists of two main phases: the first phase enriches the
training dataset via synthetic samples using unsupervised learning; the second phase builds two
Multilayer Perceptron models using internal and external factor-derived features for prediction.
The final result is estimated by the weighted average predictions of these models. We conducted
experiments on 25 Korean mail center datasets. The experimental study on the dataset provided by
Korea Post shows better performance than other compared methods.

Keywords: weighted ensemble method; postal logistics volume; peak-period prediction;
unsupervised learning

1. Introduction

With the rapid development of e-commerce, the demand for delivery services is
growing fast. Especially in terms of long-term traditional holidays, including the Lunar
New Year and Korean Thanksgiving Day in South Korea, e-commerce gets to its peak, and
the delivery service rises dramatically. During these peak periods, logistic organizations
have difficulty maintaining normal operations. The peak period is determined to be from
the Monday two weeks before the start of a holiday, until two working days after the
last day of the holiday period, and the average of the peak periods is 21 days. Demand
prediction of parcel delivery service in special periods is critical in developing an optimal
plan to provide efficient logistics services by avoiding factors such as insufficient logistics
resources and labor shortages [1–4].

Accurate demand prediction helps to provide reliability to the delivery process, such
as in accepting parcels from customers, sorting and transporting them to delivery stations,
and delivering to the recipients on time [5]. There have been many approaches based on
different perspectives proposed on logistics demand forecasting.

Statistical methods are widely used to learn economic factors affecting increased
mail volume. The authors of [6] used the Vector Error Correction (VEC) model based on
three economic factors, including Gross Domestic Product (GDP), telecommunication price
index, and mail price index, to predict future mail demand. In [7], the elastic coefficient
method was used to predict total logistics volume by considering the ratio between the
growth rate of total logistics volume and GDP for 21 cities in Southeast Asia. Rogan et al.
proposed a non-weighted symmetric Savitzky-Golay filter modification of a simple Seasonal
Autoregressive Integrated Moving Average (SARIMA) model for forecasting the monthly
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volume of postal services in the Republic of Serbia and compared with the SARIMA
model. The proposed method gave 30% less error than SARIMA [8]. The authors of [9]
considered three models, such as Autoregressive Integrated Moving Average (ARIMA), the
Holt-Winters decomposition, and Multiple Linear Regression (MLR), to forecast quarterly
postal traffic in Portugal. Toshkollari et al. used Holt’s Exponential Smoothing model for
predicting the yearly number of postal services in Albania. The model was built on data
from 1993 to 2015 and evaluated by prediction of 2016 and 2017 [2].

Recently, machine learning and deep learning models have been becoming more
popular and show better performance for predicting logistics demand [10–13]. Pu et al.
proposed the Least Squares Support Vector Machine (LS-SVM) optimized by a genetic algo-
rithm for forecasting logistics demand. They compared the optimized LS-SVM with simple
LS-SVM and backpropagation (BP) neural network algorithms on a dataset from 1991 to
2003 in the China statistical yearbook [10]. Another enhanced SVM algorithm optimized
by parameters of penalty and radial bases function based on an ant colony algorithm was
proposed in [11]. They conducted an experiment using statistics on Qingdao’s logistics
demand from 1999 to 2017. The improved SVM showed promising results to predict lo-
gistics demand. In [12], SARIMA and Long Short-Term Memory (LSTM) were evaluated
by predicting the monthly volume of express mail services of international traffic in the
Republic of Serbia. The LSTM model gave about 35% smaller Root Mean Square Error
(RMSE) than the SARIMA model on 48 monthly observations. The authors of [13] used
the LSTM model with two-dimensional input for predicting delivery demand based on a
particular area. They evaluated the method on a simulated dataset with nine sub-regions,
and the prediction accuracy reached 74.81% on the test dataset. The authors of [5] proposed
an MLR-based method to predict the daily demand of parcel logistics. First, delivery
stations were clustered by the Self-Organizing Map algorithm. Then MLR was developed
for each cluster. Compared with the ARIMA and Random Forest (RF) algorithms, their
proposed method showed more accurate results on the most clustered regions. Ebbesson
investigated demand prediction methods, including regression analysis, RF, and neural
network [3]. Huang et al. used a GM (1, 1) model and BP neural network with two hidden
layers to predict logistics demand in Guangdong province from 2000 to 2019. As a result,
BP neural network predicted better than the GM (1, 1) model [4].

In general, there are few studies on peak-period prediction for postal logistics, and
previous studies addressed mid-to-long-term mail volume forecasting methods. However,
studies of short-term mail volume prediction for postal logistics are needed to make short-
term plans in terms of supporting the normal operation of logistics resources by providing
fast detection of trend changes in mail volume. Demand prediction for short-term periods
is also important for Korea Post, which provides next-day parcel delivery service, unlike
ordinary mail, which can be delivered within three days from the date of acceptance.
Previously, about a month or two before the peak periods, each mail center or logistics
center established short-term parcel volume forecasts and resource operation plans based
on past experiences, which resulted in insufficient logistics resources and staffing. The
accurate prediction of peak period is one of the key factors for providing reliable services
to the public.

Thus, this study considers the prediction of sharp changes in logistics services over
a particular period in special holidays rather than the usual period. We have proposed
a peak-period prediction method for parcel logistics to improve resource operation of
sorting centers. The proposed method is established by a deep learning-based ensemble
method, consisting of two Multilayer Perceptron (MLP) models combined by weights
to improve performance. First, the postal parcel volume-based features are analyzed;
next, several features are extracted by factors, including calendar, internal, and external.
Second, the first MLP model is trained to predict the total parcel volume using the external
features for a given period, while the second MLP model is developed using the internal
features. The internal prediction model enhances the training dataset using the Variational
Autoencoder (VAE) model to prevent performance degradation. In the end, the proposed



Appl. Sci. 2022, 12, 11962 3 of 15

ensemble model is constructed based on the combination of the internal and external
MLP models with a weight regulation for peak-period prediction. The experimental study
was conducted on parcel volume datasets from 25 mail centers in South Korea, and the
proposed method shows the superiority in prediction performance compared with RF, Least
Absolute Shrinkage and Selection Operator (LASSO), MLR, Support Vector Regression
(SVR), Extreme Gradient Boosting (XGBoost), and LSTM models.

The remaining part of the paper is organized as follows. Section 2 details the pro-
posed ensemble method constructed by internal and external feature-based peak-period
prediction models. The experimental study is described and discussed in Section 3. The
conclusion of the presented study is in Section 4.

