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Abstract: There are many healthcare possibilities for the elderly, such as hospitals, nursing homes,
and home-based care. However, in times of COVID-19, most home-based elderly people did not
have sufficient supplies or healthcare as usual. Fulfilling their desire for an independent lifestyle
while protecting them from falls, sudden illness, or accidents is difficult. This study represents a
smart system for coping with this problem in public healthcare. The existing methods for residential
aged care (RAC), such as fall detection, focus on personal profiles and physical symptoms records or
use a collaborative filtering method to notify caregivers or family members that the elderly person
may be at a high level of risk. However, these methods have many limitations in times of COVID-19,
including insufficient risk factors, problems gathering information from mobile sensors, and issues
with handling human variability. This study proposes a new method for RAC in times of COVID-19
called the Intelligent Healthcare Agent System (IHAS), which, unlike the old system, incorporates
context information, such as indoor and outdoor (IO), standing and lying (SL), and resting and
moving (RM). IHAS integrates diverse mobile sensor data and utilizes artificial intelligence (AI)
technologies into the research model and learning-oriented prototype system that can manage human
variability. Ultimately, this study’s findings should contribute to the existing research and industrial
applications of RAC, as well as offer new avenues of study in future research.
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1. Introduction

The aging index is the ratio of the elderly (economically inactive and aged 65 and
over) to young people (aged 0 to 14). Statistics in Taiwan show that the aging index
has spiraled from 49.3 (2005) to 107.9 (2018) (see Ministry of the Interior, Department of
Statistics, https://www.moi.gov.tw/stat/chart.aspx, accessed on 1 November 2022), which
is higher than it is in many other developed countries. In addition, though some elderly
people with a chronic disease living in Taiwan have doctor or caregiver support in a nursing
home. However, in times of the COVID-19 epidemic, most sub-healthy elderly people
(ShEP) live alone and frequently go outside to keep their distance from others in their
daily activities, exposing themselves to a high level of risk for falls, sudden illness, and
accidents [1]. During the COVID-19 pandemic, new risk environment variables for falls
have emerged. The first environmental variable may be that the pandemic could increase
the risk of caregivers. For example, if the family members of caregivers test positive for
COVID-19, they have to remain at home, leading the elderly they care for to be lonely
at home. The second variable needed to be taken into consideration could be whether
the family members of elderly people themselves test positive or whether the infection of
colleagues leads to family members staying at home, which also increases the length of
isolation for the elderly. The third aspect is that elderly people themselves increase the
risk of infection because their resistance is weak, so they become more seriously ill or take
longer to recover than the average person. The existing protection process of government
regulations for the home isolation system never considered the issues mentioned above,
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it only took into account the spread of the virus and did not consider that these isolation
measures would cause these elderly individuals to fall prey to higher levels of risk. Based
on the new risk factors created by the pandemic, these past methods of preventing falls in
elderly people have produced significant changes that cannot be easily dealt with.

Falls are among the biggest dangers to ShEP and encompass any instance in which
an elderly person loses their balance or trips over something, especially during outside
activities. In Asia, over half of the injuries to senior citizens (over the age of 65) come from
falls and can have serious consequences [2,3]. For example, a fall can result in a bump
to the head that, if left untreated, can lead to permanent brain damage [1,4]. Therefore,
detecting accidents and reacting quickly is very important.

ShEP are an especially vulnerable group since they may not demonstrate typical patho-
logic symptoms or may express discomfort without any diagnosable or obvious illnesses.
These common occurrences demonstrate that traditional standard medical observation
methods are not suitable for ShEP [4]. Consequently, more needs to be undertaken for this
vulnerable group. Research on fall detection for ShEP care is still rare. Family members
and caregivers can call and ask questions regarding an elderly person’s activities, but it is
difficult to know the risk for falls without being physically present [5]. Important context,
such as location, has to be gathered in order to determine the risk level [6].

