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Abstract: Semi-supervised deep learning, a model that aims to effectively use unlabeled data to help
learn sample features from labeled data, is a recent hot topic. To effectively use unlabeled data, a
new semi-supervised learning model based on a consistency strategy is proposed. In the supervised
part with labeled samples, the image generation model first generates some artificial images to
complement the limited number of labeled samples. Secondly, the sample label mapping, as the
“benchmark”, is compared to the corresponding sample features in the network as an additional
loss to complement the original supervisory loss, aiming to better correct the model parameters.
Finally, the original supervised loss is changed so that the network parameters are determined by the
characteristics of each correctly classified sample. In the unsupervised part, the actual unsupervised
loss is altered so that the model does not “treat all samples equally” and can focus more on the
characteristics of misclassified samples. A total of 40 labeled samples from the CIFAR-10 and SVHN
datasets were used to train the semi-supervised model achieving accuracies of 93.25% and 96.83%,
respectively, demonstrating the effectiveness of the proposed semi-supervised model.

Keywords: semi-supervised learning; image classification; image generation model; sample network
internal information; self-ensembling model

1. Introduction

Early image classification research [1,2] relied on the manual collection of image
features, such as color and texture, to classify images accurately. However, this early work
was time-consuming and laborious and may cause the misclassification of images due to
the large number of pictures and people’s inattentiveness. In recent years, with the rise of
neural networks [3–7] and large datasets, tremendous progress has been made in many
tasks in computer vision, such as image classification [8,9], image segmentation [10,11],
and object detection [12–14].

This paper focuses on semi-supervised image classification methods, which learn
sample features from a small portion of labeled data and a large amount of unlabeled
data to classify images accurately. This ensures less human workload and higher accuracy
of image classification. Based on an extensive review [15–18], it can be found that the
existing semi-supervised learning methods can be broadly classified into three categories.
(1) Adversarial learning-based methods [19–22], (2) Graph-based methods [23,24], and
(3) Consistency strategy-based methods [25–33].

The adversarial learning-based methods [19–22] generate many artificial images to
complement the actual training samples by learning the underlying distribution of real
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images. The aim is to obtain CNN models with better performance by increasing the
training data. In recent years, generative adversarial networks and their variants [34–37]
have been extensively studied and applied to semi-supervised and unsupervised learning
with good results.

Methods based on consistency strategies [30–33] effectively use information from
unlabeled data by making the two predicted values of different images produced by
random enhancement consistent. For example, pseudo-label [25] uses the network output
directly as the consistency target. Temporal ensembling [26] uses the exponential moving
average (EMA) predictions from each unlabeled data as the consistency target, mainly
improving the quality of the target. The mean teacher [27] framework does not retain the
exponential moving average (EMA) predictions. Instead, it uses the exponential average
weights from the student model to reconstruct the teacher model, which ensures target
quality and eliminates the redundant matrix information associated with exponential
average shifts. VAT [28] enables the model to generate more reliable consistency targets
by enhancing local smoothing of the label distribution for a given input. Liu et al. [29]
judged sample predictions and rejected and excluded unreliable samples. Focal loss [38]
and reduced focal loss [39] focus more on hard-to-classify examples by simply weighting
the losses. Liu et al. [40,41] have unexpected effects by exploring sample information within
the network.

In this paper, a new semi-supervised classification model is proposed. Specifically,
in the supervised part, the image generation model generates several artificial samples
with labels (with “almost the same” underlying distribution as the actual training samples),
aiming to complement the limited number of labeled samples; secondly, the sample labels
are mapped to the interior of the network as a “benchmark” to compare with the internal
features of the samples as part of the supervised loss. Finally, the original supervisory
loss is weighted to enable the network to correct misclassified samples accurately. In the
unsupervised part, unlike the actual unsupervised loss, we filter the samples individually
so that the network parameters are dominated by the features of the examples judged to
be correct. The above process allows the semi-supervised model to learn sample features
more accurately, thus enabling the model to classify images accurately.

