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Abstract

:

In the underground activity domain, most problems related to mining pressure and mining stability need to be solved by taking into account the time behavior of rocks through an approach of the interaction amidst the rock massif, support system, time through the elastic, viscous and plastic models, namely a rheological approach. In order to choose a rational support system, one needs to know the sustainment solicitation at different time intervals. The change in the sustainment in time is emphasized only in the analytical research in which the massif is studied and characterized in terms of the rheological behavior. The gradient method applied in this regard is based on the evolution of the final deformations at a given time, compared to their previous evolution. The paper is structured into two parts, the experimental and interpretation of the experimental data, showing the author’s methodology to assess the rheological behavior of analyzed andesite, the result of the theoretical and experimental research being carried out on the analyzed rock types. Based on the deformation and the time curve of the horizontal mining work contour, the mathematical function was established, which expresses the law of sought deformation. At the same time, the rheological model capable of describing the behavior under a load and under extremely adverse conditions is proposed.
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1. Introduction


Underground constructions are structures whose operational life is long and, consequently, they require optimum technical and economical solutions to provide stability throughout their existence, and therefore to ensure their reliability through an imposed stability [1,2,3,4,5,6,7,8,9,10,11]. In the last decades, the technical literature [12,13,14,15,16,17,18,19,20,21,22,23] mentions that an efficient solution for the stability of the underground structures can only be solved by considering the time parameter, as in taking into account the behavior of rocks in time [24,25,26]. The knowledge of the rheological behavior of rocks must be considered as a fundament for the research into and the design of constructions with a long-term existence, as it determines and creates prerequisites for the future to provide real solutions for the full range of issues that underground constructions are facing in terms of their stability; it provides a logical and numerical rigor frame, in which the principles, methods and calculating procedures offered by rock mechanics may apply and develop. On the other hand, the calculus relations shown in the literature, that do not take into account the time, allow us to determine the size and final nature of the manifestation of pressure, of sustaining, for works such as tunnels, underground mining works or other types of structures requiring sustainment.



In order to choose a rational support system, one needs to know the sustainment solicitation at different time intervals. A changing in the sustainment in time is emphasized only in the analytical research in which the massif is studied and characterized in terms of its rheological behavior. In such a context, we must underline that the rheological characterization of rocks did not exist until this research was realized in the analyzed perimeter, and often the solutions for ensuring the stability of constructions/underground structures were designed and put into practice based only on knowing the geomechanical characteristics (geological, physical, strength and elastic) and some theories, without considering the time factor. The consequence of such solutions has resulted in the high consumption of materials and frequent manifestations, respectively periodical ones of instability, which required a repeated reshaping of these underground constructions. By analyzing the data from the literature, we note that, currently, solving mining geomechanics issues that contribute to achieving the stability and reliability of underground constructions also involves the knowledge of the rheological behavior of rocks. Some of these problems are: elucidating the natural state of stress; the characterization of the deformation behavior of a rock massif; secondary state stress and the deformation of rocks around their underground workings; the characterization of geomechanical conditions of stability in which the work will be performed; the study of pressure and its calculus in the context of the interaction mechanism between the rock massif, the support system and time; and the rheological characterization of consolidated rocks, etc.



The geo-mining conditions for the location of the main horizontal mining works are the natural factors on which the stability of underground mining works depends. However, there are situations where underground mining works are located under difficult and complex geological conditions. The analyzed rock massif is characterized by such complex geological conditions: rocks altered with a low strength, water affluence, cracks and advanced tectonic degrees (micro-tectonic) [26,27,28,29,30,31,32,33,34,35]. The andesitic rock types have different degrees of alteration and therefore different percentages of clay minerals. The higher the degree of alteration, the less resistant the rock will be, and this will create special problems in terms of ensuring the stability of underground works developed in such rocks [24,25,26,27]. For the underground works to be stable, it is necessary not only to know the phenomena and assumptions that may represent the basis of designing and carrying out these works, but also to be familiarized with the probabilistic concept of ensuring these constructions, thus replacing the anachronistic deterministic concept of computation, namely a design without a calculus, based on experience, the empirical rules and an intuitive application of the laws of mechanics, as there are many situations encountered in practice.



The mine workings are the constructions which required and still require to perform the largest investments. For this reason, they must be resistant, durable and economical, namely, to present stability and reliability. In order to achieve this and to achieve the optimal results from a technical and economic point of view, it is required to have knowledge of the actual causes and results of the complex natural geological, geomechanical, technical, mining and production factors which determine whether or not the loss of stability from the main horizontal underground workings from any mining perimeter.



The analysis of the stability of mine workings is based on its evaluation criteria that may guide the geomechanical and specific technical mining conditions to the design of the natural stability or required stability of the analyzed mining workings. Finally, the inclusion of such criteria in mining construction design theory creates the prerequisites for discovering objective connections between the forms and manifestation sizes of the pressure regime and the working conditions of mining supports [36,37,38,39,40,41,42,43,44,45,46,47,48]. Moreover, the stability criteria of the rock massif and mining work and the parameters of the support system for the situation of stability being imposed in the context of the interaction mechanism can form the basis of the alternative choice of the model for the calculus of prediction regime pressure, of establishing the logical connections between the classes and the forms of a manifestation of its regimes, and of the fundamental principles of such a calculus method of the support systems in order to solve the stability and reliability of mine workings throughout its duration of activity.



The stability notion is cumulative, having as an object the knowledge as real as possible, first of the geomechanical characteristics of rocks, natural stress state, the secondary stress-strain state and rock massif pressure and, secondly, the geotectonic processes, the presence of underground water and even the production activity, referring to the construction of underground excavations [9,14,15,24,25,27,28,29,30,31,32,36,38]. Due to the complexity of approaching stability, its general theory has not been so far developed. As a result, the assessment of the stability of mining works has been attempted in several directions over time: analytical, experimental laboratory, in situ observations and measurements. However, it should be noted that the development of these directions of research was done in parallel. Thus, the development of experimental research (laboratory tests and in situ) is not achieved at the expense of the analytical direction and vice versa, because where the developed mathematical models, no matter how general they should be, cannot be satisfactory, then the experimental research methods are welcomed. However, where the existence of an elementary, stable, constant or evolving in time probabilistic structure is noted in a well-defined manner, analytical research reveals its complete value and economic effectiveness [10,11,24,25,26,30,31,32,34].



Currently, a wealth of theoretical and practical experience in the forecasting of the stability of a mine’s workings has been accumulated. However, there is still an essential discordance between theoretical and experimental studies, expressed mainly by the fact that the theoretical approaches and the conclusions are not verified in the experimental activities [49,50]. Such a deficiency can be assumed to be unknowledgeable in terms of the time-deformation behavior of rocks and, consequently, of the impossibility of using the calculation models based on the rheological parameters of rocks. On the other hand, the researchers who develop the experimental methods often do not use rock mechanics theory and the achievements of underground construction mechanics. A first step towards researching the stability conditions of the main horizontal mine workings is to determine and know the geomechanical properties because these data give the required parameters of the design calculus of these works. On the issue of the efficient development of the mining production activity, of particular importance is the knowledge of those geomechanical properties that give the possibility of elucidating the deformation behavior of the rocks. For this purpose, there are several properties without which the stability issue cannot be approached. Such a conclusion is based on the certainty that the manner of the deformation of rock and establishing the optimal solutions from a technical and economic viewpoint requires a quantitative–qualitative assessment of the three basic properties, the elasticity, plasticity and viscosity, which are found in different ratios according to the rock varieties of each massif. Even the stability criteria reported in the literature confirms the necessity to take into account the rheological parameters.