Although some technologies, such as an activity calendar, can provide us some infor-
mation about whether or not ShEP are undertaking dangerous activities; however, those
tools require caregivers and family members to maintain constant contact with ShEP and
guess whether or not they are in danger. The methods could be ineffective and do not
address the problem of dynamic human variability. The first research question: in times of
the COVID-19 epidemic, what is the relationship between dynamic risk factors and falls? In
order to better support an effective healthcare mechanism, we need to first understand the
relationship between risk factors and falls. The second research question: how can we build
an effective system based on the factors we found? To solve the second research question,
we need to develop an effective system based on all relevant factors, since existing studies
only focus on retrieving context information from limited methods and are ineffective in
examining many factors related to fall detection. The third research question: Can we build
a system with the personal learning pattern based on the second question? To overcome the
third research question, we need to fine-tune the system to handle human variability and
personal matters. Everyone has different behavioral patterns, and ShEP are no exception.

This study will provide an alternative to addressing these problems and is organized
as follows: In Section 2, the literature review is presented in detail. In Sections 3 and 4, a pro-
posed method and the research model are introduced. In Section 5, the evaluated method
is introduced and then followed by the conclusion, including the expected contributions
and limitations.

2. Literature Review

Some studies [4,7] state that medical records can help predict problems with falls, and
using additional data is critical to detecting dynamic status changes within a user’s daily
activities. In this section, some existing methods can be summarized as three categories:
personal information management (PIM), collaborative filtering (CF), and wearable devices
(WD). PIM in the ShEP area means the current physical conditions of the elderly. It includes
chronic diseases, nursing interventions, counseling experience, and fall accidents [8,9].
In order to find out what context factors of a healthcare system could be relevant to
fall detection, it is necessary to conduct a literature review in PIM. CF in the ShEP area
represents the sharing of real-time information between an elderly person, family member,
and caregivers and can be scaled up for a healthcare system or used through social media
application systems (e.g., Facebook) to let caregivers know whether or not the elderly person
is at risk [10]. WD is a good method for identifying patterns in the elderly individual’s
behavior and using big data analysis to help with fall detection [11,12].
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PIM is an important research area in information systems. PIM can be applied to a
healthcare system to allow for personalized features [8]. For example, patients can have
an inspection scheduled in their appointment based on the current state of their illness.
PIM is an important clue as to the current physical condition of an elderly person. Among
its varied advantages, PIM can provide relevant factors for falls and allow sub-healthy
patients and their caregivers to interactively and constructively participate in their own
care. PIM also provides information about altered behaviors that can impact fall detection,
including smoking, exercise, diet, and alcohol consumption [9].

Despite these advantages, however, PIM has some limitations. For example, a user
may need to guess whether or not a current activity corresponds to their PIM, but in a real
situation there is the possibility that risk activities may suddenly occur beyond their PIM.
Therefore, only using PIM is insufficient to protect against all variations and exceptions to
ShEP activities. In addition, PIM does not record every symptom experienced by a user (e.g.,
a mild sprain), and many caregivers do not know the details of patients’ chronic diseases
due to privacy issues. This possibility of misrepresentation limits its effectiveness in fall
detection and makes it insufficient as a sole source of information for healthcare systems.

CF is widely used in e-commerce applications, mobile applications, and recom-
mender systems [13–18], particularly in healthcare through a “Neighborhood-based”
approach [13,14,16], which provides a possible option for predicting the behavioral pat-
terns of the elderly based on their preferences [17]. In addition, CF can incorporate an
elderly person’s nearest neighbors or relevant members into clustering algorithms [14] for
predicting the probability of a fall. Therefore, the clinical applications of fall detection can
appropriately include CF (e.g., through social media or a decision support system) in the
hopes of identifying potential risks to the elderly.

Existing methods using CF techniques share the context information of an elderly
person with others to avoid possible risks. For example, the elderly can share their location
to their friends or family members when they are exercising in a park [19]. Therefore, that
information can be useful to caregivers when deciding whether or not there is a risk. If
such a system were applied accurately and effectively, a healthcare system based on CF
techniques could be more scalable than a system based on PIM, because CF can respond to
real-time situations dynamically.