The main contributions are as follows:

1. A new image generation model is proposed to generate artificial samples designed to
complement the limited number of labeled samples in the supervised modules.

2. In the supervisory loss section, the sample labels are compared with the sample
predictions one by one, weighting the original loss and introducing additional losses
to supplement the supervisory loss.

3. In the unsupervised loss section, judgment conditions are added so that the correctly
classified sample features dominate the network parameters.

2. Related Work

In this section, a series of introductory modules used in previous semi-supervised
learning are reviewed, and then initial ideas for improving them are presented, given their
shortcomings.

2.1. Conditional Image Synthesis with Auxiliary Classifier GANS

The existing semi-supervised classification models based on adversarial learning use
generative adversarial networks (GANS) [34] to generate some artificial images without
labels to assist in image classification. In contrast, ACGAN [37] can directly generate
the random noise Z into an artificial image with labels, which is the difference between
them. As shown in Figure 1, ACGAN [37] consists of two models: the generator and the
discriminator. First, a random noise Z and a randomly given label are fed into the generator
to generate a fake image, which may be blurred or perhaps even just a random combination
of pixel points. Then, the generated fake images are fed into the discriminator along with
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the real samples, and the discriminator needs to recognize the authenticity of these images
and classify them accurately.

LS = E[logP (S = real|Xreal) + logP(S = fake|Xfake)] (1)

LC = E[logP (C = c|Xreal) + logP(C = c|Xfake)] (2)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14 
 

of pixel points. Then, the generated fake images are fed into the discriminator along with 

the real samples, and the discriminator needs to recognize the authenticity of these images 

and classify them accurately. 

 

Figure 1. The model framework of conditional image synthesis with auxiliary classifier GANS. 

LS = E[logP(S = real|Xreal) + logP(S = fake|Xfake)] (1) 

LC = E[logP(C = c|Xreal) + logP(C = c|Xfake)] (2) 

Here, LS  represents the discriminator’s ability to identify “true” as “true” and 

“false” as “false”, and LC represents the discriminator’s ability to classify the true and 

false data correctly. The generator is trained to maximize LC − LS (the part of LS and LC 

about which the actual image is independent of the generator), which means that the data 

generated by the generator is more realistic and has the highest probability of being cor-

rectly classified. The discriminator is trained to maximize LC + LS, that is, to maximize the 

discriminator’s ability to organize and discriminate between real and fake data. 

The authors of [42,43] argue that if a discriminator is given two incompatible tasks 

(recognizing image authenticity and classification), then the discriminator’s performance 

in both areas will degrade. We have added a third classification model to ACGAN (this is 

where we differ). As shown in Figure 2, in the model for generating artificial images, the 

discriminator has only the unique task of recognizing image authenticity. 

 

Figure 2. The image generation model framework. 

2.2. Semi-Supervised Image Classification Models 

The semi-supervised image classification model based on the consistent regulariza-

tion strategy is given as dataset D = DL∪DU, where the data in DL is manually labeled 

while the data in DU is unlabeled [34]. It aims to use dataset D to train a CNN model 

that can accurately classify images of different categories (contained in DL) in the test 

data. Existing semi-supervised image classification models are divided into two parts: the 

Figure 1. The model framework of conditional image synthesis with auxiliary classifier GANS.

Here, LS represents the discriminator’s ability to identify “true” as “true” and “false”
as “false”, and LC represents the discriminator’s ability to classify the true and false data
correctly. The generator is trained to maximize LC − LS (the part of LS and LC about which
the actual image is independent of the generator), which means that the data generated by
the generator is more realistic and has the highest probability of being correctly classified.
The discriminator is trained to maximize LC + LS, that is, to maximize the discriminator’s
ability to organize and discriminate between real and fake data.