The knowledge of the rheological behavior of rocks must be considered as a basis in the research and design of excavations with a long-term existence because it determines and creates the future basis in order to provide the real solutions with respect to the full range of issues faced by the underground constructions viewpoint of stability; it provides the logical framework and numerical rigor that may apply and develop the principles, methods and calculus procedures offered by rock mechanics. On the other hand, the calculus relationships offered by the literature enables us to determine the size and final character of the manifestation of pressure and of load support. For the choice of a rational support’s character of service, the load on the support at different time ranges must be known. The change in the load over time is highlighted only in the analytical research where the massif is studied and characterized in terms of the rheological behavior.



The implications of understanding the rheological behavior of rocks on the stability of the main horizontal mining works are also a result of the wealth of information that the specialized literature has recently provided. Thus, we mention the works and treaties published in the domain by several researchers: Glusko (1973–1975), Erjanov (1964), Duduskina (1970), Usacenko (1964), Bulâcev (1982), Baklaşov (1988), Salustowicz, Filcek, Kwasniewski and many others. From the featured ones, the importance of the knowledge of the rheological behavior of rocks and where the mine workings with a high activity duration will be carried out is clear. Mining pressure largely depends on the mechanical characteristics of the surrounding rock and implicitly on their rheological behavior, which influences the convergence and deformation contour in a nonlinear manner.



Regarding the geomining conditions, it was found that a large volume of the main horizontal mining works that constitute the opening network of the Suior deposit are made in altered rocks with a reduced resistance, water influx, cracks and an advanced tectonic’ degree. Andesitic rocks show different degrees of weathering and different percentages of clay materials. Most of the horizontal mining works are located in pyroclastic andesitic rocks (breccia) and andesitic lavas with hypersthene, kaolinized, sericitized and strong cracks as well as in pyroxene andesite and pyroclastic intensely hydrothermally metamorphosed. Considering this distribution of mining works, the problem of their stability becomes essential, both from a technical and economic point of view. The following conclusions resulted from the observations made:




	-

	
The unsatisfactory state of the stability of the mining works at Suior is the result of the work profile’s shape not being correlated with the geomechanical and geomining conditions of their location;




	-

	
The mining works with straight walls, vaulted ceiling and an unsupported floor were mostly made in rocks with pronounced tendencies towards an alteration and the swelling of the floors. This situation was often encountered at the 900 m, 850 m and 800 m horizons;




	-

	
Profiles with straight walls, a vaulted ceiling and an unsupported floor located in Suior conditions are only applicable in directional galleries made on the vein and in areas where the vein has a high resistance;




	-

	
In conditions where the rocks comprise kaolinized andesite intercalations and observations shows a tendency for the floors to swell, and circular and horseshoe-shaped profiles with a supported floor were required.









Observations regarding the excavation support technology have highlighted deficiencies that have influenced the stability of the mining works (the incomplete filling of the voids behind the support; the pronounced cracking of the rocks on the contour and in depth cracking due to exceeding the consumption of the explosives used in digging; and the uncontrolled tightening of the metal supporting elements, which favored either their premature sliding or their complete stiffening). The convergence of the entire contour recorded values between 400 mm and 600 mm in the mining works from the 850 m horizon. The maintenance expenses for the mining works on the 850 m horizon exceeded 35% of the total expenses. As a result of this situation, it was considered necessary to know the phenomena and the laws that are the basis for the design and achievement of underground resistance constructions which are safe, durable and economical.




2. General Context of the Research


Starting from the considerations presented above, it is imperative to observe the behavior in time, based on which an analysis of the stability of the main horizontal mining works can be made, depending on the factors that compete for the stability of these underground constructions. An important factor that influences the stability of any underground work is the time by the rheological behavior of the rocks’ creep and relaxation [2,3,4,5,6,7,10,11,12,13,22,23,24,25,26,27,28,29,38].



It seems that to explain all aspects of the rocks’ deformation, knowing that their deformation rate is finite, namely, it occurs over time, it is imperative to study the deformation curve as a function of time. The allure of such a rheological curve at the creep (Figure 1) in its generalized form defines a total deformation (εt) which is constituted according to the principle of the partition of deformations, from:


   ε t  =  ε 0  +  ε p  +  ε   p ′    +  ε   p ″     



(1)




where ε0 is an instantaneous deformation created by the stress under which the test is performed; εp is a primary plastic deformation that represents the recorded deformation over time and which characterizes the area of the unstabilized creep; εp′ is a secondary plastic deformation represented by the recorded deformation in the area in which the curve follows an oblique or horizontal asymptote and which characterizes the stabilized creep area; and εp″ is a tertiary deformation, measured in the area of the quickly increasing area of deformation until the breaking and characterizes the breaking zone.




3. Deformation Characteristics in Time of Altered Andesite


3.1. Deformation Characteristics in Time of Altered Andesite Established in Laboratory


For the study of the creep characteristics and the mathematical establishment of the law of deformation in time of the andesite rocks type, the rheological tests were performed on intensively hydrothermal metamorphosed pyroxene andesite; these being the most unfavorable in terms of their stability. The creep tests were performed on uniaxial compression, with different stresses corresponding to the load degree of the andesite samples, according to the data in Table 1. The obtained results are shown in Table 2 and Figure 2 and Figure 3.



Through analyzing the experimental creep curve obtained by the tests, based on the data provided by the specialized literature [3,4,5,10,15,19,24,25,26,30,32,33,40,41,42], it is found that the Poynting–Thomson model is the model with which we could assimilate the deformation in time of strongly hydrothermal metamorphosed pyroxene andesite rock types. Because the assumption implies a confirmation in this regard, we took the model with the creep equation and analyzed it based on the obtained data from the tests through an analytical processing. The functional equation of the rock deformation in time can be expressed in the following form:


  ε = f  ( t )   



(2)







The explanation of this function according to the Poynting–Thomson model for a uniaxial compression test becomes:


  ε =    σ 0   E  −  (     σ 0   E  −  ε 0   )   e  −  E η  t    



(3)




where σ0 is the load stress, MPa; E is the modulus of elasticity, MPa; ε0 is the instantaneous elastic deformation;   η = T ⋅ E   is the coefficient of viscosity, Ns/m2; and t is the time.



Or, Equation (3) can be written in the form:


  ε = a − b  e  − c t    



(4)




in which the following substitutions were made:


  a =    σ 0   E    ;   b =    σ 0   E  −  ε 0    ;   c =  E η  =  E  T E   =  1 T   



(5)







Based on the fact that from the experimental data we can choose two arbitrary points with the abscissa t1 and t2, and having the obtained values from the creep test for a stress equal to σ0 = 11.55 MPa, then:


   t 3  =    t 1  +  t 2   2    ;   a =    ε 1   ε 2  −  ε 3 2     ε 1  +  ε 2  − 2  ε 3     



(6)




which become:


   t 3  =   7.135 + 51.5  2    ⇒    t 3  = 29.3125   days  



(7)




and:


  a =   3637 ×   10   − 6   × 5291 ×   10   − 6   −    (  5180 ×   10   − 6    )   2    3637 ×   10   − 6   + 5291 ×   10   − 6   − 2 × 5180 ×   10   − 6       ⇒   a = 5299.50 ×   10   − 6    



(8)




where the value 0.005180 represents ε3, which corresponds to t3 and which was determined by interpolation.