However, CF requires the elderly person to send their current context information to
the system constantly and caregivers need to check the system frequently, which is tedious.
In addition, the context information may be misleading. For example, the elderly person
may walk to a park for exercise but may only be sitting on a chair without any risk. As a
result, CF is also insufficient for a healthcare system’s needs. In sum, it is not suitable to
use CF in times of the COVID-19 epidemic.

Wearable devices monitor the physiological characteristics of users [11,20,21] (e.g.,
weight and blood pressure) to know whether or not they are in danger. Some of the
factors it monitors could trigger chronic diseases, such as an unhealthy diet, a lack of
physical exercise, and irregular sleeping [20]. These unhealthy living habits could also
cause death or disability in the elderly. To address the challenges of monitoring chronic
diseases in real time, many researchers have designed these wearable devices to monitor
characteristics, such as blood pressure, and provide basic healthcare services with the
internet of things (IoTs) cloud architecture [11,12,21]. Some researchers use the WD method
to replace mobile sensors, such as accelerometers, in order to obtain fixed body placement
for ShEP [22]. However, this method is usually not accepted widespread because these
wearable devices could reveal the weaknesses of ShEP and they may also forget to wear
such external devices.

WDs still have many limitations. First, although a WD can measure the physical health
state of the elderly dynamically, it is not sufficient for identifying fall risks in real time.
Second, a WD cannot measure many human behaviors that may be relevant to fall risks,
only physiological characteristics. For example, a WD cannot tell whether elderly people
are sitting or running in a park or in a room. However, those activities could be risk factors
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for a fall. Third, many elderly people do not use a WD, so it could be less useful for ShEP
who undertake many activities.

Although existing studies reveal that PIM, CF, and WD could be relevant to fall
detection, there are still many limitations. The strengths and weaknesses of each approach
are summarized in Table 1. One of the common limitations across these systems is a lack
of sufficient context information to improve user performance and the awareness of fall
risks. In addition, the majority of studies on healthcare systems do not consider the serious
problem of human variability. Even some researchers use mobile sensors, but they mainly
focus on using the accelerometer as a sensor, which has insufficient context information
to lead to the low performance of fall detection [23,24]. This paper will try to address the
existing problems of user performance and human variability by using context information
and AI technologies. The proposed methods are described in the following sections.

Table 1. A summary of existing methods.

Approach Description Strengths Weaknesses

PIM

PIM helps with identifying an
elderly person’s current physical
condition. It provides information

on chronic diseases, nursing
interventions, counselling
experience, fall accidents,

etc. [8,9].

PIM could provide relevant
factors for fall detection because

knowing an elderly person’s
chronic disease treatment regimen

could allow caregivers to
interactively and constructively

participate in the elderly
person’s care.

PIM alone is insufficient for
sensing an elderly person’s

activities in real time.

CF

CF provides a possible option for
predicting behavioral patterns of

the elderly based on their
preferences [17]

CF can incorporate the elderly
person’s nearest neighbors or

relevant members into clustering
algorithms [14] for predicting the

probability of a fall.

Caregivers need to check the
system frequently, which

is tedious.

WD

WDs monitor the physiological
characteristics of users [11,20,21]
(e.g., weight and blood pressure)

to know whether they are
in danger.

WDs are a good method for
understanding and analyzing the
behavioral patterns of an elderly
person who needs fall detection

[11,12].

Many the elderly do not use a
WD, and it could be less

useful for sub-healthy the
elderly who undertake
diverse daily activities.

Most existing studies on the identification of risk context factors affecting the elderly
are designed and optimized for personal information management (PIM) only. This system
includes information, such as physical symptoms, impairment records, and demograph-
ics [7,25]. However, PIM is a highly personal and burdensome task because the information
is stored in multiple hierarchies [25]. Another existing method is called collaborative
filtering (CF). Users can share their current context information (e.g., interest or location)
with family members or caregivers to let them know whether they are safe or in danger. CF
is usually used through social network domains, such as Facebook. CF has been proven
to be beneficial in improving healthcare performance by alleviating the problems of con-
text information loss, disconnection, and redundant contacts [15,16,18,26], but it is not
enough for detecting sudden risks immediately and effectively. In summary, most studies
focus on developing a system of fall detection through static risk factors, and there are
few empirical studies that systematically examine the impact of those factors on elderly
care [27]. Using PIM (e.g., medical records) and CF systems to detect abnormalities without
a much wider variety of real-time context information and predictive algorithms (e.g.,
through AI technologies) creates obstacles to alerting ShEP of risk factors immediately and
accurately [28,29].