The authors of [42,43] argue that if a discriminator is given two incompatible tasks
(recognizing image authenticity and classification), then the discriminator’s performance
in both areas will degrade. We have added a third classification model to ACGAN (this is
where we differ). As shown in Figure 2, in the model for generating artificial images, the
discriminator has only the unique task of recognizing image authenticity.
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2.2. Semi-Supervised Image Classification Models

The semi-supervised image classification model based on the consistent regularization
strategy is given as dataset D = DL ∪DU, where the data in DL is manually labeled while
the data in DU is unlabeled [34]. It aims to use dataset D to train a CNN model that
can accurately classify images of different categories (contained in DL) in the test data.
Existing semi-supervised image classification models are divided into two parts: the fully
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supervised modules with labeled data DL and the unsupervised modules with unlabeled
data DU.

2.2.1. Full Supervised Modules

As shown in Figure 3, the semi-supervised classification model adjusts the model
parameters by feeding the data inside D into the student model, obtaining their predicted
values, and then comparing them with the actual labels of these data. Its loss function is
defined as Equation (3).

LS = −
(
ylogy′ + (1− y) log

(
1− y′

))
(3)
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Here, y and y′ represent the actual labels of the samples and their predicted values,
respectively. The excellent performance of the student model is inextricably linked to the
amount of data, so the image generation model is used to generate some artificial images
designed to complement the real sample.

The authors believe that the training samples in the dataset should be given different
weight shares based on the accuracy of their judgment results. The original supervised
loss only calculates the difference between the sample labels and the predicted values.
The model parameters cannot be dominated by the characteristics of the correctly judged
samples (i.e., examples of incorrect judgments remain uncorrected in subsequent training).
While Zhou Z. [41] et al. mitigated this problem by setting a threshold for supervised loss
that grows with model refinement, it still does not allow the semi-supervised model to
locate the wrong samples accurately. Therefore, instead of formulating a threshold, we
compare the label of each sample with the predicted value to clarify the correctness of each
judged sample and then weigh these sample losses before allowing future training to be
“on target.” This means that previously misclassified samples will have a higher probability
of being correctly classified in future training.

While Liu et al. [40,41] had good results by examining the semantic information
inherent in the samples, they explored unlabeled samples. The authors believe that it is
more advantageous to map the labels inside the network as a ‘benchmark’ against the
intrinsic features of the samples. This is because, like solving a problem, only when the
correct answer is known can learning be derived from it to ensure that it is right next time.

2.2.2. Unsupervised Modules

Based on the assumption of the consistency principle [30–33], one image with the
same underlying distribution still has the same class labels for its predictions after adding
different perturbation methods, as in Figure 4, by adding other perturbation methods (η,
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η′) to the data inside DU. Then, the two predicted labels generated by the two images of
the student model and the teacher model are forced to agree to learn the potential features
in the unlabeled samples. Its loss function is defined as Equation (4).

LU = ∑
x∈{D}

Eη,η, ‖ f
(
x, θ′,η′

)
− f(x, θ,η) ‖2

2 (4)
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Here, x represents all samples (with and without labels) in the training set and
f
(
x, θ′,η′

)
and f(x, θ,η) are the predicted values obtained for x under different weights and

perturbations for (θ ′,η′
)

and (θ,η ), respectively.
The original unsupervised loss compares two predictions of an image under different

perturbations, then sums these results and averages them. A conditional judgment is added
when comparing these two predicted values. If they are the same, a smaller weight is given,
and if they are different, a more prominent weight is given. This ensures that the sample
features can be learned more fully during the future training of the model so that the two
predicted values of a sample can be more consistent. This is also more in line with our
consistency strategy.