2. Proposed Method

The main purpose of this study is to predict the extreme volume change occurring in
peak periods. The proposed method consists of two main phases. In phase 1, the features
of the patterns of parcel volume are constructed. The internal and external factor-based
features are derived. The bulk and contract mailing-based external features take account
of uncertainty by a non-internal factor. The generated features are used as explanatory
variables of the proposed prediction model. In phase 2, an MLP-based weighted ensemble
method is developed. The proposed approach is designed for improving the performance
of a single predictive model by combining two models based on the internal and external
features with weight. The two MLP models are built on training datasets prepared differ-
ently. The internal features-based training datasets are enriched via synthetic samples using
the unsupervised learning to prevent performance degradation. The proposed ensemble
model is constructed based on the combination of the internal and external MLP models
with the weighted average for peak-period prediction.

2.1. Feature Engineering

The data with the characteristic of repeatability in units of time include statistical
self-similarity. Generally, it is possible to analyze the postal volume pattern depending on
the characteristics repeated in units of time and calendar factors, such as day, weekend,
holiday, and interval from holidays, to explore the statistical similarity.

In this study, the features of the patterns of parcel volume are categorized by internal
and external factor-based derived features, as described in Figure 1 [14]. The internal fea-
tures consist of calendar factors and volume similarity. From calendar and seasonal factors,
we generate the features based on weekday, public holidays, and interval with holidays.
The features of the time interval include the day before holidays, the day after holidays, and
holidays that overlapped with workdays, n-th days before and after weekends or holidays
interspersed with workdays for indicating the increasing volume trend near the particular
periods. The volume factor-based derived features contain the past and recent volumes
in normal and peak periods. The numerical features are extracted from internal historical
data, including the moving average values of n-th previous weeks of a special period and
mail volume compared to usual periods from an n-th week earlier. Moreover, the features
based on external factors are created from the bulk mailing and contract volume. The
prediction of bulk mailing volume tends to have a considerable variance depending on
the contract customer’s business situation, whereby we extract explanatory features based
on large volume mailing companies to enhance prediction performance. In the proposed
weighted ensemble method, the generated internal volume-based features and external
bulk mailing-based features are employed as input variables for the predictive models.
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2.2. MLP-Based Weighted Ensemble Method

We propose an MLP-based demand prediction method for parcel logistics services.
The proposed ensemble approach is designed for improving a single predictive model by
combining two models based on the internal and external features with weight regulation,
as shown in Figure 2. The two models are built on training datasets prepared differently,
including Training Dataset-1 and Training Dataset-2. The final prediction result is estimated
by averaging the outcome of each model based on the models’ weight. These models are
built on training datasets prepared differently; Training Dataset-1 and Training Dataset-2,
and the final prediction result is estimated by averaging the outcome of each model based
on models’ weight.

2.2.1. Construction of Training Datasets

Our proposed method is to predict the parcel volume during special periods of sharp
changes in logistics services. The proposed method constructs two MLP models based on
the generated internal and external features. These models are learned from datasets pre-
pared differently from the initial mail center datasets. The first predictive model (external
features-based prediction model shown in Figure 2) is to predict the total parcel volume
during special periods. Therefore, the first training dataset is produced by grouping daily
information into summary rows belonging to the holiday. The Training Dataset-1 consists
of the external features based on the large volume mailing and contract customer data, and
the target variable is estimated by the sum of parcel volume during a peak period of the
particular holidays.
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Figure 2. Overall architecture of the proposed method. Dashed lines indicate prediction process;
solid lines indicate training procedure.

For the second training dataset, instead of using the initial daily dataset directly, we
prepare an enriched training dataset named Training Dataset-2 by adding the 500 synthetic
mailing data generated from the VAE model. The VAE model is excluded on the first
training dataset, which is a summarized representation of the daily dataset because the
compressed dataset is produced from the original dataset and may not be able to properly
represent the original data distribution. Therefore, the VAE model is applied to the second
training dataset construction.

The VAE is a neural network introduced first by [15]. It is mainly used to generate syn-
thetic data. For example, in [16], the VAE was used to generate synthetic electronic health
records. The effectiveness of the VAE was confirmed by the comparison of LSTM models
trained on the synthetic and actual datasets. The authors of [17] proposed a coronary heart
disease risk prediction method based on neural networks. They improved the prediction
performance by augmenting rare instances with the VAE-based synthetic data. In [18], the
VAE was used for image data generation and evaluated on the MNIST dataset. The VAE-
based approach outperformed other traditional data generation methods, such as Synthetic
Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN).

Figure 3 presents an architecture of the VAE model used in this study. Generally, the
architecture of the VAE involves encoder and decoder parts. The encoder part encodes
input data as a latent distribution in a lower-dimensional space and learns to return the
mean and variance for the normal distribution of data. Then, the random point sampled
from that distribution is decoded, and an error between decoded data and the initial data is
calculated to adjust model weights. To generate synthetic data from the trained VAE, first,
a random point z is estimated by Equation (1):

z = µ + σ× ε (1)

where ε is randomly sampled from the standard normal distribution, and µ and σ are the
mean and standard deviations of the latent distribution. The sampled point z is decoded to
obtain new data.
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Input and output layers of the VAE model in the proposed method consist of 30 nodes
that represent input features for an internal factors-based model and its target variable. Each
hidden layer with 15 nodes uses the ReLU activation function described in Equation (2):

ReLU(x) =
{

0 i f x≤0
x i f x>0 =max{0, x} (2)

2.2.2. Ensembling MLP Models

The proposed ensemble method is built using the generated internal and external
features and the artificial neural network (ANN) technique; the ANN implemented in
this study is MLP. The neural network was first introduced by Warren McCullough and
Walter Pitts in 1943 [19] and successfully used in many fields, such as natural language
processing [20], image processing [21], recommendation systems [22], and so on.

It involves input, hidden, and output layers. Neurons of the input layer represent
input variables, and neurons of hidden and output layers receive the weighted summation
of neurons in their previous layer and transform it using activation functions. It is trained
by changing the weight of each neuron to minimize the difference between the target value
and predicted output.