3. The Proposed Method

According to International Data Corporation (IDC) reports, the worldwide mobile
device market could reach 1.76 billion units shipped in 2020 (see Worldwide Smartphone
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Forecast Update, https://www.idc.com/, accessed on 1 November 2022). Many studies
show that ShEP widely uses smartphones in their everyday lives [30–32]. Yet, their mobile
technology needs with regard to healthcare application systems have received too little
attention from academic researchers or practitioners so far. One of the purposes of this
study is to find out the risk factors of fall detection among ShEP who still participate in
numerous daily activities and regularly use mobile phones for their social communications.
This study proposes a novel method using smartphones with mobile sensors to detect and
monitor the dynamic context information of ShEP. The proposed method is suitable for
people who did not need body contact during the COVID-19 epidemic.

The first proposed method is an indoor and outdoor (IO) approach. Smartphones
can be used in fall detection to alert caregivers immediately after an accident, which can
help lower the possibility of further consequences, such as permanent brain damage or
sudden death. However, existing studies only focus on technologies, such as three-axis
accelerometers or gyroscopes [5,33], which only detect some phenomena. Most ShEP
participate in activities in different locations with varying fall risks [4]. For example, forest
trails and bedrooms present different risk probabilities for falls; thus, it is difficult to
accurately assess risk factors only using PIM or CF. For these reasons, the first proposed
method is an indoor and outdoor (IO) approach to fall detection.

Light intensity could be one of environment contexts for detecting whether a ShEP
is indoors or not. Mobile light sensors can help dynamically capture light intensity. For
example, if the value of illumination is greater than 5000 lux, which indicates in a sunny
environment, it could suggest a lower probability of falling. Therefore, to decrease the
probability of falls, illumination should be one of the more significant factors, such as
changing our visualization to a bright level. Mobile light sensors could detect indoor or
outdoor environments because we can use the illumination value as an emergency number
in a dark room. If the value breaks through a certain threshold, we can conclude that
a fall is occurring. The IO algorithm is presented below (Algorithm 1). The algorithm
initializes the light dataset values with R programming and sets up the logic functions by
the IES (the Illuminating Engineering Society of North America (https://www.ies.org/,
accessed on 1 November 2022)) based on initial dataset, computes the categories to enable
the dynamic overall detection on the light shift to measure whether the individual is in an
indoor environment or not.

Algorithm 1 Indoor and Outdoor (IO) Approach

1. Initialization of parameters:
dataset1 <- maml.mapInputPort (1) # class: data.framen <- nrow (dataset1) Categories <- c ()
2. Set up logic functions:
for (i in 1:n){
light <- dataset1 [i,1]
if (light >= 0 & light < 120) cm 1 = Dark room
if (light >= 120 & light < 250) cm 1 = Dimmed room
if (light >= 250 & light < 1000) cm 1 = Bright room
if (light >= 1000 & light < 5000) cm 1 = Cloudy
if (light >= 5000) cm 1 = Sunny
Categories <- c (Categories, cm 1)}
3. Compute the indoor and outdoor (IO):
data.set <-c bind (dataset1, Categories)
maml.mapOutputPort ("data.set");

The IO algorithm approach takes into account a variety of contextual environments
and categorizes them according to their risk factors. Consequently, all environments are
labeled as “indoor” or “outdoor” in order to determine whether the elderly person will
be at risk of a fall because noise, lights, and temperature could be important cues for their
healthcare, mobile devices with an embedded light sensor can also be used to identify the
environment surrounding the user [34].

https://www.idc.com/
https://www.ies.org/
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The second proposed method is a standing and lying (SL) approach. According to the
multitasking theory [35], a user is more at risk of falling when performing a secondary task
in addition to a primary task. Those behaviors include when elderly people use mobile
phones, although the risk is varied depending on whether the user performs the second
action while holding the phone or while in the act of putting it down [34,35]. Consequently,
it is important to know whether a user is holding onto or putting down their mobile device.