3. Proposed Methods

As shown in Figure 5, the semi-supervised model can generate some artificial samples
through the image generation model, designed to supplement the limited training data in
the supervised part. The supervised loss consists of two components, LC and LIC. LC is
obtained by weighting the original supervisory loss LS to make the model focus more on
the correctly classified sample features. LIC represents the additional loss that supplements
the supervisory loss LC by using the sample labels as the “benchmark” to compare with
the sample features within the network. The unsupervised loss is LIU.
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3.1. Image Generation Model

As shown in Figure 2, an image generation model based on ACGAN [37] is intro-
duced. It is believed that artificially generating a portion of images used to supplement
the supervised part of the restricted samples can improve the classification performance of
the student model. This model consists of three parts: a generator, a discriminator, and a
classifier. First, random noise Z and randomly given label information are inputted into
the generator to generate fake images. The generated fake images and actual samples are
then provided to the discriminator and classifier. The discriminator needs to discriminate
the authenticity of these images, and the classifier needs to classify them accurately to
improve the model’s discrimination and classification performance. The loss function of
the discriminator is defined as Equation (5).

L(D) = BCE(D(G(Z)), 0) + BCE(D(x), 1) + CE(C(G(Z)), y′) + CE(C(x), y) (5)

The loss function of the classifier is defined as Equation (6).

L(C) = CE(C(G(Z)), y′) + CE(x, y) (6)

The loss function of the generator is defined as Equation (7).

L(G) = BCE(D(G(Z)), 1) + CE(C(G(Z)), y′) (7)

Here, D, G, and C represent the discriminator, generator, and classifier, respectively,
x and y are the actual training sample with its label, Z is the random noise, and y′ is the
corresponding label of the generated artificial image. BCE is the binary cross-entropy, and
CE is the cross-entropy. To obtain good performance, these generated artificial images are
fed into student model training simultaneously with actual samples.
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3.2. Supervisory Losses

As shown in Figure 5, our total supervised loss is divided into two parts, LC and LIC.
We feed the artificial images generated on the fly into the student model for training, along
with the actual training samples (note that here the fake images are passed into the student
model in real-time, so there is no need to save them). The predicted values obtained are
then compared with the actual values, as shown below.

We map the sample labels (actual samples vs. artificial samples) as vectors that serve
as “benchmarks” to compare with the intrinsic information of the samples in the network
as our loss LIC. Specifically, given a small batch of input samples containing B samples,
we define the sample intrinsic information map of the L-layer as FL ∈ RB∗C∗H∗W, where H
and W are the spatial dimensions of the feature map and C is the number of channels, and
the matrix obtained by normalizing the intrinsic information of this small batch of input
samples is as Equation (8).

FC =

(
F(x)L

1

‖ F(x)L
1 ‖

, · · · ,
F(x)L

B

‖ F(x)L
B ‖

)
(8)

FC denotes the sample feature information of B samples within the network. Similarly,
the label information is mapped to a vector with the same number of feature image elements
as the layer, and the mapping vector of label information for this small set of input samples
is normalized to obtain the following matrix:

VL =

(
f(y)L

1

‖ f(y)L
1 ‖

, · · · ,
f(y)L

B

‖ f(y)L
B ‖

)
(9)

VL represents the “benchmark” of B sample feature information within the network.
Here, x represents the samples inputted into the student model, and y represents the labels
of these samples. F(x)L

1 means the intrinsic information of each sample inside the network,
and f(y)L

1 represents the vector units that map the label information of the sample to the
L-layer, i.e., the “benchmark” information. Because the inherent feature maps from deeper
layers contain more semantic information, the intrinsic information of the samples after
the last pooling layer is chosen [38,39] to compare with the label information, defined as
Equation (10).

LIC = ∑
x

1
B
‖ FC −VL ‖2

2 (10)

As shown in Figure 6, we improved the original loss of supervision. The sample
features are thoroughly learned by determining whether the predicted labels obtained by
the student model are consistent with the labels to enable the model to be filtered sample
by sample during the training process. For correctly classified samples, the sample loss is
assigned a smaller weight L_w = (1− pt(max))2; otherwise, the weight given is H_w = 1.
The final loss LC is defined as Equation (11).

LC =

{
L_w× LS if pt(max) = pt(L)

H_w× LS otherwise
. (11)

Here pt(max) and pt(L) denote the maximum probability in the prediction vector and
the probability corresponding to the actual sample label, respectively. LS is the traditional
supervised loss, as mentioned in Equation (3). The comparison condition is only whether
the predicted label is consistent with the existing label, independent of the probability.
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3.3. Unsupervised Losses

As shown in Figure 7, the unsupervised loss in our semi-supervised model is defined
as Equation (12).