In this study, we propose the weighted ensemble method by constructing two MLP
models based on the extracted internal and external features. EF-MLP is built on the large
volume of mailing and contract customer data-based external features to predict the total
volume of parcel services during peak periods. IF-MLP is trained on calendar and internal
volume-derived features. The structure of EF-MLP consists of two hidden layers with eight
and two neurons, while two hidden layers of IF-MLP have 58 and 29 neurons. The ReLU
activation function is used in all hidden layers. The results of each model are combined
using Equation (3):

y_ensi = (1− α)× ye f
i + α× yi f

i (3)

where y_ensi is the ensembled predicted value; ye f
i is the predicted value of the EF-MLP; yi f

i
is the predicted value of the IF-MLP; α(0 ≤ α ≤ 1) is the weight for IF-MLP; and (1− α) is
the weight for EF-MLP.

An example of the prediction process of the proposed ensemble method is demon-
strated in Figure 4.

In the prediction procedure, the predictive results of the EF-MLP and IF-MLP models
are given as an input value of the ensemble model for peak-period prediction. For the final
prediction, the outputs of the proposed EF-MLP and IF-MLP models are combined based
on the weight value. The proposed weighted ensemble method with internal and external
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factor-based derived features can prevent the prediction output from being inappropriately
biased and complement for weaknesses of individual EF-MLP and IF-MLP models.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 16 
 

where ݏ݊݁_ݕ௜  is the ensembled predicted value; ݕ௜௘௙  is the predicted value of the EF-
MLP; ݕ௜௜௙ is the predicted value of the IF-MLP; α(0 ൑ ߙ ൑ 1) is the weight for IF-MLP; 
and	(1 − α) is the weight for EF-MLP. 

An example of the prediction process of the proposed ensemble method is demon-
strated in Figure 4. 

 
Figure 4. Example of the prediction procedure based on two MLP models; APE: Absolute Percent-
age Error. 

In the prediction procedure, the predictive results of the EF-MLP and IF-MLP models 
are given as an input value of the ensemble model for peak-period prediction. For the final 
prediction, the outputs of the proposed EF-MLP and IF-MLP models are combined based 
on the weight value. The proposed weighted ensemble method with internal and external 
factor-based derived features can prevent the prediction output from being inappropri-
ately biased and complement for weaknesses of individual EF-MLP and IF-MLP models. 

3. Experimental Study 
The proposed method is validated on 25 Korean mail center datasets. We have com-

pared the proposed method with other predictive methods widely used in previous stud-
ies. Moreover, we compared several MLP models that were trained on the differently pre-
pared datasets to demonstrate how the proposed method can enhance the performance of 
the compared MLP models. In addition, we have experimented by replacing the MLP 
models in the proposed method with other compared prediction models to show that al-
gorithms used in the proposed method work well together. The prediction performance 
is evaluated using MAE, RMSE, MAPE and SMAPE. 

3.1. Experimental Dataset 
The compared and proposed methods are validated on postal volume data from the 

Korea Post. The domestic mail service in South Korea is generally classified into ordinary 
mail service and parcel mail service. For the ordinary mail, Korea Post, which is a govern-
ment agency responsible for providing postal services, handles letters. For the parcel mail, 
Korea Post engages with several logistic companies to provide stable services. The postal 
logistics process generally consists of four stages of acceptance, sorting, transportation, 
and delivery. The mail and logistics centers of Korea Post sort parcel and ordinary mail, 
which are to be transported through the exchange center or directly to the inbound mail 
centers of respective destinations. 24 mail centers are evenly distributed across the coun-
try and one exchange center is located at the center of the nationwide network. 

This study used parcel mail datasets of 25 mail sorting and logistics centers including 
the exchange center. Datasets were collected from 1 September 2015 to 6 October 2020. 
Figure 5 shows the trend of the postal parcel volume from January to December 2019 at 

Figure 4. Example of the prediction procedure based on two MLP models; APE: Absolute
Percentage Error.

3. Experimental Study

The proposed method is validated on 25 Korean mail center datasets. We have
compared the proposed method with other predictive methods widely used in previous
studies. Moreover, we compared several MLP models that were trained on the differently
prepared datasets to demonstrate how the proposed method can enhance the performance
of the compared MLP models. In addition, we have experimented by replacing the MLP
models in the proposed method with other compared prediction models to show that
algorithms used in the proposed method work well together. The prediction performance
is evaluated using MAE, RMSE, MAPE and SMAPE.

3.1. Experimental Dataset

The compared and proposed methods are validated on postal volume data from the
Korea Post. The domestic mail service in South Korea is generally classified into ordinary
mail service and parcel mail service. For the ordinary mail, Korea Post, which is a govern-
ment agency responsible for providing postal services, handles letters. For the parcel mail,
Korea Post engages with several logistic companies to provide stable services. The postal
logistics process generally consists of four stages of acceptance, sorting, transportation, and
delivery. The mail and logistics centers of Korea Post sort parcel and ordinary mail, which
are to be transported through the exchange center or directly to the inbound mail centers of
respective destinations. 24 mail centers are evenly distributed across the country and one
exchange center is located at the center of the nationwide network.

This study used parcel mail datasets of 25 mail sorting and logistics centers including
the exchange center. Datasets were collected from 1 September 2015 to 6 October 2020.
Figure 5 shows the trend of the postal parcel volume from January to December 2019 at Mail
Center #3 as an example. We can see that the total volume of parcel delivery services rose
dramatically during the Lunar New Year and Korean Thanksgiving Day, which indicated
in the shaded area of Figure 5.
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Mail Center #13 42,016.8 69,176.5 95,636.8 156,706.0 156,706 67,975.5 51,102.6 61,594.2–74,356.8 0.75 
Mail Center #14 16,935.5 30,181.5 46,781.3 74,552.0 74,552 31,479.3 20,162.7 28,226.2–34,732.4 0.64 
Mail Center #15 12,599.8 19,316.0 28,208.0 48,345.0 48,345 19,804.8 11,208.1 17,945.4–21,664.2 0.57 
Mail Center #16 10,828.0 41,718.0 62,952.0 117,847.0 117,847 40,518.9 28,092.7 36,146.4–44,891.4 0.69 
Mail Center #17 24,916.3 68,523.0 98,665.5 176,951.0 176,951 67,183.7 42,668.3 60,521.6–73,845.8 0.64 
Mail Center #18 10,243.3 15,970.5 22,504.8 48,978.0 48,978 16,187.6 10,150.5 17,945.4–21,664.2 0.63 
Mail Center #19 8630.0 18,777.0 33,069.0 70,283.0 70,283 21,526.0 15,927.7 18,911.5–24,140.5 0.74 
Mail Center #20 11,396.8 21,525.0 29,665.8 54,976.0 54,976 20,651.3 12,261.1 18,699.4–22,603.2 0.59 
Mail Center #21 11,008.0 20,151.0 30,727.0 69,885.0 69,885 21,959.8 15,357.4 19,473.6–24,446.0 0.70 
Mail Center #22 25,305.0 70,339.0 85,875.0 151,727.0 151,727 62,182.4 38,329.0 19,473.6–24,446.0 0.62 
Mail Center #23 13,141.5 24,884.5 46,106.0 89,609.0 89,609 29,871.5 22,499.3 26,265.8–33,477.2 0.75 
Mail Center #24 7191.8 14,144.0 20,541.0 43,956.0 43,956 14,001.7 9061.1 12,529.8–15,473.6 0.65 

Figure 5. Example of postal parcel data of a mail center.