Although a few studies propose mobile sensors for fall detection using gyroscopes,
tri-axis accelerometers, and magnetic sensors [5,33,36], none of these technologies focus
on standing and lying (SL) for multitasking detection [22,37]. Moreover, to the best of
our knowledge, no literature has mentioned SL-based fall detection or usage within a fall
detection system. The accelerometer z-axis sensor could be used for detecting standing or
lying because we can use the surface of the earth by 9.8 m/s2 as G (that is, 1 G = 9.8 m/s2)
when lying. I If the barycenter breaks through a certain threshold, such as θ, we can
conclude that a fall is occurring. Conversely, if the inclination is supported by devices such
as crutches, we can measure the value of the acceleration if it is lower than the θ, which
is back to the horizontal plane to avoid the falling. The SL algorithm is presented below
(Algorithm 2). The algorithm initializes the accelerometer X, Y, and Z values and sets up
the logic functions by the dynamic angle based on initial AccX0, AccX1 and AccX2 and
computes the falling points (FP) to enable the dynamic overall detection on the barycenter
shift to measuring whether the FP is sufficient or not.

Algorithm 2 Standing and Lying (SL) Approach

1. Initialization of parameters:
AccX0, AccX1, AccX2, AccY0, AccY1, AccY2, AccZ0, AccZ1, AccZ2
2. Set up logic functions:
Fall_X012 (AccX0, AccX1, AccX2)
Fall_Y012 (AccY0, AccY1, AccY2)
Fall_Z012 (AccZ0, AccZ1, AccZ2)
3. Compute the falling points (FP):
If Fall_X012 && Fall_Y012 && Fall_Z012 >= FP then Fall = yes
Else Fall = no
End if

Because elderly people use smartphones, an effective healthcare system should be
able to detect their risk level and notify them to protect against falls until their tasks are
completed. For these reasons, this SL algorithm approach is an important and novel method
in our goal to solve fall accident issues.

The third proposed method is a resting and moving (RM) approach. ShEP are at an
increased risk for falls during daily activities because they move all the time, and CF’s
location tracking status has been shown to be insufficient for their protection. As previously
described, the major concern using CF is its requirement for the elderly person to report
their preference or location status and its lack of context about whether the elderly person
is walking or running, which is important information for fall detection. Therefore, a
new method that can detect whether they are resting or moving is necessary. In the RM
approach, it is important for a real-time response to fall detection, so the instant speed
(distance divided by instant time (m/s)) of the approach is used for measurement. We can
use time sensors to measure instant time and GPS for the distance. As for transition speeds,
they are 1 m/s, 2 m/s, and 3.5 m/s, corresponding to walking, running, or driving [34,38].
It indicates walking when the speed is less than 2 and greater than 1; a speed of less than 3.5
and greater than 2 represents running. If it is greater than 3.5, the RM changes to driving
status. The RM algorithm is presented below (Algorithm 3). The first step of the algorithm
initializes the instant speed dataset values with R programming. The second step is to set
up the logic functions based on the previous research dataset. The final step is to output
the categories, such as the walking, running, and driving statuses, in order to enable the
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dynamic overall detection of the RM approach for measuring whether an individual is
moving or not.

Algorithm 3 Resting and Moving (RM) Approach

1. Initialization of parameters:
Dataset2 <- mam1.mapInputPort (1) # class: data.frame
n <- nrow (dataset2)
Categories <- c ()
2. Set up logic functions:
for (i in 1:n){
instant speed <- dataset2 (i,1]
if (instant speed >= 0 & instant speed < 1) is 1 = Staying
if (instant speed >= 1 & instant speed < 2) is 1 = Walking
if (instant speed >= 2 & instant speed < 3.5) is 1 = Running
if (instant speed >= 3.5) is 1 = Driving
Categories <- c (Categories, is 1)}
3. Compute the resting and moving (RM):
data.set <- cbind (dataset2, Categories)
maml.mapOutputPort (“data.set”);