Knowing that:


  b =    σ 0   E  −  ε 0  = a −  ε 0   



(9)




then:


  b = 5299.50 ×   10   − 6   − 2125 ×   10   − 6     ⇒   b = 3174.50 ×   10   − 6    



(10)







Equation (3) can also be written in the form:


  ε − a = − b  e  − c t     o r   a − ε = b  e  − c t    



(11)




making the logarithm of Equation (11), it results in:


  lg  (  a − ε  )  = lg b − c t lg e  



(12)




noting:


  p = lg  (  a − ε  )    ;   B = lg b   ;   C = c lg e  



(13)




then, we get the relationship:


  p = B − C t  



(14)




the value of B is determined according to the relation (13), resulting:


  B = lg  (  3174.5 ×   10   − 6    )  = 3.5016753 + lg  (    10   − 6    )   



(15)




knowing the value of B, from Equation (13), we can obtain the value of C:


   p i  = n B −  C −   t i   



(16)




from where:


    ∑  i = 1  n    p i    = n B −  C −    ∑  i = 1  n    t i     



(17)




therefore, the value of C will be given by the relation:


   C −  =   n B −   ∑  i = 1  n    p i        ∑  i = 1  n    t i       



(18)




where     ∑  i = 1  n    p i    ;     ∑  i = 1  n    t i      were determined based on resulted data from the creep test and n = 25 is the number of obtained data.



Namely:


   C −  =   25 ×  (  3.5016753 + lg   10   − 6    )  −  (  53.64918405 + lg   10   − 6    )    673.665     ⇒    C −  = 0.0503  



(19)




whence:


   c −  =    C −    lg e   =   0.0503   0.434     ⇒    c −  = 0.115898617   ⇒    c −  = 0.116  



(20)




it is known that:


   ε i  =    ε −   i  +    (    ∂  ε −    ∂  c −     )   i  s   ;   i = 1 , 2 , … , n  



(21)




and:


  s =     ∑  i = 1  n      (  ε −  ε −   )   i        ∑  i = 1  n      (    ∂  ε −    ∂  c −     )   i       



(22)




once the value of    c −    (the first approximation) is established, Equation (3) becomes:


   ε −  = a − b  e  −  c −  t    



(23)




which the derivative with respect to    c −    will be:


    ∂  ε −    ∂  c −    = b  t i   e  −  c −   t i     



(24)




from the processing of the obtained experimental data, it can easily determine the value of (s), that is:


  s =   − 190.78   84 , 512.8     ⇒   s = − 0.0225  



(25)




in this case, it turns out:


   c =  =  c −  + s   ⇒    c =  = 0.0935  



(26)




where    c =    represents the second approximation.



On the basis of    c =   , the accuracy increases from 0.520404 to 0.097772. Equation (3), respectively (23), becomes:


   ε =  = a − b  e  −  c =  t    



(27)




returning to the substitutions made, the relation (5), we can now determine the search parameters of the creep curve. So:


    E =    σ 0   a      E =   11.55   0.0052995     ⇒   E = 2179.4   MPa    



(28)




this value confirms the good results of the elasticity module determined in the laboratory.


  T =  1   c =      ⇔   T =  1  0.0935     ⇒   T = 10.7   days  



(29)




and:


  η = T × E   ⇔   η = 2179.4 × 10.7   ⇒   η = 23319.6   MPa × day  



(30)




therefore, Equation (6) becomes:


  ε = 0.00529816 − 0.00317316  e  − 0.0935 t    



(31)







Equation (31) represents the analytical equation established for the strongly metamorphosed andesite that has been analyzed and which confirms that this rock can be assimilated as a manner of behavior in time with the model given by the Poynting–Thomson model (see Figure 4).




3.2. Deformation Characteristics in Time of Altered Andesite Established In Situ


In parallel with the tests performed in the laboratory, the in situ measurements have also been made regarding the deformation in time of the rocks (convergence) around the mining works that intercept the rock types of the highly hydrothermal metamorphosed andesite (Appendix A). The measurements were made in cross sections in the direction of the galleries in the following underground works: a trapezoidal cross gallery (Figure 5a); a directional gallery with an arched profile with straight walls (Figure 5b); and a directional gallery with a circular profile (Figure 5c).



The convergence measurements were extended over a period of 3 years and the obtained results were used in order to establish the laws of variation in the time of the rock’s movement on the outline of the mining works, that is, the laws of relaxation and creep.



3.2.1. Relaxation Law


Following the graphical and analytical processing of the convergence values (Figure 6) taken as the displacements, it turns out that, in time, they are determined by a law of variation whose analytical form could be established with the help of mathematical statistics.



A time variation law of the movements on the contour of the gallery resulted in the forming of the equation:


  y =   8 m  x  + b  



(32)




where y is the values of the displacements according to the direction of measurement; x is the time at which these displacements were measured; and m and b are the numerical coefficients of the equation, whose minimum values are shown in Table 3.




3.2.2. Creep Law


In order to establish such a law, two following deformation methods of the contour of the underground work have been developed in time [10,11,45,46], namely, the threshold method and the gradient method. This second method, chosen for the interpretation of the measurements results, is based on the general considerations regarding the evolution of the deformation phenomenon; that is, when a cause (in our case, an underground excavation) comes to disturb the rock massif equilibrium, it will tend to evolve to a new state of equilibrium, which concretizes in deformations that should be amortized when the disturbing cause ceases.



However, in reality, these deformations increase continuously, and therefore the deformation phenomenon presents an unamortized evolution until the destruction of the mining work (if the support is inadequately designed according to the real working conditions). The problem that arises in such situations is to detect accelerations in the production of deformations, which will in fact indicate the occurrence of the failure phenomenon of the underground work and its destruction.



However, the laboratory tests allow us to specify that a linear evolution of the deformation measurements can be approximated by a damped curve, in which case there is an ambiguity regarding the stability of the underground work and, therefore, the observations cannot be stopped but must be continued (Figure 7).



Only if the evolution of the deformations indicates an acceleration of them, then we can predict with certainty the beginning of the phenomenon of the destruction of the underground work because, from a rheological point of view, the breaking of the rocks is always preceded by a short acceleration of the deformations (Figure 8).



Therefore, the chosen method is not based on the final value of the deformation reached at any given moment but on the analysis of the evolution of these deformations compared to their history, that is to say, with their previous evolution.



Such a research method requires complex observations, capable of memorizing the history of in situ deformations; by this, the fluctuation range due to the vulnerability can be reproduced, the general sense of the evolution and the abnormal variation, and the index of the start of the destruction process of the rock’s support system. Such a result can be achieved by considering from the beginning the making of successive and punctual measurements, corresponding to a range, so that in the end we can obtain the evolution of the deformations as true and real as possible.






4. The Gradient Method


The gradient method is based on general considerations regarding the evolution of the deformation phenomenon (Appendix D). Based on the measurements made in each range of time, it is found that the deformations in this range (defined by at least three points) are defined by a straight line. With the help of the smallest squares, the characteristics of the line were established:


  D =  a i  t +  b i   



(33)




where ai is the slope of the straight; bi is the y-coordinate to the origin; and t is the time starting with the first day of the interval measurement.



Taking into account the variability of daily measurements, based on the given data, it was possible to decide whether the observed slope (ai) is significant either for an increase in the deformations, for a decrease in the deformations, or on the contrary, if the deformations were constant during the range of measurement. This decision can be materialized by the concepts of convergence, divergence and constancy.



Therefore, the gradient method actually starts with a comparison between the observed central tendency and the tendency that characterized the past. This comparison is actually stored in the form of the straight line given by Equation (33) in the measurement interval (i) and a certain dispersion (σ). The dispersion will indicate an increase in the amplitude of the jumps in the deformation process (Figure 9), and the comparison of the slopes establishes the concavity of the mean deformation curve (Figure 10). Thus, by comparing the dispersions σ′ and σ″, we can decide, for example, whether σ″ is significantly much larger than σ′, either as a deterioration of the measuring device or an increase in the amplitude of the jumps in the deformation process (Figure 9). If the slope difference (ai+1 – ai) is large, then it means either an acceleration or stabilization according to the sign of this difference.



If the difference (ai+1−ai) is large, taking into account the variability of the daily measurements, it will be concluded by the difference that it is either an acceleration or a stabilization. If the two straight lines are identical, the data for week (i) will be added to the previous data for defining the straight, which will be taken as the reference straight for the week (i + 1):


  D =  a 0  i + 1   t +  b 0  i + 1    



(34)




and the straight line of the week (i) will be: D = ait + bi as the reference straight line for the week (i + 1).



