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Abstract: The effects of advanced nonlinear varied shear coefficient and third-order shear deformation
theory (TSDT) on the dynamic responses of thick functionally graded material (FGM) plates under
thermal vibration are investigated. The nonlinear coefficient of the displacement field of TSDT is used
to obtain the expression of advanced varied shear coefficient for the thick FGM plates. The dynamic
displacements, shear rotations and stresses in numerical results under sinusoidal applied heat loads
are obtained and investigated. Two parametric effects of environment temperature and FGM power
law index on the dynamic responses of thermal stress and center deflection of thick FGM plates
are also investigated. The transient responses of center deflection are found for the cases of simply
homogeneous equation and fully homogeneous equation. Also, the transient responses of center
deflection are found for cases of nonlinear and linear varied-modified coefficient of shear correction.

Keywords: advanced; nonlinear; shear correction; TSDT; dynamic responses; thick FGM plates

1. Introduction

There are some investigations of shear deformation effects in composited plates. In
2020, Zenkour and El-Shahrany [1] used various displacement theories, e.g., third-order
shear deformation theory (TSDT), first-order shear deformation theory (FSDT), etc., to
study laminated magnetostrictive plates; in their research, the numerical dynamic results of
vibration suppression are presented. There are some dynamical investigations of thermal
vibrations in the temperature environment. In 2020, Wu et al. [2] used an experimental
test for hypersonic vehicles to investigate the vibration of lightweight ceramic insulating
material in extremely thermal conditions. In 2020, Shariyat and Mohammadjani [3] applied
a three-dimensional (3D) nonlinear variable thermos-viscoelastic numerical theory to in-
vestigate the dynamic stress and time response of vibration in thick functionally graded
material (FGM) rotating annular plates undergoing temperature rises. In 2020, Fan et al. [4]
presented the numerical analysis of a 3D integrated package to investigate the fatigue
of through-silicon-via copper (TSV-Cu) structures under thermal and vibration coupled
loads. In 2019, Su et al. [5] used FSDT in a numerical approach to investigate the flutter
and vibration of stiffened FGM plates under different temperature conditions. In 2019,
Fang et al. [6] used two versions of Euler–Bernoulli beam theory (EBT) and Timoshenko
beam theory (TBT) in a numerical approach to study the thermal vibration behaviors of
rotating FGM micro-beams. In 2016, Duc et al. [7] used FSDT in a numerical approach to
calculate the dynamic and vibration for piezoelectric FGM plates under different tempera-
ture conditions. In 2006, Huang and Shen [8] used higher-order shear deformation theory
(HSDT) in a numerical approach to investigate the time response of piezoelectric FGM
plates under different temperature conditions. In 2004, Huang and Shen [9] used HSDT
in a numerical approach to investigate the time response of FGM plates under different
temperature conditions.
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The generalized differential quadrature (GDQ) method has been applied for FGM
plates. In 2019, Hong [10] studied the dynamic responses of thick FGM plates by using
the TSDT effect and fully homogeneous equation under different temperature conditions.
The simply modified factor of shear correction was used without considering the nonlinear
terms of TSDT. In 2014, Hong [11] studied the dynamic responses of Terfenol-D FGM plates
by considering the FSDT effect and the simply modified factor of shear correction under
different temperature conditions. In 2012, Hong [12] presented the dynamic responses for
Terfenol-D FGM plates by using the FSDT effect and constant value of shear correction
equal to 5/6 under rapid heating. It is interesting to further study the dynamic responses of
stresses and deflection in the TSDT approach of GDQ computations, and the advanced non-
linear varied-modified coefficient of shear correction for thick FGM plates under different
temperature condition. The parametric effects of temperature and power law index of FGM
on the dynamic responses of stress and deflection are investigated for thick FGM plates.

This paper will proceed as follows. Firstly, the advanced nonlinear varied-modified
coefficient of shear correction including the coefficient term z3 of TSDT is presented. Sec-
ondly, the dynamic responses of stresses and deflection in GDQ computation are presented.
Finally, the parametric effects of temperature and power law index of FGM on the dynamic
responses of stress and deflection are presented.