The peak period is determined to be from the Monday two weeks before the start of
a holiday until two working days after the last day of the holiday period. For example,
assuming that the Lunar New Year 2020 is between January 24 and 27, its special period
can be defined to be from January 6 to January 29. Datasets of special periods in 25 mail
centers are summarized in Table 1.

Table 1. Summary of datasets of peak periods in 25 mail centers.

Mail Center Q1 Q2 Q3 Q4 Max Avg Stdev 95% CI CV

Mail Center #1 52,842.5 120,541.0 149,959.0 225,370.0 225,370 104,943.7 63,352.7 95,096.4–114,790.9 0.60
Mail Center #2 2180.0 20,477.0 29,992.0 79,048.0 79,048 23,705.5 17,073.4 76,377.3–81,718.7 0.72
Mail Center #3 9889.0 28,064.0 38,370.0 77,927.0 77,927 26,459.0 16,882.7 23,814.6–29,103.4 0.64
Mail Center #4 27,063.0 47,586.0 58,418.0 139,060.0 139,060 45,200.8 26,463.4 40,973.9–49,427.7 0.59
Mail Center #5 24,075.5 41,184.5 51,461.3 94,285.0 94,285 37,884.1 22,435.9 34,288.6–41,479.6 0.59
Mail Center #6 6267.3 10,545.0 15,723.5 29,372.0 29,372 10,982.2 6737.3 8405.9–13,558.5 0.61
Mail Center #7 25,117.5 64,168.0 84,739.5 135,408.0 135,408 57,270.0 33,229.3 52,297.9–62,242.1 0.58
Mail Center #8 10,982.0 24,748.0 34,520.0 71,813.0 71,813 23,914.4 15,760.3 19,387.5–28,441.3 0.66
Mail Center #9 27,461.5 58,678.0 75,437.5 121,475.0 121,475 51,902.1 30,383.5 47,127.7–56,676.5 0.59
Mail Center #10 25,940.0 45,000.0 58,127.5 94,897.0 94,897 41,943.5 24,780.3 38,011.5–45,875.5 0.59
Mail Center #11 37,859.0 70,448.0 85,492.8 138,841.0 138,841 63,427.3 35,386.0 53,950.9–72,903.7 0.56
Mail Center #12 40,217.0 89,316.0 119,860.8 237,143.0 237,143 82,019.7 51,102.6 73,989.6–90,049.8 0.62
Mail Center #13 42,016.8 69,176.5 95,636.8 156,706.0 156,706 67,975.5 51,102.6 61,594.2–74,356.8 0.75
Mail Center #14 16,935.5 30,181.5 46,781.3 74,552.0 74,552 31,479.3 20,162.7 28,226.2–34,732.4 0.64
Mail Center #15 12,599.8 19,316.0 28,208.0 48,345.0 48,345 19,804.8 11,208.1 17,945.4–21,664.2 0.57
Mail Center #16 10,828.0 41,718.0 62,952.0 117,847.0 117,847 40,518.9 28,092.7 36,146.4–44,891.4 0.69
Mail Center #17 24,916.3 68,523.0 98,665.5 176,951.0 176,951 67,183.7 42,668.3 60,521.6–73,845.8 0.64
Mail Center #18 10,243.3 15,970.5 22,504.8 48,978.0 48,978 16,187.6 10,150.5 17,945.4–21,664.2 0.63
Mail Center #19 8630.0 18,777.0 33,069.0 70,283.0 70,283 21,526.0 15,927.7 18,911.5–24,140.5 0.74
Mail Center #20 11,396.8 21,525.0 29,665.8 54,976.0 54,976 20,651.3 12,261.1 18,699.4–22,603.2 0.59
Mail Center #21 11,008.0 20,151.0 30,727.0 69,885.0 69,885 21,959.8 15,357.4 19,473.6–24,446.0 0.70
Mail Center #22 25,305.0 70,339.0 85,875.0 151,727.0 151,727 62,182.4 38,329.0 19,473.6–24,446.0 0.62
Mail Center #23 13,141.5 24,884.5 46,106.0 89,609.0 89,609 29,871.5 22,499.3 26,265.8–33,477.2 0.75
Mail Center #24 7191.8 14,144.0 20,541.0 43,956.0 43,956 14,001.7 9061.1 12,529.8–15,473.6 0.65
Mail Center #25 40,091.5 91,905.0 147,942.5 222,904.0 222,904 93,499.4 62,742.8 83,794.9–03,203.9 0.67

Q1–Q4: from the first quartile to the fourth quartile; Max: maximum value; Avg: average value; Stdev: standard
deviation; CI: confidence interval; CV: coefficient of variation.
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3.2. Evaluation Metrics

To evaluate the prediction performance of the compared models, Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Symmetric Mean Absolute Percentage Error
(SMAPE), and Mean Absolute Percentage Error (MAPE) metrics are used.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

SMAPE =
1
n

(
n

∑
i=1

|yi − ŷi|
(yi + ŷi)/2

)
× 100 (6)

MAPE =
1
n

(
n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
)
× 100 (7)

where n is number of the sample, ŷi is the i-th predicted value, and yi is the i-th actual value.

3.3. Compared Methods

We have compared the proposed method with other predictive methods using the
Scikit-learn Python library, which contains implementations of machine learning and
statistical modeling for classification, regression, and clustering [23]. The performance
comparison was conducted with the commonly used techniques in previous studies.

Multiple Linear Regression (MLR) is commonly used for regression tasks [24]. It estimates
coefficients that explain the correlation between the response and explanatory variables.