Observations can be made on a daily basis, comparing the obtained measurement with the reference straight line, taking into account the dispersion (σ) that characterizes the variability of the measurements. This allows you to set a first alarm level, which involves intensifying the observations or, for example, re-editing the observation. If the next measurement is still higher than the previously observed variation range, the second alarm level can be triggered (Figure 11).



Based on this process, deformations were analyzed in the case of mining works located in andesite. The range of measurement was 10 days, in which 3–4 measurements were made (Appendix B). The graphical representation of the evolution of the deformations in time and their analysis by the gradient method is shown in Figure 12.



The graphical form of the function that shows the law of deformation in time of the contour of horizontal mining works, obtained from the analysis by the gradient method (Figure 10), is in fact identical to the shape of the creep curve.




5. Results and Discussions


We set out to find the mathematical function that will express the law of the search deformation based on the already known form. From a mathematical point of view, the problem is reduced to determining a functional dependence of the variable y (in our case, this variable is the deformation) against another variable x (namely, the time), which can be written as Equation (35) with the obvious identification of all the parameters that come into the definition of a functional dependence:


  y = f  (  x ;    a 0  ;    a 1  ;    a 2  ; … ;  a n   )   



(35)




the method that allows us to obtain accurate and consistent estimates of the parameters is: a0, a1, a2, …, an and it is the least-squares method using Cebisev’s polynomials. We chose this method because our functional has a form:


  y =  b 0   p 0  ( x ) +  b 1   p 1  ( x ) +  b 2   p 2  ( x ) + … +  b n   p n  ( x )  



(36)




where p0(x); p1(x); p2(x); …; pn(x) is the the orthogonal polynomials of Cebisev on the set of the points x1, x2, …, xn with the weights w(x).



The expression parameters (36) are calculated with the relation:


   b j  =    y k   p j   (   x k   )   w k     p j 2   (   x k   )   w k      ,   j = 0 ,   1 ,   2 ,   … ,   n  



(37)




which do not depend on the degree n of the searched polynomial.



If the values of the argument are equidistant:


   x  k + 1   =  x k  = h   ,   k = 1 ,   2 ,   … ,   N − 1  



(38)




the calculation of the orthogonal polynomials Cebisev is greatly simplified, if the variable is changed:


   u k  =    x k  − x  h   



(39)




where:


  x =    x 1  +  x N   2   



(40)




taking this into account, the searched polynomial will be:


  y =  c 0   p 0  ( u ) +  c 1   p 1  ( u ) +  c 2   p 2  ( u ) + … +  c n   p n  ( u )  



(41)




and the parameters of the polynomial are estimated using the relations:


   c j  =  1   H j     y k   p j   (   u k   )    ,   j = 0 ,   1 ,   2 ,   … ,   n ;   n = N  



(42)




where:


   H j  =  p j 2   (   u k   )   



(43)




and    u k  =    x k  − x  h    takes only the whole values: 0; ±1; ±2; …; ±(N − 1)/2 if N is uneven, respectively, and the values ±1/2; ±3/2; …; ± (N − 1)/2 when N is an even number.



Using the special formulas for an even number (N = 2L) and an uneven number (N = 2L + 1) of the obtained observations from the convergence measurements, but also the relations of the calculation of the parameters p1, p2, …, p5, corresponding to the number of measurements within a range of 10 days of the measurement, it was passed to determine the searched functional.



The total number of the measurements varies between 9 and 12 data. For this N, the corresponding relations and parameters were taken (see Table 4), with which the function of the searched polynomial was written.



Because the methodology is identical for each group of measurements, we summarize here the description of a single case, namely when N = 11 (11 measurement data):


   p 0  = 1   ;    p 1  = u   ;    p 2  =  u 2  − 10   ;    p 3  =  u 3  −   89  5  u  



(44)




and then:


  y =  C 0   p 0  +  C 1   p 1  +  C 2   p 2  +  C 3   p 3   



(45)




or:


  y =  C 0  +  C 1  u +  C 2   (   u 2  − 10  )  +  C 3   (   u 3  − 17.8 u  )   



(46)




from which the following equation results:


  y =  (   C 0  + 10  C 2   )  +  (   C 1  − 17.8  C 3   )  u +  C 2   u 2  +  C 3   u 3   



(47)




but:


    y =  (  + 10  C 2   )  +  (  − 17.8  C 3   )  u +  C 2   u 2  +  C 3   u 3       C 0  =  1 N   ∑   y k         C 1  =  1  110    (   y 1  −  y  − 1    )  + 2  (   y 2  −  y  − 2    )  + 3  (   y 3  −  y  − 3    )  + 4  (   y 4  −  y  − 4    )  + 5  (   y 5  −  y  − 5    )       C 2  =  1  858   − 10  y 0  − 9  (   y 1  +  y  − 1    )  − 6  (   y 2  +  y  − 2    )  −  (   y 3  +  y  − 3    )  + 6  (   y 4  +  y  − 4    )  + 15  (   y 5  +  y  − 5    )       C 3  =  1  5148   − 14  (   y 1  −  y  − 1    )  − 23  (   y 2  −  y  − 2    )  − 22  (   y 3  −  y  − 3    )  − 6  (   y 4  −  y  − 4    )  + 30  (   y 5  −  y  − 5    )     



(48)




knowing:


    u =    x k  − x  h    ;   h =    x  k + 1   −  x k   1  =  x  k + 1   −  x k      x =   110 + 10  2  = 60    



(49)




then:


  u =    x k  − 60   10     ⇒   u = 0.1 x − 6  



(50)




it results:


    u = 0.1 x − 6      u 2  = 0.01  x 2  − 1.2 x + 36      u 3  = 0.001  x 3  − 0.18  x 2  + 10.8 x − 216    



(51)




based on the calculations, according to Table 5, the value of the C0, C1, C2 and C3 coefficient results are obtained.



The equation becomes:


  y = 461.97846 + 10.01506 u + 0.25279  u 2  + 0.28044  u 3   



(52)




based on the substitutions made, according to the relations (51) and given that the variable x represents the time, it results in:


  y = 350.41 + 3.73 t − 0.048  t 2  + 0.00028  t 3   



(53)







All the data processing led us to the equations of the form obtained above, so we can specify that the law of the deformation in time of the contour of the main horizontal mining works which were made in altered andesite rock type has the main form, given by the relation (53), and whose graphical representation has the shape shown in Figure 13:


  ε  ( t )  = A + B t + C  t 2  + D  t 3   



(54)







Based on the rheological tests performed, the characterization of the altered andesite rock type, it was concluded that for these rocks, the rheological behavior can be assimilated as being the type given by the Poynting–Thomson model. Given the fact that in the actual analyzed in situ conditions, where, due to external factors like the water infiltration but also due to the relative humidity, the alteration phenomenon of the rocks around the horizontal mining works intensifies, having as a consequence the decrease in the bearing capacity, the appearance of the phenomenon of swelling, that is, their change in time, leads us to the conclusion that the use of the Poynting–Thomson model becomes uncertain.



The uncertainty was created by the creep law because it was presented in the form of a damped curve, which actually indicated a stabilization of the deformations (t ≥ 11 days), but not the moment until which the deformation of the highly metamorphosed andesite still retains a certain bearing capacity, the moment from which the breakage begins. Such a curve was therefore incomplete and always ambiguous, because around the horizontal workings, the deformations increased continuously.