2. Formulation Procedures

The two constituent materials of the FGM plate (e.g., FGM material 1 and FGM
material 2) are shown in Figure 1. Along the axes of x and y, the lengths are a and b,
respectively. The thickness of FGM material 1 is h1, the thickness of FGM material 2 is h2
and the total thickness of the FGM plates is h∗ in the direction of z in the Cartesian system.
Young’s modulus of thick FGM plates in power law function are used in the standard form
of index Rn under environment temperature T. The other properties are assumed in the
average values of forms. The individual properties Pi of the constituent material of the
FGMs are functions of T which can be obtained. The time dependent of displacements
u and v of the thick FGM plates can be assumed in the nonlinear forms with respect to z
direction by using the coefficient c1c1 term of TSDT equations [13] as follows,u

v
w

 =

u0(x, y, t)
v0(x, y, t)
w(x, y, t)

+ z

ψx(x, y, t)
ψy(x, y, t)

0

− c1z3

ψx +
∂w
∂x

ψy +
∂w
∂y

0

, (1)

in which t is time. Coefficient for c1 = 4/
(

3h∗2
)

is given in the TSDT approach, and u0, v0

and w are the displacements in the x, y and z axes of the middle-plane of the thick FGM
plates, respectively. ψx and ψy are the shear rotations in the x and y directions.
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Figure 1. Thick FGM plate under sinusoidal applied heat loads. 

The stresses in normal direction ( xσ  and yσ ) and in the shear direction ( xyσ , yzσ
and xzσ ) for the thick FGM plate under temperature difference T∆  can be obtained and 

expressed in terms of the products of stiffness and strains with thermal coefficients xα , 

yα  and xyα . The parameter T∆  between the thick FGM plate and the curing environ-
ment area can be obtained in linear form with z, also in sinusoidal form with x, y and t 
that can be expressed by Hong as follows [10], 

∆𝑇𝑇 = �
𝑧𝑧
ℎ∗
𝑇𝑇�1 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜋𝜋𝑥𝑥
𝑎𝑎
� 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜋𝜋𝑦𝑦
𝑏𝑏
�� 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾𝑡𝑡), (2) 

in which 𝛾𝛾  is the frequency of applied heat flux, 𝑇𝑇�1
 

is the temperature amplitude of 
applied heat loads. 

The dynamic equations of motion with nonlinear TSDT for a thick FGM plate can be 
obtained by assuming that the first partial differentation in displacements and shear 
rotations with respect to z are going to zero in the strain-displacement relations [14]. The 
dynamic equilibrium differential equations with nonlinear TSDT of thick FGM plates could 
be obtained by Hong [10] with the following integrals for the stiffness ss jiQ  and ** jiQ  in 

the z  direction, respectively, 

dzzzzzzQHFEDBA
h

h jijijijijijiji ssssssssssssss ),,,,,1(),,,,,( 64322

2

*

*∫−= , )6,2,1,( =ss ji , (3a) 

dzzzzzzQkHFEDBA
h

h jijijijijijiji ),,,,,1(),,,,,( 54322

2

*

* ************** ∫−= α , )5,4,( ** =ji , (3b) 

where αk  is the advanced nonlinear varied-modified coefficient of shear correction. 

In the advanced nonlinear varied αk  expression including the 𝑐𝑐1  terms for the 

thick FGM plates in terms of Young’s modulus 1E  and 2E  in constituent material 1 
and 2, respectively, can be obtained as follows, 

FGMZIV
FGMZSV

h
k *

1
=α  (4) 

where 
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑐𝑐1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)2, 
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 2𝑐𝑐1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1 + 𝑐𝑐12𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2, 

1c

Figure 1. Thick FGM plate under sinusoidal applied heat loads.

The stresses in normal direction (σx and σy) and in the shear direction (σxy, σyz and σxz)
for the thick FGM plate under temperature difference ∆T can be obtained and expressed
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in terms of the products of stiffness and strains with thermal coefficients αx, αy and αxy.
The parameter ∆T between the thick FGM plate and the curing environment area can be
obtained in linear form with z, also in sinusoidal form with x, y and t that can be expressed
by Hong as follows [10],

∆T =
[ z

h∗
T1sin

(πx
a

)
sin
(πy

b

)]
sin(γt) (2)

in which γ is the frequency of applied heat flux, T1 is the temperature amplitude of applied
heat loads.