Least Absolute Shrinkage and Selection Operator (LASSO) is one kind of regularized
linear regression. It minimizes the prediction error by shrinking the coefficients of some
input variables that are irrelevant to the prediction task to zero [25].

Support Vector Regression (SVR) is a type of Support Vector Machine [26] used as a
regression method. SVR works by using the ε-tube that best approximates the continuous-
value function for balancing model complexity and prediction error [27]. We have built an
SVR model with a C regularization parameter is equal to 0.1 and a linear kernel function.

Extreme Gradient Boosting (XGBoost) is an ensemble algorithm based on a decision
tree and is formed on a gradient-boosting framework. It consists of multiple decision trees
based on different subsets of features and combines their predictions to generate a final
prediction. Each decision tree is built on the errors of the previous trees [28]. We have
configured the learning rate to 0.3; the booster is gradient-boosting linear (gblinear), and
the number of boosting iterations is 100.

Random Forest (RF) is widely used in classification and regression tasks. It builds
several decision trees on dissimilar sub-samples from the training dataset. In the case
of regression, the final result is generated by their average [29]. We set the number of
trees to 500.

Long Short-Term Memory (LSTM) is one kind of Recurrent Neural Network (RNN)
used in sequence processing [30]. It solves the problem of RNN that cannot predict
accurately from the long-term information by extending the memory cells using input,
forget and output gates. Those gates are employed to add useful information to the
cell (input gate), remove unnecessary information from the cell (forget gate), and extract
applicable information from the current cell (output gate). The LSTM model used in the
experimental study had a single hidden layer with 16 neurons. The model was trained
with Adam optimizer [31], batch size to 16, epochs to 100, and learning rate to 0.001.

Multilayer Perceptron (MLP) constructs multiple hidden layers in between input and
output layers [19]. Each layer consists of artificial neurons connected with its following
layers’ neurons by weight parameters. The weight parameters are optimized by the back-
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propagation algorithm. The training configuration of the MLP was Adam optimizer, batch
size to 16, epochs to 100, and learning rate to 0.001.

3.4. Prediction Results

We compared seven prediction models, such as MLR, LASSO, SVR, RF, XGBoost,
LSTM, and MLP with the proposed method on 25 mail center datasets to predict postal
parcel volume during special periods. We selected the special periods for the training
dataset from Korean Thanksgiving Day 2016 to the target peak period. For example,
holidays that started from the Korean Thanksgiving Day 2016 to the Lunar New Year 2018
were used to train the model that predicts the 2018 Korean Thanksgiving Day. Figure 6
shows a visualization of the train-test split.
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Foremost, we compared several MLP models that were trained on the differently
prepared training datasets to demonstrate how the proposed method can enhance the
performance of compared MLP models. Table 2 shows the prediction performance of
compared MLP models for each mail center, and the best results are emphasized. The
prediction results show that the proposed external and internal MLP model-based weighted
ensemble method outperforms other MLP models on 13 of 25 mail center datasets.

From Table 2, the EF-MLP model performed better than the baseline MLP model using
the initial dataset on most of the mail center datasets, and its average MAPE was less
than the baseline MLP model by 4.98%. Moreover, the MAPE of the IF-MLP model was
decreased by enriching the training dataset using synthetic data generated from the VAE
model, and its average MAPE dropped to 10.77% compared with the MAPE of the baseline
MLP model of 14.43%. Moreover, the average MAE, RMSE, SMAPE, and MAPE of the
proposed model ensembling EF-MLP and IF-MLP models with the weight were less than
the baseline MLP model by 25,917.1, 35,215.1, 4.87%, and 4.98%, respectively. Finally, the
proposed method was superior to the baseline MLP model in giving the minimum errors.
For each mail center, we selected the different weights for EF-MLP and IF-MLP based on
the training performance of the proposed method.

Table 3 shows the performance comparison between the proposed method and the
individual predictive methods. For 25 mail center datasets, ten centers have a higher
coefficient of variation than the average, and the names of these mail centers are bolded
in Table 3. The performance of our proposed method tends to be better for mail centers
with large fluctuations. Among mail centers with a high coefficient of variation, the bolded
highlight indicates that the proposed method is excellent. As shown from the MAPE,
SMAPE, RMSE, and MAE results of Table 3, the proposed weighted ensemble method
gave better performance than other individual compared models for most mail centers.
The proposed method achieved better accuracy in MAPE and SMAPE than the MLR-
based, LASSO-based, SVR-based, XGBoost-based, RF-based, and LSTM-based methods. It
dropped MAPE and SMAPE values from MLR, LASSO, SVR, XGBoost, RF and LSTM-based
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methods by 3.9%, 3.9%, 4.5%, 4.2%, 4.3%, 3.2% and 4.1%, 3.8%, 4.2%, 3.7%, 4.2%, 3.4%,
respectively. For the MAE and RMSE results, the proposed ensemble method outperformed
the compared methods by giving 83,012.5 of MAE and 147,883.2 of RMSE on average. Its
MAE value is less than the compared methods by 20,158.7, 17,994.5, 21,858.7, 18,269.8,
18,887.3, 15,087.2, and RMSE is lower by 29,240.3, 26,028.4, 29,411.1, 31,937.6, 17,351.2,
20,666.6, and 42,155.1, respectively.

Table 2. Performance of MLP models by the proposed method on the 25 mail center datasets.

Mail Centers

MLP (Baseline) EF-MLP IF-MLP Proposed

MAPE MAE MAPE MAE MAPE MAE MAPE MAE
SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE

Mail Center #1
8.245 166,430.0 9.237 201,634.5 5.923 128,320.7 6.076 131,779.3
8.679 187,880.7 10.055 274,179.0 6.211 166,883.6 6.386 172,273.1

Mail Center #2
24.860 129,159.6 23.368 121,265.9 25.401 132,437.6 24.108 269,291.7
63.978 454,463.6 72.296 432,934.8 63.379 421,951.1 62.094 394,716.5

Mail Center #3
12.122 55,555.2 10.705 53,918.7 7.528 34,675.2 10.090 50,429.3
11.689 58,175.8 11.085 68,097.4 7.262 45,449.9 10.348 62,254.3

Mail Center #4
10.864 84,690.7 11.847 77,226.4 7.503 64,445.3 8.931 56,224.0
10.838 98,681.0 10.530 110,427.5 7.844 88,154.4 8.060 85,958.8