The deformation phenomenon presents a continuous evolution and, from a certain moment, increases more and more. In order to fully characterize the behavior under the load, the in situ measurements led us to complete the Poynting–Thomson model in a way which is much more appropriate to the real conditions. The behavior equation is the following:


  ε  ( t )  =    σ 0   E   (  1 + t  )  +  (     σ 0     E K    +    σ p     E  C V      )   e  −  E η  t    



(55)







Thus, we proposed the rheological model presented in Figure 14; in principle, the proposed model is based on the following behavior in time under the load and under extremely adverse conditions (the wet area, swelling tendency, etc.).



The particles of eruptive rock are placed so that they are embedded in cement as a product of alteration. In the behavior of the rock under the load, this characteristic determines the appearance of the two stages of deformation (see Table 6): the viscous-elastic stage with a transition to elastic and the elastic–plastic stage.



When a stress is applied, a disturbance of the particles (which have a minimum volume of voids) is created due to the sliding occurring between them and between which a viscous friction occurs. Then, the particles come into direct contact, making the deformation develop further; if the stress increases or external disturbing factors appear, the deformation phenomenon will continue, creating inelastic deformations, namely, elastic–plastic behavior, keeping its cohesion until the plastic limit is exceeded, and it is at this moment when the breakage can occur. Taking into account such a behavior, it results that, giving the rock the possibility to deform in time (t ≥ T), it passes into the field of an elastic–plastic deformation, an area in which it still presents stability. Such a conclusion becomes extremely important in the rock–support interaction phenomenon. On the other hand, also based on the rheological results and using the principles of hereditary theory [6,7,8,10,13,21,30,35], the nucleus of Abel was determined, obtaining the value Φt = 1.49, through which the influence of time can be included in establishing the pressure regime.




6. Conclusions


The necessity to establish the forecast of the stability of the main horizontal mining works in rocks with very different characteristics, involves the assessment of the real value of the properties and firstly of all the anisotropy, heterotrophy and the rheological behavior of the rocks.



The proposed method for studying the evolution of the phenomenon of the deformation in time of rocks around an underground excavation takes into account the fact that the deformation increases continuously, which means that the deformation phenomenon has an undamped evolution until the destruction of the underground work. In such situations, we considered that it is necessary to find accelerations of deformations generation, which will also indicate the occurrence of the delivery phenomenon of the underground work and its failure.



The method chosen is not based on the final value of the deformation reached at any given time but on the analysis of the evolution of these deformations compared to their previous evolution. Based on this process, the deformations in time were analyzed in the case of the mining works located in altered andesite. In relation to the shape of the deformation curve of the horizontal mining works contour, we established the mathematical function that expresses the law of sought deformation. In order to characterize the entire behavior under the load, in situ measurements led us to complete the Poynting–Thomson model much more appropriately to the real conditions. Thus, we have proposed a rheological model that is able to describe the time behavior under the load and in extremely unfavorable conditions (the wet area, swelling tendency, etc.).



The type of the studied rocks is characterized by the fact that they have a low resistance and that, in contact with water, they change their properties. The rocks taken in the study are pyroxenic andesite rocks affected by a medium to high hydrothermal alteration. These are rocks which in their stability area have viscous–elastic–plastic behavior and which can be assimilated by a Poynting–Thomson rheological model when W < WHM or with the proposed model for W > WHM, in which case the phenomenon of swelling occurs (W represents the humidity and WHM is the maximum hygroscopicity). For a period of 56 days, these rocks maintain their stability with the condition that, up to this time limit, the displacements stop. Otherwise, the rocks lose completely their cohesion, the rupture occurs and the pressure on the support will increase, endangering the stability of the underground works.



From this analysis, it follows that a damped evolution alone is not sufficient to predict the stability and finality of in situ observations because when a cause (for example, the execution of an underground excavation) comes to disturb the equilibrium of the rock mass, it will tend to evolve towards a new state of equilibrium, which is characterized by deformations that should be damped when the disturbing cause ceases. In reality, these deformations increase continuously, and therefore the deformation phenomenon shows that an evolution is not damped in time until the moment of the destruction of the mining work (if the support is inadequately designed according to the real working conditions). The problem is to detect accelerations in the generation of deformations that will actually indicate the phenomenon of failure and the destruction of the support.
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Table A1. Time deformation of directional gallery with an arched profile with straight walls.






Table A1. Time deformation of directional gallery with an arched profile with straight walls.





	
Point Under Observation

	
Distance between Points (mm)

	
Value of Marks

	
Values of Measurements Made In Situ (Recorded with Deformation Measuring Devices)




	
Date of Observation




	
10.03

	
12.03

	
14.03

	
17.03

	
24.03

	
26.03

	
29.03

	
31.03

	
04.04

	
07.04

	
09.04






	
1

	

	
a’a

	
aa’’

	
1040

	
1020

	
1032

	
1017

	
1017

	
1015

	
1017

	
1015

	
1017

	
1015

	
1008

	
1011

	
1000

	
998

	
982

	
976

	
973

	
973

	
963

	
943

	
951

	
938




	

	
b’b

	
bb’’

	
1038

	
1080

	
1074

	
1069

	
1061

	
1064

	
1057

	
1059

	
1050

	
1051

	
1047

	
1043

	
1041

	
1035

	
1035

	
1033

	
1031

	
1030

	
1028

	
1021

	
1021

	
1003




	

	
c’c

	
bb’’

	
975

	
974

	
968

	
970

	
964

	
961

	
943

	
950

	
930

	
943

	
925

	
936

	
921

	
918

	
918

	
924

	
907

	
905

	
901

	
900

	
898

	
893




	
1430

	
d’d

	
dd’’

	
1070

	
1068

	
1069

	
1067

	
1067

	
1065

	
1065

	
1061

	
1065

	
1060

	
1065

	
1057

	
1064

	
1058

	
1058

	
1049

	
1051

	
1046

	
1051

	
1032

	
1051

	
1029




	
2

	

	
a’a

	
aa’’

	
1120

	
1080

	
1118

	
1074

	
1116

	
1070

	
1103

	
1000

	
1080

	
1051

	
1076

	
1051

	
1071

	
1050

	
1062

	
1046

	
940

	
1032

	
938

	
1030

	
926

	
1029




	

	
b’b

	
bb’’

	
1053

	
1051

	
1045

	
1032

	
1040

	
1010

	
1037

	
1000

	
1022

	
972

	
1020

	
970

	
1020

	
970

	
1020

	
963

	
1019

	
950

	
1015

	
940

	
1013

	
938




	

	
c’c

	
bb’’

	
995

	
993

	
990

	
991

	
980

	
987

	
969

	
981

	
964

	
972

	
964

	
962

	
962

	
961

	
934

	
952

	
920

	
938

	
920

	
938

	
918

	
938




	
2800

	
d’d

	
dd’’

	
994

	
991

	
994

	
989

	
992

	
987

	
984

	
975

	
971

	
963

	
965

	
952

	
960

	
949

	
956

	
938

	
952

	
936

	
949

	
935

	
945

	
929




	
3

	

	
a’a

	
aa’’

	
1120

	
1090

	
1117

	
1078

	
1100

	
1070

	
1097

	
1065

	
1092

	
1061

	
1090

	
1038

	
1081

	
1027

	
1073

	
1020

	
1070

	
1014

	
1062

	
1009

	
1057

	
1003




	

	
b’b

	
bb’’

	
1036

	
1070

	
1031

	
1056

	
1028

	
1031

	
1018

	
1031

	
1005

	
1031

	
1003

	
1013

	
1000

	
920

	
997

	
984

	
992

	
975

	
938

	
970

	
987

	
960




	

	
c’c

	
bb’’

	
990

	
1030

	
952

	
1023

	
875

	
1010

	
870

	
1010

	
870

	
1010

	
954

	
1010

	
848

	
1000

	
945

	
983

	
840

	
972

	
938

	
969

	
836

	
968




	
4700

	
d’d

	
dd’’