The dynamic equations of motion with nonlinear TSDT for a thick FGM plate can
be obtained by assuming that the first partial differentation in displacements and shear
rotations with respect to z are going to zero in the strain-displacement relations [14]. The
dynamic equilibrium differential equations with nonlinear TSDT of thick FGM plates could
be obtained by Hong [10] with the following integrals for the stiffness Qis js and Qi∗ j∗ in the
z direction, respectively,

(Ais js , Bis js , Dis js , Eis js , Fis js , His js) =
∫ h∗

2

−h∗
2

Qis js(1, z, z2, z3, z4, z6)dz, (is, js = 1, 2, 6), (3a)

(Ai∗ j∗ , Bi∗ j∗ , Di∗ j∗ , Ei∗ j∗ , Fi∗ j∗ , Hi∗ j∗) =
∫ h∗

2

−h∗
2

kαQi∗ j∗(1, z, z2, z3, z4, z5)dz, (i∗, j∗ = 4, 5), (3b)

where kα is the advanced nonlinear varied-modified coefficient of shear correction.
In the advanced nonlinear varied kα expression including the c1c1 terms for the thick

FGM plates in terms of Young’s modulus E1 and E2 in constituent material 1 and 2, respec-
tively, can be obtained as follows,

kα =
1
h∗

FGMZSV
FGMZIV

(4)

where

FGMZSV = (FGMZS − c1FGMZSN)2,
FGMZIV = FGMZI − 2c1FGMZIV1 + c1

2FGMZIV2,

FGMZS =
E2 − E1

h∗Rn
[

(
h∗
2 + h∗

2

)Rn+3

Rn + 3
−

h∗
(

h∗
2 + h∗

2

)Rn+2

(Rn + 2)
+

h∗2
(

h∗
2 + h∗

2

)Rn+1

4(Rn + 1)
] + E1

(
h∗3

24
+

h∗3

24

)

FGMZSN = E2−E1
h∗Rn [

(
h∗
2 + h∗

2

)Rn+5

Rn+5 −
2h∗
(

h∗
2 + h∗

2

)Rn+4

Rn+4 +
3h∗2

(
h∗
2 + h∗

2

)Rn+3

2(Rn+3)

−
h∗3
(

h∗
2 + h∗

2

)Rn+2

2(Rn+2) +
h∗4
(

h∗
2 + h∗

2

)Rn+1

16(Rn+1) ] + E1

(
h∗5

160 + h∗5

160

)
FGMZI = (E2 − E1)

2h∗5
[

1
(Rn+2)2(2Rn+5)

− 1
(Rn+1)(Rn+2)(2Rn+4) +

1
4(Rn+1)2(2Rn+3)

]
+2(E2 − E1)h∗5

{
E1

2(Rn+2)

[
1

Rn+5 − 1
Rn+4 + 1

4(Rn+3)

]
− E1

4(Rn+1)

[
1

Rn+4 − 1
Rn+3 + 1

4(Rn+2)

]}
− 2E1h∗5

8

{
(E2 − E1)

[
1

(Rn+2)(Rn+3) −
1

2(Rn+1)(Rn+2)

]
+ E1

24

}
+E1

2h∗5
(

1
320 + 1

64

)
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FGMZIV1 = (E2 − E1)
2h∗7

[
1

(Rn+2)(Rn+4)(2Rn+7) −
3

2(Rn+2)(Rn+3)(2Rn+6)

+ 3
4(Rn+2)2(2Rn+5)

− 1
2(Rn+1)(Rn+2)(2Rn+4)

− 1
2(Rn+1)(Rn+4)(2Rn+4) +

3
4(Rn+1)(Rn+3)(2Rn+5)

+ 1
16(Rn+1)2(2Rn+3)

]
+E1(E2 − E1)h∗7

[
1

2(Rn+4)

(
1

Rn+7 − 1
Rn+6 + 1

4(Rn+5)

)
− 1

8(Rn+4)(Rn+5) −
3

4(Rn+3)

(
1

Rn+6 − 1
Rn+5 + 1

4(Rn+4)

)
+ 3

16(Rn+3)(Rn+4) +
3

8(Rn+2)

(
1

Rn+5 − 1
Rn+4 + 1

4(Rn+3)

)
− 7

64(Rn+2)(Rn+3) −
1

16(Rn+1)

(
1

Rn+4 − 1
Rn+3 + 1

4(Rn+2)

)
+ 3

128(Rn+1)(Rn+2)

+ 1
4(Rn+2)

(
1

Rn+7 − 2
Rn+6 + 3

2(Rn+5) −
1

2(Rn+4) +
1

16(Rn+3)

)
− 1

8(Rn+1)

(
1

Rn+6 − 2
Rn+5 + 3

2(Rn+4) −
1

2(Rn+3) +
1

16(Rn+2)