The proposed system architecture (Figure 1) defines the process for obtaining context
awareness, including context interpretation and logical computing. To increase the accu-
racy, personalization, and learning orientation of healthcare systems, this study not only
investigates the existing studies on fall detection to try to determine all possible context
factors, but also uses artificial intelligence (AI) technologies to increase the performance of
healthcare systems. With those context factors added, we developed a system called the
Intelligent Healthcare Agent System (IHAS). A large variety of ShEP context information is
retrieved via physical sensors, and it must be properly represented with a structured and
interchangeable format. The adaptive service is activated only when ShEP are not available,
and unexpected results regarding context awareness are sent back to cloud storage for
further learning adjustments in order to improve the system’s response times. In this way,
the proposed method can respond to real-time fall detection immediately after complex
logical computing, which is of the highest importance.

The proposed system architecture, IHAS, can differentiate between indoor and out-
door environments by using tools such as mobile light sensors to detect the availability
and intensity of lights (i.e., their illuminance). According to the rule of the Illuminating
Engineering Society of North America (IES), which is the recognized technical authority on
illumination and defines standard levels of lights based on the lux unit of lighting [39], the
value of illuminance should be transformed into understandable information. For example,
if the value of illuminance is greater than 1000 lux, one can infer that the elderly person is
outside. As with SL, if we want to overcome unstable human motions, we can also use the
accelerometer z-axis sensor to detect the horizontal angle of the orientation of mobile de-
vices [34]. Therefore, if an absolute value of acceleration is greater than a certain threshold
above 9.8 m/s2 (i.e., 1 G), then we can say that the orientation is horizontally upward or
downward [34]. In addition, the technology separates body motion and movement into
SL and RM in order to reduce possible errors from false detection. Further protections
against errors are afforded by its use of multiple data points to detect speed. One cannot
obtain user speed instantly from a single mobile sensor, such as an accelerometer sensor.
Instead, the speed calculation should be equal to the distance (meters) per second and
should measure the distance divided by instant time (m/s) [34]. If the speed is greater than
1 m/s, we can say that the elderly person is moving [40].
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Many studies mention that elderly people desire to live at home when afflicted with
chronic diseases [8,9]. However, ShEP are more active. Therefore, RM could be a meaningful
aid for fall detection. We can detect the vertical acceleration and orientation of ShEP by
using mobile sensors in order to determine whether they are lying or standing [41,42].
However, it is difficult when only using a single mobile sensor, such as an accelerometer,
to detect RM because ShEP are often active outside, regularly transitioning from the lying
to standing status. For that reason, adding this information context is important. In
addition, ShEP usually keep their phones in their pockets when walking or running. As
a result, significant errors are introduced from simply using accelerometers, gyroscopes,
and magnetic sensors to detect RM. Unlike these other methods, IHAS can calculate instant
speed without considering the average velocity because a fall can occur suddenly, and an
effective system needs to be aware of the change of speed immediately.

4. The Research Model

An ideal healthcare system would have the ability to gather instant context information
and promptly respond to ShEP and caregivers [43]. Therefore, we propose a novel method
including IO, SL, and RM sub-methods to increase the effectiveness of the system. We
propose that healthcare systems also consider the methods of personalization and learning
orientation. IHAS utilizes machine-learning algorithms to deal with the challenge of
human variability [44,45]. The elderly can have different preferences and may change
their behaviors based on their dynamic personal information (e.g., plasma glucose) even
under the same context conditions [46–48]. Thus, the system automatically needs to learn
information by itself. The research model for this system, which compares with existing
methods, is shown in Figure 2.
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In this research model, Treatment 1 with PIM and CF is treated as the baseline to
compare against IHAS and other sub-methods. Although WD can also reveal the real-time
context information, many ShEP are not willing to use it all day if it performs some of the
same functions as a mobile phone. Therefore, this study removes it from the baseline for
reacting to a real situation. IHAS is Treatment 4, incorporating all of the above relevant
factors. Because this study focuses on the interaction between the elderly and mobile
devices during their daily activities, the reporting time and accuracy are appropriate for
measuring user performance. AI technologies utilize a substantial amount of context
information for training, so user performance may also be affected. There is no existing
work on incorporating IO, SL, and RM into a system. However, as previously described,
these methods could significantly improve the accuracy of fall detection. Therefore, this
study contends that PIM, CF, IO, SL, and RM are all relevant to fall detection. The first
hypothesis is the following:

H1. Incorporating the risk factors (a) PIM, (b) CF, (c) IO, (d) SL, and (e) RM into the
system will have a positive impact on the performance of fall detection.