Mail Center #5
12.212 85,184.9 8.209 60,226.8 8.672 58,807.0 7.868 54,813.0
13.121 96,738.0 8.865 81,912.7 9.201 67,044.5 8.287 60,962.6

Mail Center #6
13.931 26,250.5 8.827 16,598.3 8.060 14,978.9 3.225 6180.1
15.186 28,240.1 8.571 20,286.1 8.683 19,855.1 3.287 6711.9

Mail Center #7
15.890 184,636.9 7.939 110,440.1 12.971 157,518.5 7.661 101,561.9
15.703 203,238.7 8.842 189,087.5 12.821 185,911.8 8.362 167,814.1

Mail Center #8
12.959 53,347.1 9.084 39,366.6 15.951 63,867.6 8.424 36,017.7
12.982 65,448.9 9.669 47,857.7 14.375 76,470.0 8.795 42,160.4

Mail Center #9
8.944 88,769.8 12.547 115,290.7 6.324 63,180.8 11.263 104,454.8
9.109 94,215.5 12.226 145,732.4 6.763 89,717.9 11.098 122,761.0

Mail Center #10
8.126 66,934.4 12.113 106,297.9 2.663 22,661.2 7.382 64,424.7
8.322 70,176.0 13.241 128,728.4 2.738 34,506.1 7.788 78,741.3

Mail Center #11
8.173 93,854.9 3.635 41,706.9 5.980 66,280.8 3.171 35,222.8
7.895 109,198.8 3.609 48,269.8 5.919 73,963.2 3.105 48,512.5

Mail Center #12
12.548 213,895.2 15.592 291,748.6 12.500 216,383.2 13.304 231,382.9
13.530 239,177.6 17.471 353,703.2 13.598 262,091.1 14.478 271,213.8

Mail Center #13
11.340 132,817.0 9.589 120,317.4 10.735 134,590.5 8.539 106,148.2
10.696 182,117.9 9.891 144,527.3 10.522 155,959.6 8.692 122,585.5

Mail Center #14
11.617 68,646.8 7.010 44,892.1 10.772 64,262.8 6.926 44,347.8
12.077 86,639.6 7.668 77,396.3 15.118 89,138.0 7.580 76,730.7

Mail Center #15
9.665 30,503.0 4.042 12,698.1 7.798 24,605.1 3.733 11,624.5
9.519 33,665.8 3.965 13,690.6 7.868 27,276.8 3.669 12,610.5

Mail Center #16
8.135 63,139.3 6.866 52,967.8 4.185 32,533.2 3.398 26,809.2
7.801 72,776.7 6.964 61,500.6 4.359 43,777.2 3.478 31,514.6

Mail Center #17
18.482 210,939.7 10.730 113,781.4 11.529 126,172.2 10.083 105,712.6
18.849 232,308.3 9.736 150,959.2 10.877 156,001.1 9.175 145,372.9

Mail Center #18
29.400 74,301.1 16.129 39,864.5 14.355 36,356.8 11.235 27,723.7
24.262 96,851.9 13.851 57,401.9 14.867 41,707.7 10.197 37,596.3

Mail Center #19
15.222 52,095.2 4.648 15,539.0 11.379 38,471.7 4.545 15,262.0
13.964 74,066.8 4.461 22,703.4 10.739 48,963.5 4.319 24,065.9

Mail Center #20
6.375 23,599.9 8.152 34,187.4 5.291 19,475.2 5.249 19,756.7
6.319 33,965.6 8.957 53,419.3 5.198 25,839.9 5.202 23,838.8

Mail Center #21
16.660 54,886.0 49.398 169,356.8 11.771 39,135.7 13.203 44,925.5
16.030 61,489.4 35.081 246,618.6 11.418 49,462.3 12.227 52,351.9

Mail Center #22
14.900 183,708.7 9.093 106,237.1 11.342 133,792.7 10.739 126,154.0
16.069 221,819.3 8.774 130,242.2 11.524 136,342.5 10.790 130,241.2

Mail Center #23
29.869 146,433.4 21.777 99,925.7 17.243 77,933.3 15.276 69,954.8
30.531 179,673.1 20.077 119,480.9 15.575 94,092.7 13.882 91,474.5

Mail Center #24
12.186 30,362.3 17.649 47,736.3 10.314 27,247.0 10.688 28,141.9
13.265 34,953.7 20.052 56,824.1 10.893 30,520.6 11.518 32,974.8

Mail Center #25
28.113 403,099.3 9.804 145,090.0 23.176 333,733.9 21.303 306,970.0
22.685 539,578.5 9.232 186,659.0 19.928 407,434.7 18.459 379,725.5
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Table 3. Comparison of MAPE, SMAPE, RMSE and MAE results.

Mail
Centers

MLR LASSO SVR XGBoost RF LSTM Proposed

MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE
SMAPERMSE SMAPERMSE SMAPERMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE

Mail Center
#1

8.700 176,927.2 8.800 183,267.9 8.300 168,968.4 7.000 143,238.6 5.960 120,928.2 9.581 198,052.7 8.200 166,430.0
9.145 196,286.1 9.189 197,004.6 8.583 185,988.8 7.259 165,407.9 6.064 129,216.5 10.096 216,752.1 8.679 187,880.7

Mail
Center #2

25.567 133,309.2 23.104 120,387.0 24.855 125,101.1 21.061 109,000.7 29.904 154,773.0 23.854 120,888.3 24.860 129,159.6
63.978 454,463.6 61.039 436,652.9 62.794 404,836.7 58.927 432,818.1 68.399 338,071.0 62.385 457,488.2 63.129 470,150.7

Mail Center
#3

13.210 59,803.5 8.622 37,953.7 9.632 44,434.8 8.357 37,345.6 15.507 73,843.5 11.806 55,294.1 12.122 55,555.2
12.248 70,960.9 7.859 58,173.2 9.507 54,156.0 7.701 53,794.7 15.200 85,141.4 11.572 60,555.8 11.689 58,175.8

Mail Center
#4

8.718 55,153.8 4.745 35,652.1 13.292 96,957.7 6.313 46,961.0 8.498 61,704.6 11.704 86,176.1 10.864 84,690.7
8.321 71,366.8 4.780 38,827.4 14.301 110,275.6 6.456 53,920.5 8.428 64,974.4 12.633 98,993.6 10.838 98,681.0