LIU =

{
L_w× LU if pt(S) = pt(T)

H_w× LU otherwise
(12)

where pt(S) and pt(T) are the predicted labels of the samples after the student model
and the teacher model, respectively, and the probabilities. Our judgment condition is
whether the two predicted labels obtained by the student and teacher models are consistent.
L_w = (1− pt(S))

2 is the weight that should be given to samples loss judged correctly,
and H_w = 1 is the weight given to samples loss judged incorrectly. LU is the traditional
unsupervised loss, as mentioned in Equation (4). In this way, the model will pay primary
attention to the misclassified sample features and allow a more remarkable agreement
between the two predicted values obtained from an image.
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3.4. Total Model Training Loss

In our approach, the total training loss of the model is defined as Equation (13).

L = (L C + LIC) + ג LIU (13)

The total loss of our model consists of three components LC, LIU, and LIC, where
LC and LIU are obtained by uncertainty weighting the original supervisory loss LS with
the actual unsupervised loss LU, and LIC is an additional loss used to supplement the
supervisory loss LC. ג is the parameter used to balance supervised and unsupervised
losses.

4. Experiments

In this section, the models are experimented with and compared with previous semi-
supervised learning methods [25–27,30–33] on the CIFAR-10 and SVHN datasets, respec-
tively, using different numbers of labeled samples to train our model. The effectiveness of
the semi-supervised model can be seen from the experimental results.

4.1. Experimental Parameter Settings

The framework was implemented in Python with the PyTorch library. For a fair
comparison, in all experiments, the hyperparameter ג was set to 0.1. A conventional SGD
optimizer was used with a momentum of 0.9 and a weight decay rate of 10−4. During
the training process, the learning rate was set to 3 × 10−3, and the batch size in the
experiments was set to 128. Further, ‘WRN-28-2’ [44] was used as our backbone network. It
included leaky ReLU nonlinearity [45] and batch normalization [46].

4.2. CIFAR-10 Dataset

CIFAR-10 [47] is a small dataset for identifying pervasive objects, collated by Hinton’s
students Alex Krizhevsky and Ilya Sutskever. It consists of 60,000 32 × 32 colored pho-
tographs in 10 categories. Each category contains 6000 images. The size of the images is
32 × 32 (as shown in Figure 8), and there are 50,000 training images and 10,000 test images
in the dataset.
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As shown in Table 1, the model was trained using different numbers of labeled samples
and then this method was compared with the previous semi-supervised model. The mean
and standard deviation of five runs was recorded. As can be seen, the model shows a
significant improvement in accuracy over the previous semi-supervised model on the test
set. Specifically, this method improves by 7.06% from earlier when trained with 40 labeled
samples. This approach improves by 0.45% and 0.22% over the previous method which
used 250 and 1000 labeled samples, respectively.

Table 1. Accuracy of different models using different numbers of CIFAR-10 labeled samples on the
test set.

Dataset CIFAR-10

Labeled 40 250 1000

Pseudo-Label [25] - 50.22 ± 0.43 83.91 ± 0.28

Π-Model [26] - 45.74 ± 3.87 85.99 ± 0.38
Mean-Teacher [27] - 67.68 ± 2.30 90.81 ± 0.19

MixMatch [30] 52.46 ± 11.50 88.95 ± 0.86 93.58 ± 0.10
UDA [31] 70.95 ± 5.93 91.18 ± 1.08 95.12 ± 0.18

Re-MixMatch [32] 80.90 ± 9.64 94.56 ± 0.05 95.28 ± 0.13
FixMatch [33] 86.19 ± 3.37 94.93 ± 0.65 95.74 ± 0.05