)]
+E1

2h∗7
(

1
3584 − 1

2560 − 1
1536 + 1

512

)
FGMZIV2 = (E2 − E1)

2h∗9
[

1
(Rn+4)2(2Rn+9)

− 9
4(Rn+3)2(2Rn+7)

+ 9
16(Rn+2)2(2Rn+5)

− 1
64(Rn+1)2(2Rn+3)

− 3
(Rn+3)(Rn+4)(2Rn+8) +

3
2(Rn+2)(Rn+4)(2Rn+7)

− 1
4(Rn+1)(Rn+4)(2Rn+6) −

9
4(Rn+2)(Rn+3)(2Rn+6)

+ 3
8(Rn+1)(Rn+3)(2Rn+5) −

3
16(Rn+1)(Rn+2)(2Rn+4)

]
+2(E2 − E1)E1h∗9

[
1

4(Rn+4)

(
1

Rn+9 − 2
Rn+8 + 3

2(Rn+7) −
1

2(Rn+6) +
1

16(Rn+5)

)
− 3

8(Rn+3)

(
1

Rn+8 − 2
Rn+7 + 3

2(Rn+6) −
1

2(Rn+5) +
1

16(Rn+4)

)
+ 3

16(Rn+2)

(
1

Rn+7 − 2
Rn+6 + 3

2(Rn+5) −
1

2(Rn+4) +
1

16(Rn+3)

)
− 1

32(Rn+1)

(
1

Rn+6 − 2
Rn+5 + 3

2(Rn+4) −
1

2(Rn+3) +
1

16(Rn+2)

)
− 1

64

(
1

(Rn+4)(Rn+5) −
3

2(Rn+3)(Rn+4) +
3

4(Rn+2)(Rn+3)

− 1
8(Rn+1)(Rn+2)

)
] + E1

2h∗9
(

1
36864 − 1

10240 + 1
256

)
The values of advanced nonlinear kα are usually functions of c1, Rn and T, but is

independent to the value of h∗. The GDQ numerical method is used in the computation
for the derivative of a smooth function at a coordinate of an arbitrary grid point (xi, yj), in
which subscripts i = 1, 2, . . . , N and j = 1, 2, . . . , M in a domain [11,15–17]. The clarification
of kα expression in Equation (4) can be presented in more detail and is referred to in 2022
by Hong [18]. The non-dimensional parameters (X, Y, U, V and W) are used in the GDQ
approaches under no in-plane distributed forces and no external pressure load (q = 0)
as follows,

X = x/a, Y = y/b, U = u0/a, V = v0/b, W = 10h∗w/(αxTa2). (5)
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The displacement and shear rotations are assumed in time sinusoidal form of vibra-
tions and expressed in the following,

u0(x, y, t)
v0(x, y, t)
w(x, y, t)
ψx(x, y, t)
ψy(x, y, t)

 =


u0(x, y)
v0(x, y)
w(x, y)
ψx(x, y)
ψy(x, y)

 sin(ωmnt), (6)

in which ωmn is the natural frequency of the thick FGM plate with subscript mode shape
numbers m and n. Boundary equations of displacements and shear rotations with am-
plitudes: amn, bmn, cmn, dmn, and emn for four-sided simply supported plates are given
explicitly in Appendix A.

3. Some Numerical Results and Discussions

The coordinates xi and yj in the computational domain for the grid points N and M of
the thick FGM plates are implemented to calculate the displacements and shear rotations
of GDQ results under applied heat loads and listed as follows.

xi = 0.5[1 − cos(
i − 1
N − 1

π)]a, i = 1, 2, . . . , N (7a)

yj = 0.5[1 − cos(
j − 1

M − 1
π)]b, j = 1, 2, . . . , M (7b)

Also, the dynamic inter-laminar stresses in the constituent layer could be calculated
when the displacements and shear rotations are obtained for the given ωmn and time. The
simply homogeneous equation can be obtained by assuming that matrix elements in (row,
column) with (1,3)–(1,5); (2,3)–(2,5); (3,1)–(3,2); (4,1)–(4,2) and (5,1)–(5,2) are neglected in the
coefficient matrix of fully homogeneous equation in 2019 by Hong [10]. The determinant of
the coefficient matrix in a simply homogeneous equation going to zero could be obtained
in the simply five degree polynomial equation, thus the ωmn values could be calculate.