Mail Center
#5

9.194 65,580.1 11.130 80,354.2 12.606 88,449.8 11.616 84,341.6 11.833 81,396.0 10.640 71,789.6 12.212 85,184.9
9.783 77,081.5 11.384 84,720.1 12.808 93,646.0 11.523 87,613.7 12.706 90,280.7 11.585 86,332.0 13.121 96,738.0

Mail Center
#6

8.670 16,416.9 10.357 19,485.0 16.509 31,091.2 11.469 21,543.6 7.841 14,572.3 14.307 27,009.9 13.931 26,250.5
9.083 16,707.0 11.063 21,319.8 18.438 34,405.9 12.406 24,283.3 8.501 20,282.9 15.657 29,265.2 15.186 28,240.1

Mail Center
#7

15.614 194,105.6 15.764 193,784.9 14.380 172,578.1 14.595 178,457.5 17.170 206,847.0 16.436 200,644.4 15.890 184,636.9
16.107 230,523.0 16.147 223,426.7 14.253 201,953.4 14.725 203,967.5 17.928 239,378.5 16.463 237,349.5 15.703 203,238.7

Mail
Center #8

12.150 47,857.8 14.685 58,537.6 14.172 58,134.2 16.385 66,464.3 9.754 39,491.3 8.216 33,513.9 12.959 53,347.1
11.680 57,534.7 13.697 67,064.5 12.934 69,725.4 14.565 82,339.2 9.778 45,368.2 8.014 38,377.6 12.982 65,448.9

Mail Center
#9

15.475 154,923.6 13.724 139,705.0 11.173 112,467.8 13.898 139,276.6 10.044 96,345.6 9.106 94,373.0 8.944 88,769.8
16.323 172,577.8 13.677 154,132.8 11.662 137,145.2 13.838 155,917.5 10.461 107,908.6 9.363 107,343.3 9.109 94,215.5

Mail Center
#10

9.718 84,693.5 7.865 66,159.7 3.734 31,769.3 6.467 51,486.4 9.532 76,688.4 6.447 58,445.7 8.126 66,934.4
10.324 106,016.5 7.804 74,191.2 3.768 41,944.2 6.381 59,493.8 10.090 86,767.4 6.801 79,742.1 8.322 70,176.0

Mail Center
#11

7.684 86,461.5 6.946 78,909.5 10.479 120,436.2 8.428 97,234.5 8.207 94,408.1 4.796 52,858.0 8.173 93,854.9
7.624 89,752.8 6.777 84,003.9 10.117 129,083.6 8.114 110,128.6 8.001 113,977.8 4.792 65,940.2 7.895 109,198.8

Mail Center
#12

10.909 198,019.9 11.528 185,539.0 11.335 198,073.9 8.060 150,602.6 16.509 274,021.5 15.502 262,408.4 12.548 213,895.2
11.772 246,448.9 12.531 218,863.7 12.257 245,098.6 8.656 215,053.7 18.237 301,877.6 16.933 282,917.5 13.530 239,177.6

Mail
Center #13

10.859 129,566.8 6.434 74,832.8 9.337 113,476.0 9.281 114,457.0 7.296 85,524.0 8.080 98,972.2 11.340 132,817.0
11.120 138,456.2 6.335 99,743.8 9.057 133,681.6 8.935 136,944.4 7.062 107,624.9 7.967 120,164.5 10.696 182,117.9

Mail
Center #14

16.932 96,731.0 18.979 107,594.1 19.794 110,870.1 20.317 114,463.1 11.588 66,490.6 13.838 78,714.7 11.617 68,646.8
16.959 118,159.9 18.727 127,884.7 18.542 146,544.5 19.714 137,958.4 11.370 84,755.5 13.502 99,496.8 12.077 86,639.6

Mail Center
#15

8.754 27,941.4 11.134 35,581.8 13.548 43,346.5 14.943 47,741.2 15.315 48,570.3 11.348 35,829.2 9.665 30,503.0
8.690 32,400.6 11.092 41,586.6 13.484 52,510.2 14.895 54,839.4 14.685 54,990.4 10.834 40,745.5 9.519 33,665.8

Mail
Center #16

3.698 28,663.5 5.464 43,052.0 6.492 51,490.9 6.490 51,788.5 6.349 47,643.9 7.297 56,151.7 8.135 63,139.3
3.816 36,871.1 5.561 46,735.1 6.427 55,291.6 6.305 61,412.2 7.075 83,335.8 7.355 61,467.2 7.801 72,776.7

Mail Center
#17

14.733 158,789.7 16.539 183,795.1 16.429 186,916.6 14.200 161,566.7 19.331 161,566.7 16.563 183,237.2 18.482 210,939.7
13.463 196,929.1 15.824 220,976.3 16.195 207,466.2 13.491 190,206.8 18.517 240,885.5 15.926 204,504.1 18.849 232,308.3

Mail Center
#18

20.435 51,450.7 21.996 55,775.9 25.215 64,258.0 19.346 49,369.6 15.841 40,561.3 21.873 55,301.3 29.400 74,301.1
28.192 79,467.2 26.368 70,379.0 22.703 69,386.8 18.473 56,735.1 14.867 47,297.2 25.580 68,735.8 24.262 96,851.9

Mail
Center #19

15.019 51,420.0 15.848 54,138.4 14.909 50,633.0 18.489 62,803.5 12.916 44,291.3 13.166 44,567.9 15.222 52,095.2
13.911 65,230.5 14.368 73,624.5 13.558 69,627.7 16.082 87,969.5 12.076 56,959.1 12.230 56,548.1 13.964 74,066.8

Mail Center
#20

11.547 45,280.7 11.540 45,856.9 10.177 40,072.3 11.494 45,175.6 7.627 28,476.7 7.115 26,853.6 6.375 23,599.9
11.300 54,913.2 10.861 57,032.3 9.892 47,984.0 10.965 55,129.5 7.344 37,455.5 6.967 32,726.6 6.319 33,965.6

Mail
Center #21

16.681 60,290.4 16.351 57,179.8 13.080 44,519.4 16.823 61,666.8 24.834 92,035.0 12.517 39,110.7 16.660 54,886.0
14.947 72,309.0 15.399 67,283.7 13.021 49,189.5 15.435 70,936.8 24.361 115,086.2 11.942 50,038.0 16.030 61,489.4