	
956

	
953

	
956

	
951

	
954

	
951

	
954

	
949

	
953

	
941

	
941

	
945

	
920

	
930

	
916

	
927

	
905

	
922

	
905

	
911

	
905

	
905




	
4

	

	
a’a

	
aa’’

	
1025

	
1040

	
1022

	
1031

	
1019

	
1017

	
1015

	
1009

	
1007

	
1003

	
1005

	
1000

	
1001

	
1000

	
990

	
987

	
988

	
982

	
976

	
977

	
972

	
970




	

	
b’b

	
bb’’

	
995

	
993

	
982

	
974

	
975

	
960

	
963

	
959

	
942

	
954

	
947

	
951

	
945

	
949

	
945

	
943

	
940

	
941

	
936

	
936

	
927

	
936




	

	
c’c

	
bb’’

	
785

	
893

	
781

	
856

	
780

	
851

	
777

	
835

	
772

	
820

	
762

	
805

	
758

	
792

	
752

	
778

	
952

	
769

	
950

	
965

	
746

	
750




	
5000

	
d’d

	
dd’’

	
991

	
960

	
985

	
954

	
968

	
942

	
965

	
938

	
960

	
930

	
937

	
925

	
922

	
913

	
920

	
910

	
917

	
903

	
910

	
897

	
902

	
884




	
5

	

	
a’a

	
aa’’

	
967

	
979

	
960

	
972

	
951

	
970

	
948

	
963

	
943

	
953

	
943

	
953

	
940

	
950

	
938

	
948

	
921

	
934

	
918

	
928

	
916

	
922




	

	
b’b

	
bb’’

	
965

	
964

	
961

	
955

	
957

	
950

	
951

	
943

	
950

	
930

	
946

	
930

	
942

	
925

	
940

	
920

	
936

	
917

	
928

	
907

	
923

	
904




	

	
c’c

	
bb’’

	
795

	
890

	
790

	
874

	
787

	
861

	
783

	
859

	
775

	
857

	
769

	
846

	
762

	
742

	
758

	
732

	
752

	
810

	
942

	
807

	
734

	
803




	
5000

	
d’d

	
dd’’

	
915

	
911

	
913

	
908

	
907

	
905

	
903

	
905

	
900

	
900

	
898

	
899

	
891

	
897

	
887

	
898

	
871

	
863

	
869

	
852

	
866

	
842




	
6

	

	
a’a

	
aa’’

	
826

	
830

	
825

	
830

	
820

	
830

	
813

	
827

	
810

	
800

	
803

	
794

	
800

	
790

	
800

	
776

	
794

	
756

	
768

	
730

	
760

	
708




	

	
b’b

	
bb’’

	
883

	
881

	
871

	
876

	
854

	
868

	
843

	
863

	
832

	
860

	
830

	
860

	
828

	
860

	
789

	
845

	
777

	
836

	
740

	
821

	
730

	
810




	

	
c’c

	
bb’’

	
800

	
827

	
774

	
823

	
770

	
820

	
769

	
758

	
765

	
778

	
693

	
775

	
680

	
773

	
678

	
769

	
673

	
760

	
654

	
758

	
645

	
742




	
4800

	
d’d

	
dd’’

	
998

	
897

	
991

	
895

	
988

	
782

	
986

	
773

	
984

	
768

	
951

	
759

	
920

	
751

	
919

	
748

	
912

	
743

	
898

	
732

	
891

	
722




	
7

	

	
a’a

	
aa’’

	
980

	
981

	
979

	
981

	
977

	
979

	
971

	
977

	
965

	
977

	
957

	
977

	
950

	
975

	
947

	
973

	
943

	
970

	
935

	
952

	
931

	
943




	

	
b’b

	
bb’’

	
997

	
994

	
990

	
984

	
988

	
973

	
950

	
932

	
895

	
893

	
884

	
887

	
872

	
880

	
892

	
872

	
870

	
840

	
864

	
840

	
852

	
840




	

	
c’c

	
bb’’

	
680

	
720

	
680

	
711

	
680

	
685

	
680

	
683

	
680

	
683

	
680

	
683

	
679

	
680

	
671

	
678

	
662

	
663

	
660

	
658

	
657

	
646




	
4700

	
d’d

	
dd’’

	
869

	
865

	
832

	
834

	
800

	
810

	
783

	
790

	
760

	
767

	
753

	
746

	
732

	
730

	
728

	
728

	
725

	
722

	
720

	
712

	
715

	
702




	
8

	

	
a’a

	
aa’’

	
876

	
877

	
871

	
863

	
862

	
850

	
854

	
847

	
850

	
841

	
849

	
823

	
846

	
819

	
641

	
813

	
835

	
805

	
828

	
790

	
810

	
782




	

	
b’b

	
bb’’

	
875

	
871

	
872

	
865

	
870

	
859

	
868

	
843

	
865

	
836

	
863

	
824

	
860

	
861

	
654

	
659

	
847

	
859

	
640

	
834

	
932

	
823




	

	
c’c

	
bb’’

	
740

	
743

	
740

	
739

	
738

	
735

	
735

	
712

	
730

	
704

	
727

	
700

	
719

	
692

	
709

	
685

	
700

	
675

	
698

	
663

	
691

	
654




	
2600

	
d’d

	
dd’’

	
976

	
971

	
965

	
952

	
950

	
914

	
923

	
914

	
915

	
912

	
903

	
869

	
900

	
891

	
900

	
884

	
891

	
875

	
884

	
862

	
871

	
852




	
9

	

	
a’a

	
aa’’

	
755

	
760

	
753

	
758

	
749

	
745

	
745

	
732

	
740

	
729

	
731

	
729

	
720

	
728

	
720

	
718

	
719

	
710

	
709

	
699

	
704

	
693




	

	
b’b

	
bb’’

	
730

	
780

	
721

	
776

	
719

	
760

	
709

	
743

	
700

	
700

	
703

	
699

	
705

	
699

	
700

	
699

	
698

	
698

	
675

	
678

	
661

	
665




	

	
c’c

	
bb’’

	
575

	
748

	
570

	
739

	
565

	
730

	
551

	
720

	
550

	
714

	
550

	
709

	
545

	
704

	
532

	
680

	
528

	
640

	
521

	
638

	
516

	
635




	
2500

	
d’d

	
dd’’

	
960

	
967

	
954

	
887

	
940

	
800

	
928

	
792

	
900

	
785

	
884

	
778

	
829

	
774

	
883

	
762

	
871

	
753

	
869

	
732

	
864

	
728




	
10

	

	
a’a

	
aa’’

	
770

	
762

	
750

	
782

	
710

	
661

	
682

	
659

	
650

	
652

	
643

	
641

	
641

	
638

	
639

	
625

	
636

	
600

	
627

	
598

	
613

	
591




	
b’b

	
bb’’

	
710

	
747

	
700

	
731

	
692

	
724

	
634

	
702

	
625

	
685

	
621

	
675

	
621

	
614

	
617

	
613

	
602

	
613

	
594

	
607

	
585

	
600




	
c’c

	
bb’’

	
610

	
607

	
599

	
606

	
593

	
600

	
581

	
600

	
560

	
593

	
558

	
587

	
550

	
579

	
542

	
561

	
534

	
550

	
530

	
546

	
525

	
531




	
d’d

	
dd’’

	
858

	
781

	
531

	
764

	
798

	
750

	
790

	
742

	
788

	
730

	
768

	
730

	
753

	
728

	
743

	
719

	
740

	
711

	
732

	
703

	
730

	
692
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Table A2. The evolution of deformations as a function of time and the results of their analysis for directional gallery with an arched profile with straight walls.






Table A2. The evolution of deformations as a function of time and the results of their analysis for directional gallery with an arched profile with straight walls.