The main purpose of this study is to prove that Treatment 4 (IHAS) is more effective
in fall detection than the existing methods, including Treatments 1, 2, and 3. Therefore,
IHAS should be compared with these existing methods to determine the accuracy of each
approach in fall detection. The rest of the hypotheses are proposed using the following:

H2. In fall detection, IHAS will lead to the best performance when compared to the
baseline (Treatment 1), followed by Treatment 2 (H3) and Treatment 3 (H4).

As previously described, we utilize AI technologies in IHAS to handle human vari-
ability, because AI can adapt to different user patterns through training and build personal-
ization and self-learning mechanisms. From this perspective, IHAS offers more benefits to
ShEP with integrated AI technologies.

5. Experiment Design

The prototype system was built based on IHAS. The prototype system can collect the
ground truth data through a questionnaire regarding IO, SL, and RM context information
coupled with AI technologies collecting quantitative measures of user performance. A
prototype system (Figure 3) was developed using Android Studio software, which is
built on Java programming and Android SDK. This mobile application services (APPs)
type is suitable for running on smartphones in order to automatically detect real-time
context information.
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The availability of ShEP data is checked through a context-aware process based on the
system architecture of IHAS. There are 148 ground truth records (please see the Ground
Truth of the Availability for Evaluation, the Excel data used to support the findings of
this study have been deposited in the “The Ground Truth of the Availability for Evalua-
tion.xlsx” repository in [https://drive.google.com/file/d/1Nd3KXnmRZKhc9VgWsCe8
qXxVBHMeJ9G7/view?usp=sharing, accessed on 1 November 2022].) collected from the
questionnaire regarding the availability factors, which proves that the proposed method is
better than the existing methods. We recruited 148 users, all over 18 years old, to fill the
perceptions through the online survey (https://www.surveycake.com/s/6o7VO, accessed
on 1 November 2022), and all information concerning this questionnaire was given to
participants before the survey, such as the meanings of the terms PIM and CF, the ability to
interrupt the survey anytime, consent agreements of free will, no risk statements, etc. In
order to evaluate IHAS, the independent variable is defined with the level of context used,
which was operationalized on four levels: (1) a baseline of PIM and CF; (2) PIM, CF, and
IO; (3) PIM, CF, IO, and SL; and (4) PIM, CF, IO, SL, and RM. The dependent variable is the
accuracy rate of correct fall predictions, which is associated with the research questions as
well as the hypotheses.

The experimental design of this paper is mainly based on the scope of the IHAS
model to develop a smartphone prototype APPs software to collect real-time dynamic
information about the elderly. At present, this prototype system is mainly used to collect
environmental perceptions and use questionnaire feedback from the elderly. According
to the prototype system, we can continue to analyze whether or not the elderly could be
at risk (not availability) through machine learning algorithms in response to these four
situations. In the future, the complete formal commercial ShEP system based on the IHAS
architecture will emphasize the comfort of users and the ease of operation of mobile phones
for the elderly. Dynamic adjustments will be made according to the feedback of the users,
such as the expansion of the detecting information and the alerts function if they are at risk.
The system will be combined with the different mobile phone interfaces of family members
and caregivers to enable the instant messages function regarding prevention, which can
generate personalized interfaces for different user groups.