Mail Center
#22

13.315 156,021.0 12.662 145,766.2 13.516 157,752.1 13.456 156,104.2 9.676 112,407.9 12.311 144,273.1 14.900 183,708.7
13.954 176,387.5 12.670 173,683.7 13.815 171,023.6 13.699 174,139.7 9.571 124,694.2 12.691 161,564.8 16.069 221,819.3

Mail
Center #23

20.367 93,087.6 21.404 98,199.6 17.038 78,316.0 20.242 91,943.1 24.992 111,352.3 17.995 80,754.6 29.869 146,433.4
18.357 105,324.3 19.417 105,831.9 15.795 89,847.6 18.188 102,284.2 21.546 130,080.3 16.291 95,857.8 30.531 179,673.1

Mail
Center #24

9.957 26,785.1 11.388 30,247.6 10.294 27,316.7 12.451 33,483.7 10.569 26,705.3 9.116 23,761.7 12.186 30,362.3
10.261 30,556.2 11.716 32,659.0 10.588 29,210.4 12.606 35,745.9 11.103 27,769.1 9.721 28,603.8 13.265 34,953.7

Mail
Center #25

26.521 380,001.1 27.421 393,419.5 28.329 404,349.9 29.513 415,541.1 26.655 386,851.2 22.264 323,511.7 28.113 403,099.3
22.250 469,426.9 22.883 485,654.4 22.995 527,813.4 23.557 550,621.2 23.253 456,895.5 19.459 391,006.8 22.685 539,578.5

Figure 7 represents the average performance of the compared methods on the 25 mail
center datasets. Compared to ensemble methods constructed by the internal and external
features-based compared algorithms, the ensemble model of the proposed method showed
more accurate performance in MAPE by 25.2% up to 34.5%. For the MAE results, our
prediction scheme for peak periods achieved improved accuracy by 15.4% up to 23.8%
compared to the other methods. For the SMAPE and RMSE results, the proposed ensemble
method outperformed the compared methods by reducing 24.0% up to 30.8% of SMAPE
and by 10.5% up to 22.2% of RMSE, respectively.
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Figure 7. Average performance of compared methods on 25 mail center datasets.

Figure 8 shows the prediction performance of the proposed ensemble method using
the enriching dataset based on VAE. We have experimented by replacing the MLP models in
the proposed method with other compared prediction algorithms to show that algorithms
used in the proposed method work well together. From Figure 8, we can see that the VAE-
based data enrichment improved the average MAPE of all versions of weighted ensemble
methods successfully. Moreover, the proposed MLPs-based weighted ensemble method
learned from the enriched training dataset outperformed all weighted methods based on
the MLR, LASSO, SVR, XGBoost, RF, and LSTM. In particular, our prediction scheme for
peak periods demonstrated better performance compared with other predictive models by
21.9% on average, as shown in Figure 8.

As a result of the experimental study on Korean postal parcel datasets, the proposed
method improved the prediction performance in terms of the MAPE reduction rate up to
59.6% compared to other methods during peak periods, such as the Lunar New Year and
Korean Thanksgiving Day, when demand for logistics services increases sharply.
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4. Conclusions

It is important to predict peak-period demand accurately to optimize the resource and
operation in logistics industries. Korea Post, the national postal service provider, needs to
predict short-term changes in parcel volume in order to optimize its operations, especially
during periods of sharp changes in parcel volume.

This study proposed the prediction method for the demand of logistics services during
special periods in holidays using deep learning models. The proposed method improved
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the prediction performance by two steps. In the first step, the training dataset was enriched
by synthetic data generated from the VAE model. It decreased the average MAPE of the
baseline MLP model that was learned from the daily training datasets of 25 mail centers
by 3.7% (see the results of baseline MLP and IF-MLP in Table 2). In the second step, the
proposed method combined two MLP models that were trained on the enriched daily
training dataset using calendar and internal volume-derived features and the dataset
using external features of the bulk mailing volume and contract customer data. The final
prediction result was estimated by the weighted average of the outputs of these EF-MLP
and IF-MLP models. The weighted ensemble of EF-MLP and IF-MLP models reduced the
MAPE of the baseline MLP models by 5.0% successfully.

The experimental results showed how the proposed method improved the prediction
performance step by step and compared the forecasting results of the proposed method
with machine learning-based models on 25 mail center datasets. The proposed method
outperformed the compared models on most datasets and achieved a performance im-
provement of up to 59.6%. The experimental results confirm that the proposed weighted
ensemble model is acceptable for peak-period prediction, and it is highly possible to expand
the range of its applications.

Author Contributions: Conceptualization, E.K.; methodology, E.K. and T.A.; software, E.K. and T.A.;
validation, E.K., T.A. and H.J.; resources, E.K.; data curation, E.K. and T.A.; writing original draft
preparation, E.K. and T.A.; supervision, E.K. and H.J.; funding acquisition, E.K. and H.J. All authors
have read and agreed to the published version of the manuscript.
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8. Rogan, I.D.; Pronić-Rančić, O.R. Forecasting the volume of postal services using Savitzky-Golay filter modification. In Proceedings

of the 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies, Sozopol,
Bulgaria, 16–18 June 2021. [CrossRef]

9. Machado, C.; Silva, F. Postal Traffic in Portugal: Applying Time Series Modeling. In The Changing Postal Environment, 1st ed.;
Springer: Cham, Switzerland, 2020; pp. 197–212. [CrossRef]

10. Pu, Z.; Yang, L.; Guo, Z.G. Applied Research on Logistics Demand Prediction Based on Support Vector Machine of Genetic
Algorithm. In Proceedings of the International Conference on Computational and Information Sciences, Chengdu, China,
21–23 October 2011. [CrossRef]

11. Yu, N.; Xu, W.; Yu, K.L. Research on regional logistics demand forecast based on improved support vector machine: A case study
of Qingdao city under the New Free Trade Zone Strategy. IEEE Access 2020, 8, 9551–9564. [CrossRef]

http://doi.org/10.4337/9781849803250
http://doi.org/10.33107/ubt-ic.2016.32
http://doi.org/10.1007/s40747-021-00297-x
http://doi.org/10.1145/3468891.3468903
http://doi.org/10.1007/978-0-387-29744-6
http://doi.org/10.4236/wjet.2020.83020
http://doi.org/10.1109/ICEST52640.2021.9483459
http://doi.org/10.1007/978-3-030-34532-7
http://doi.org/10.1109/ICCIS.2011.99
http://doi.org/10.1109/ACCESS.2019.2963540


Appl. Sci. 2022, 12, 11962 15 of 15
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