	
Measuring Range (Days)

	
Measured Values, (mm)

	
Slope

	
Evolution of Deformations

	
Slopes Comparison

	
Dispersion

	
Ordinates Comparison






	
STATION 1—vertical




	
1–10

(May)

	
376

383

394

	
0.67

	
-

	
-

	
-

	
-




	
10–20

(May)

	
396

405

414

	
0.55

	
 [image: Applsci 12 11877 i001]

	
 [image: Applsci 12 11877 i002]

	
=

	
 [image: Applsci 12 11877 i002]




	
20–30

(May)

	
422

430

432

435

	
0.34

	
=

	
 [image: Applsci 12 11877 i001]

	
=

	
=




	
1–10

(June)

	
437

439

442

	
0.25

	
=

	
=

	
=

	
=




	
10–20

(June)

	
446

448

452

454

	
0.25

	
=

	
=

	
=

	
=




	
20–30

(June)

	
458

465

470

	
0.32

	
=

	
=

	
=

	
=




	
1–10

(July)

	
469

472

478

	
0.32

	
=

	
=

	
=

	
=




	
10–20

(July)

	
482

484

486

494

	
0.44

	
=

	
=

	
=

	
=




	
20–30

(July)

	
495

498

504

	
0.44

	
=

	
=

	
=

	
=




	
1–10

(August)

	
513

523

537

	
0.84

	
 [image: Applsci 12 11877 i001]

	
 [image: Applsci 12 11877 i003]

	
 [image: Applsci 12 11877 i002]

	
 [image: Applsci 12 11877 i002]




	
10–20

(August)

	
540

551

571

	
0.84

	
=

	
=

	
=

	
=




	
STATION 2—vertical




	
1–10

(May)

	
439

446

462

	
0.84

	
-

	
-

	
-

	
-




	
10–20

(May)

	
473

486

496

	
0.78

	
 [image: Applsci 12 11877 i001]

	
 [image: Applsci 12 11877 i001]

	
-

	
 [image: Applsci 12 11877 i002]




	
20–30

(May)

	
504

518

524

	
0.60

	
=

	
=

	
=

	
=




	
1–10

(June)

	
527

536

536

545

	
0.60

	
=

	
=

	
=

	
=




	
10–20

(June)

	
550

554

560

569

	
0.58

	
=

	
=

	
=

	
=




	
20–30

(June)

	
570

586

598

	
0.84

	
=

	
=

	
=

	
=




	
1–10

(July)

	
598

607

614

	
0.58

	
=

	
=

	
=

	
=




	
10–20

(July)

	
632

635

638

661

	
1.28

	
 [image: Applsci 12 11877 i001]

	
 [image: Applsci 12 11877 i003]

	
=

	
 [image: Applsci 12 11877 i002]




	
20–30

(July)

	
686

703

711

	
1.28

	
=

	
=

	
=

	




	
1–10

(August)

	
726

732

736

746

	
0.38

	
=

	
 [image: Applsci 12 11877 i002]

	
=

	
 [image: Applsci 12 11877 i001]




	
STATION 3—vertical




	
1–10

(May)

	
625

630

638

	
0.42

	
-

	
-

	
-

	
-




	
10–20

(May)

	
641

646

654

	
0.42

	
 [image: Applsci 12 11877 i001]

	
 [image: Applsci 12 11877 i001]

	
=

	
 [image: Applsci 12 11877 i002]




	
20–30

(May)

	
660

670

674

	
0.42

	
=

	
=

	
=

	
=




	
1–10

(June)

	
668

670

674

676

	
0.29

	
=

	
 [image: Applsci 12 11877 i002]

	
=

	
 [image: Applsci 12 11877 i001]




	
10–20

(June)

	
686

687

693

697

	
0.36

	
=

	
=

	
=

	
=




	
20–30

(June)

	
690

695

699

	
0.21

	
=

	
=

	
=

	
=




	
1–10

(July)

	
704

704

709

	
0.21

	
=

	
=

	
=

	
=




	
10–20

(July)

	
711

713

715

716

	
0.21

	
 [image: Applsci 12 11877 i001]

	
=

	
=

	
=




	
20–30

(July)

	
726

734

770

	
2.25

	
=

	
 [image: Applsci 12 11877 i003]

	
=

	
 [image: Applsci 12 11877 i002]




	
1–10

(August)

	
777

790

801

807

	
0.90

	
=

	
 [image: Applsci 12 11877 i002]

	
=

	
 [image: Applsci 12 11877 i001]




	
STATION 4—vertical




	
1–10

(May)

	
560

562

570

	
0.36

	
-

	
-

	
-

	
-




	
10–20

(May)

	
573

583

588

	
0.40

	
 [image: Applsci 12 11877 i001]

	
=

	
=

	
 [image: Applsci 12 11877 i001]




	
20–30

(May)

	
589

599

604

	
0.36

	
=

	
=

	
=
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Table A3. Corresponding relations and parameters for the function of the searched polynomial for N = 9; N = 11; and N = 12 measurement data.
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Computing Relations for N = 9

	
u

	
     p 1 *     

	
     p 2 *     

	
     p 3 *     

	
     p 4 *     

	
     p 5 *     






	
      p 1  = u =  p 1 *       p 2  =  u 2  −   20  3  =  1 3   p 2 *       p 3  =  u 3  −   59  5  u =  6 5   p 3 *       p 4  =  u 4  −   115  7   u 2  +   216  7  = 7  p 4 *       p 5  =  u 5  −   185  9   u 3  +   716  9  u =   20  3   p 5 *      

	
0

	
0

	
−20

	
0

	
18

	
0




	
1

	
1

	
−17

	
−9

	
9

	
9




	
2

	
2

	
−8

	
−13

	
−11

	
4




	
3

	
3

	
7

	
−7

	
−21

	
−11




	
4

	
4

	
28

	
14

	
14

	
4




	
γ

	
60

	
924

	
1188

	
3432

	
3120




	
H

	
60

	
308

	
     7128  5    

	
     41 , 148  7    

	
20,800




	
      H j     H j  − 1     

	
   8  1 4    

	
   5  2  15     

	
   4   22   35     

	
   4  8  63     

	
   3   53   99     




	
Computing Relations for N = 11

	
u

	
    p 1 *    

	
    p 2 *    

	
    p 3 *    

	
    p 4 *    

	
    p 5 *    




	
      p 1  = u =  p 1 *       p 2  =  u 2  − 10 =  p 2 *       p 3  =  u 3  −   89  5  u =  6 5   p 3 *       p 4  =  u 4  − 25  u 2  + 72 = 12  p 4 *       p 5  =  u 5  −   95  3   u 3  +   572  9  u = 40  p 5 *      
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0

	
6

	
0
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−14

	
−31

	
4

	
4




	
2
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−6

	
−23

	
−1

	
4




	
3

	
3

	
−1

	
−22

	
−6

	
−1




	
4

	
4

	
6

	
−6

	
−6

	
−6




	
5

	
5

	
15

	
30

	
6

	
3




	
γ

	
110

	
858

	
5148

	
3420

	
6240




	
H

	
110

	

	
     30 , 888  5    

	
41,148

	
249,600




	
      H j     H j  − 1     

	
10

	
   7  4 5    

	
   7  1 5    

	
   6  2 3    

	
   6  2  33     




	
Computing Relations for N = 12
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    p 2 *    

	
    p 3 *    

	
    p 4 *    

	
    p 5 *    




	
      p 1  = u =  1 2   p 1 *       p 2  =  u 2  −   143   12   =  1 3   p 2 *       p 3  =  u 3  − 21  1 4  u =  3 2   p 3 *       p 4  =  u 4  − 29   13   14    u 2  − 103   47   112   =   24  7   p 4 *       p 5  =  u 5  − 38  1  18    u 3  + 276   76   144   u =   20  3   p 5 *      