For classification tasks, true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) rates assess the results of classifiers with observations. Positive or
negative means a classifier’s prediction, and the terms “true” or “false” refer to whether or
not the prediction could correspond to the observation [49,50]. Accuracy is the number of
correct predictions divided by the total number of fall predictions (i.e., accuracy = (TP +
TN)/(TP + TN + FP + FN)). Machine learning algorithms (including random forest, SVMs,
logistic, and MLP) are used with 10-fold cross validation to obtain the accuracy of the
fall predictions of IHAS with four levels of context used. A single subsample provides
validation data for testing, and the remaining nine subsamples are training data. All
observations can be used for both training and testing, and each observation for validation
occurs exactly once. These algorithms are chosen because they are popular machine
learning algorithms and have been widely used [51].

https://drive.google.com/file/d/1Nd3KXnmRZKhc9VgWsCe8qXxVBHMeJ9G7/view?usp=sharing
https://drive.google.com/file/d/1Nd3KXnmRZKhc9VgWsCe8qXxVBHMeJ9G7/view?usp=sharing
https://www.surveycake.com/s/6o7VO


Appl. Sci. 2022, 12, 11847 11 of 14

The accuracy of classification algorithms is shown in Figure 4. For the baseline only,
the accuracy of random forest is 73%, SVMs is 70.9%, logistic is 73.6%, and MLP is 77.7%.
After adding IO, the accuracy of random forest is 75, SVMs is 79.1%, logistic is 79.1%, and
MLP is 78.4%. If SL is continuously increased to the risk factor list, the accuracy of random
forest is 79.8, SVMs is 82.4%, logistic is 83.1%, and MLP is 81.1%. As for IHAS, the accuracy
of random forest is 79.1, SVMs is 84.5%, logistic is 83.8%, and MLP is 81.1%.
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To test the first hypothesis, ANOVA was used to assess whether or not the effect of
risk factors reveals significant differences between using the availability data on the fall
detection model (including PIM, CF, IO, SL, and RM) and not using the availability data.
The main effects of fall prediction (F (3, 15) = 11.75, p < 0.01) are significant. Therefore, the
first hypothesis is supported. The LSD test was carried out for multiple comparisons. IHAS
has significantly higher accuracy than the baseline (mean difference = 8.33, p < 0.05) and
Treatment 2 (mean difference = 4.23, p < 0.05). Therefore, the second and third hypothesis
are all supported. As for Treatment 3 (mean difference = 0.53, p > 0.05), the fourth hypothesis
is not supported.

To give a comprehensive discussion of such results, regarding the relevant risk factors
of availability based on sensor information, the results of the evaluation indicate that the risk
factors had significant impacts on fall detection. IHAS (including all risk factors) performs
better in fall detection than the existing methods using only PIM and CF (Treatment 1).
There is a difference in the results between IHAS and other treatments. For example,
Treatment 3 has an insignificant impact on increasing fall detection.

6. Conclusions

According to the evaluation in the previous section, IHAS is compared to the existing
methods and functions significantly better than them. In addition, the proposed system can
trigger a notification to caregivers to assist in reducing the risks of falls and their potential
consequences. IHAS represents a better tool for ShEP than only relying on behavioral or
medical histories, which may increase the error rate of fall predictions because of human
variability in predicting the possible risk of falls.

IHAS utilizes classification algorithms, which are the most popular AI technologies, to
calculate the accuracy of four different treatments. IHAS addresses several existing prob-
lems in fall detection systems: (1) a focus limited to one or two types of fall detection, (2) a
lack of system architecture defining the process for context awareness, and (3) an oversight
regarding human variability. This research led to several contributions: (1) incorporating
all risk factors concerning fall detection, (2) examining the effect of the risk factors on fall de-
tection, (3) separately examining the effects of PIM, CF, IO, SL, and RM, (4) overcoming the
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challenges of building a context-aware process in the system architecture, and (5) utilizing
AI technologies to manage human variability.

This study contributes to both practical applications for fall detection, as well as
future research on the topic. As more of the population ages, in times of the COVID-19
epidemic, falls will continue to be a huge problem, especially for ShEP. Although the issue
is becoming more and more serious, this topic is still in an early stage of discussion, and
ShEP are suffering. More needs to be done. This paper also has some limitations. For
example, we will need to collect vast amounts of data through AI technologies in order to
verify the performance of IHAS effectively. Nevertheless, this study offers a clear direction
for further research and promising initial results in fall detection.
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