Ours 93.25 ± 1.53 95.38 ± 0.84 95.96 ± 0.21

As shown in Figure 9, it can be seen that this model performs well compared to the
previous version with 40 annotated samples from the CIFAR-10 dataset. However, it can
be seen from Table 1 that as the number of labeled samples increases, the accuracy of
the model improves less and less significantly with the test set. This may be because the
previous models have achieved good performance.
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Figure 8b shows some artificial samples of CIFAR-10 generated by our model. It can
be seen that most of them are clear and have the basic features of each category.
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4.3. SVHN Dataset

The SVHN dataset [48] is derived from the Google Street View House Numbers dataset,
and each image contained a set of “0–9” Arabic numerals. The training and test sets have
73,257 and 26,032 images, respectively, with an image size of 32 × 32 pixels (as shown in
Figure 10).
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Figure 10. (a) some actual samples from the SVHN dataset. (b) artificial samples of SVHN generated
by the image generation model.

As shown in Table 2, in the SVHN dataset, the model was trained with different
numbers of labeled samples and recorded the mean and standard deviation of the five runs
of the method. The method improved by 0.79% over the previous method when trained
with 40 labeled samples, however, the model does not perform as well in terms of accuracy
when trained with 250 and 1000 labeled samples compared to the previous method.

Table 2. Error rates for the test set on the SVHN dataset.

Dataset SVHN

Labeled 40 250 1000

Pseudo-Label [25] - 79.79 ± 1.09 90.06 ± 0.61

Π-Model [26] - 81.04 ± 1.92 92.46 ± 0.36
Mean-Teacher [27] - 96.43 ± 0.11 96.58 ± 0.07

MixMatch [30] 57.45 ± 14.53 96.02 ± 0.23 96.50 ± 0.28
UDA [31] 47.37 ± 20.51 94.31 ± 2.76 97.54 ± 0.24

Re-MixMatch [32] 96.66 ± 0.20 97.08 ± 0.48 97.35 ± 0.08
FixMatch [33] 96.04 ± 2.17 97.52 ± 0.38 97.72 ± 0.11

Ours 96.83 ± 0.15 97.54 ± 0.21 97.63 ± 0.14

As shown in Figure 11, it can be seen that the model performs well compared with
the previous model, which achieved an accuracy of 96.83% on the test set, given that
40 annotated samples from the SVHN dataset were used to train the model.
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Figure 11. Accuracy of different models trained on the SVHN dataset with 40 labeled samples from
the test set.

Figure 10b shows some of the generated SVHN samples with labels, and it is easy to
see that most of them are the same as the actual training samples of the SVHN dataset.
They have different figures as well as critical features.

5. Discussion

Experiments were conducted on the CIFAR-10 and SVHN datasets to compare them
with the existing semi-supervised learning methods. Specifically, the accuracy of the
strategy improved on both test sets compared with the current semi-supervised methods.
These results suggest that generating some artificial images to supplement the limited
number of labeled samples is desirable. Using sample labels as “benchmarks” to compare
with labeled sample features in the network complements the original supervised loss and
assigns different weights to correctly and incorrectly classified samples, allowing the model
to focus more on incorrectly classified sample features. In this way, it is believed that the
model parameters can be corrected point-to-point.

However, in the experimental and trial data, a mediocre accuracy performance on the
test set was observed when using a more significant number of labeled samples to train the
model on both datasets. In the future, more “reliable” artificial samples will be created to
improve the performance of the model.

6. Conclusions

A new semi-supervised learning algorithm has been proposed that changes the original
supervised and unsupervised losses by assigning weights to different samples to correct
the model parameters more accurately. At the same time, the training project generated
some artificial examples with labels and mapped the labels as “benchmarks” inside the
network to correct the intrinsic feature maps of the labeled samples to learn the sample
features more thoroughly and further improve the classification accuracy of the model.
A total of 40 labeled samples from the CIFAR-10 and SVHN datasets were used to train
the semi-supervised model which achieved accuracies of 93.25% and 96.83%, respectively,
illustrating the effectiveness of the proposed method.
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