	
1/2

	
1

	
−35

	
−7

	
28

	
20




	
3/2

	
3

	
−29

	
−19

	
12

	
44




	
5/2

	
5

	
−17−

	
−25

	
−13

	
29




	
7/2

	
7

	
1

	
−21

	
−33

	
−21




	
9/2

	
9

	
25

	
−3

	
−27

	
−57




	
11/2

	
11

	
55

	
33

	
33

	
33




	
γ
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4004
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27,456

	
106,080




	
H

	
143

	
     4004  3    

	
11,583

	
     698 , 944  7    

	
707,200




	
      H j     H j  − 1     

	
   11   11   12     

	
   9  1 3    

	
   8   19   28     

	
   8  8  63     

	
   7   203   396     
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Figure A1. Detailed flowchart of the proposed method. 
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Figure A2. Detailed flowchart of the gradient method. 
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Figure 1. Generalized creep curve ε-t (creep curves obtained for different degrees of stress), marking the three characteristic phases of creep: Δi = (0.2 ÷ 0.95) σrc loading degrees; σrc is uniaxial compressive breaking strength. 
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Figure 2. Creep tests of the analyzed andesite subjected to different loads. 
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Figure 3. Deformation rate and load degree correlation for the strongly altered analyzed andesite. 
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Figure 4. Rheological model for the analyzed strongly metamorphosed andesite. 
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Figure 5. This is a figure. Schemes follow the same formatting: (a) deformation in time of the cross gallery; (b) deformation in time of the directional gallery with an arched profile with straight walls; and (c) deformation in time of the directional gallery with a circular profile. 
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Figure 6. The convergence of directional gallery and arched profile with straight walls. 
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Figure 7. Types of deformation as a function of time: 1—linear curve (ambiguity regarding the evolution of stability); 2—damped curve (predictable evolution towards stability); 3—accelerated curve (predictable evolution towards instability and destruction). 






Figure 7. Types of deformation as a function of time: 1—linear curve (ambiguity regarding the evolution of stability); 2—damped curve (predictable evolution towards stability); 3—accelerated curve (predictable evolution towards instability and destruction).



[image: Applsci 12 11877 g007]







[image: Applsci 12 11877 g008 550] 





Figure 8. Acceleration of deformation that precede the instability process. 
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Figure 9. Different dispersions around the same tendency: (a) case of a continuous deformation and small dispersion; (b) case of a deformation by jump and high dispersion. 
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Figure 10. Determining the concavity of the deformation curve by comparing the slopes: (a) accelerated curve—the slope of the straight line (i) is higher than the slope of the reference straight line; (b) damped curve—the slope of the straight line (i) is lower than the slope of the reference straight line. 






Figure 10. Determining the concavity of the deformation curve by comparing the slopes: (a) accelerated curve—the slope of the straight line (i) is higher than the slope of the reference straight line; (b) damped curve—the slope of the straight line (i) is lower than the slope of the reference straight line.



[image: Applsci 12 11877 g010]







[image: Applsci 12 11877 g011 550] 





Figure 11. Daily alarm: (a) the first alarm level; (b) the second alarm level. 
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Figure 12. The evolution in time of the deformations around the analyzed underground works performed in altered andesite: (a) gallery with a circular profile b’-b’’; (b) directional gallery with arched profile with straight walls b’-b’’; (c) cross gallery b’-b’’. 
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Figure 13. Deformation curve of the studied andesite obtained by in situ measurements. 
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Figure 14. The proposed rheological model. 
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Table 1. Data concerning creep tests.






Table 1. Data concerning creep tests.





	
Rock Type

	
Samples Dimensions (mm)

	
Load Stress, σ0, (MPa)

	
Tests Duration, t

	
Mean Breaking Stress, σmed, (MPa)

	
Load Degree, σ0/σmed




	
d

	
h

	
Hours

	
Days






	
Altered pyroxene andesite 1

	
42

	
42

	
11.55

	
1198

	
50

	
28.00

	
0.41




	
14.44

	
1198

	
50

	
0.51




	
21.60

	
168

	
7

	
0.70




	
28.00

	
12

	
0,5

	
1.00








1 Rock samples taken from the experimental sections from Suior mine, Romania.
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Table 2. Obtained results from creep tests.






Table 2. Obtained results from creep tests.





	
Rock Type

	
Load Stress, σ0, (MPa)

	
Stabilization Time, t (Hours)

	
Stable Area, σ0/σcritic

	
Relative Stability Area, σ0/σcritic

	
Unstable Area, σ0/σcritic






	
Altered pyroxene andesite 1

	
11.55

	
165

	
0.41

	
0.41–0.71

	
0.71




	
14.44




	
21.60




	
28.00








1 Rock samples taken from the experimental sections from Suior mine, Romania.
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Table 3. The convergence function and the parameter values of this function.
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Function Type

	
Coefficients

	
Coefficients Values 1






	
   y =   8 m  x  + b   

	
m

	
4800




	
b

	
1170








1 according to the direction of measurement.
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Table 4. Example of calculation for 10 measurements data.
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Computing Relations for N = 10 = H0 1

	
u

	
     p 1 *     

	
     p 2 *     

	
     p 3 *     

	
     p 4 *     

	
     p 5 *     






	
      p 1  = u =  1 2   p 1 *       p 2  =  u 2  −   33  4  = 2  p 2 *       p 3  =  u 3  −   293   20   u =  3 5   p 3 *       p 4  =  u 4  −   41  2   u 2  +   3861   80   =   12  5   p 4 *       p 5  =  u 5  −   155  6   u 3  +   6067   48   u = 10  p 5 *      

	
0

	
1

	
−4

	
−12

	
18

	
6




	
1

	
3

	
−3

	
−31

	
3

	
11




	
2

	
5

	
−1

	
−35

	
−17

	
1




	
3

	
7

	
2

	
−14

	
−22

	
−14




	
4

	
9

	
6

	
42

	
18

	
6




	
γ

	
165

	
264

	
5.148

	
6.864

	
7.800




	
H

	
     165  2    

	
528

	
     15.444  5    

	
     82.368  5    

	
78.000




	
      H j     H j  − 1     

	
   8  1 4    

	
   6  2 5    

	
   5   17   20     

	
   5  1 3    

	
   4   97   132     








1 computing relations for N = 9; N = 11; and N = 12 are shown in Appendix C.
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Table 5. Computing scheme of the coefficients.
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	x
	yk 1
	Values of yk
	Size of

(y+i − y−i)
	Value
	Size of

(y+i + y−i)
	Value





	10
	y−5
	
	y+5 − y−5
	
	-
	-



	20
	y−4
	
	y+4 − y−4
	
	-
	-



	30
	y−3
	
	y+3 − y−3
	
	-
	-



	40
	y−2
	
	y+2 − y−2
	
	-
	-



	50
	y−1
	
	y+1 − y−1
	
	-
	-



	60
	y0
	-
	-
	
	-
	-



	70
	y+1
	
	-
	-
	y+1 + y−1
	



	80
	y+2
	
	-
	-
	y+2 + y−2
	



	90
	y+3
	
	-
	-
	y+3 + y−3
	



	100
	y+4
	
	-
	-
	y+4 + y−4
	



	110
	y+5
	
	-
	-
	y+5 + y−5
	







1 for 11 measurements data.
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Table 6. Changing the state of the analyzed rocks under the action of the loads and in interaction with the water.
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	Stage
	State
	Behavior 1
	Flow Criterion
	Effects that Appear





	1
	Initial state
	Elastic to elastic–viscous

(Poynting–Thomson model)
	-
	No change in volume



	2
	Weathering state
	Elastic–plastic
	   α  y 1  +    y 2    = K   
	Volume increase



	3
	Breaking
	-
	   α  y 1  +    y 2    > K   
	







1 altered andesite from Suior mine, Romania.
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