3.1. Dynamic Convergence Study

The FGM constituent material 1 located at lower position is stainless steel (SUS304);
the FGM constituent material 2 located at upper position is silicon nitride (Si3N4) used with
h1 = h2 under applied heat temperature T1 and T. The convergence of center displacement
amplitude w(a/2, b/2) (unit mm) are studied for the thick FGM plates at t = 6 s with
a/b = 1, c1 = 0.925925/mm2, h1 = h2 = 0.6 mm, T = 100 K and T1 = 100 K. The calculated
values of w(a/2, b/2) for a/h∗ = 10 with applied heat flux γ = 0.2618004/s and a/h∗ = 5
with γ = 0.2618019/s, respectively, are obtained and listed in Table 1 by using the advanced
nonlinear varied kα and ω11 under three values of Rn. For a/h∗ = 10, the values are
calculated and used in case 1: ω11 = 0.059249/s and Rn = 0.5; in case 2: ω11 = 0.061595/s
and Rn = 1; in case 3: ω11 = 0.064255/s and Rn = 2. For a/h∗ = 5, the values are calculated
and used in case 1: ω11 = 0.018034/s and Rn = 0.5; in case 2: ω11 = 0.032166/s and Rn = 1;
in case 3: ω11 = 0.032121/s and Rn = 2. The error accuracy of the amplitude w(a/2, b/2)
is 2.702918E-05 for Rn = 0.5 and a/h∗ = 10. The grid point 13 × 13 could be considered in
enough grid numbers to provide the acceptable convergence for the amplitude w(a/2, b/2)
and used continuously in the next time response of calculations. The advanced nonlinear
kα values for a/b = 1 under T = 100 K are shown in Table 2, they are typically varied with
the three parameters: c1, Rn and T. The typical ωmn (unit 1/s) vs. mode shapes m and n
(from 1 to 9) of the vibrating plate are reported in Table A1 and listed in Appendix A.
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Table 1. Dynamic convergence of w(a/2, b/2) considering advanced nonlinear kα.

a/h* GDQ Method w(a/2,b/2) (Unit mm) at t = 6 s

N×M Rn=0.5 Rn=1 Rn=2

10

7 × 7 −5.289845 × 10−7 −1.307268 × 10−6 −4.786723 × 10−6

9×9 −5.290359 × 10−7 −1.307458 × 10−6 −4.788880 × 10−6

11 × 11 −5.290720 × 10−7 −1.307463 × 10−6 −4.788953 × 10−6

13 × 13 −5.290577 × 10−7 −1.307423 × 10−6 −4.788916 × 10−6

5

7 × 7 −1.058373 × 10−4 −5.050262 × 10−5 −1.163284 × 10−4

9 × 9 −1.053382 × 10−4 −5.060298 × 10−5 −1.163351 × 10−4

11 × 11 −1.053358 × 10−4 −5.047129 × 10−5 −1.163347 × 10−4

13 × 13 −1.057038 × 10−4 −5.047105 × 10−5 −1.163352 × 10−4

Table 2. Nonlinear varied kα vs. c1 and Rn under T = 100 K.

c1
(1/mm2)

h*

(mm)

kα

Rn=0.1 Rn=0.2 Rn=0.5 Rn=1 Rn=2 Rn=5 Rn=10

92.592598 0.12 −0.448521 −0.456089 −0.539418 −0.922718 9.852672 0.682434 0.491249

0.925925 1.2 −0.448522 −0.456090 −0.539419 −0.922719 9.852635 0.682434 0.491249

0.231481 2.4 −0.448522 −0.456089 −0.539419 −0.922719 9.852635 0.682434 0.491249

0.037037 6 −0.448522 −0.456089 −0.539418 −0.922718 9.852679 0.682434 0.491249

0.009259 12 −0.448522 −0.456089 −0.539418 −0.922718 9.852675 0.682434 0.491249

0 1.2 0.899095 0.957858 1.091129 1.200860 1.232039 1.126363 1.021824

3.2. Time Responses of Deflection and Stress

In Figures 2–7, the horizontal and vertical axes have units, e.g., in Figure 2, the unit for
w(a/2, b/2) in the vertical axis is “mm”, and the unit for t in the horizontal axis is “sec”.
In Figure 3, the unit for σx in the vertical axis is “GPa”, the unit for t in the horizontal axis
is “sec”. In Figure 4, the unit for w(a/2, b/2) in the vertical axis is “mm”, the unit for T
in the horizontal axis is “K”. In Figure 5, the unit for σx in the vertical axis is “GPa”, the
unit for T in the horizontal axis is “K”. The time responses of deflection and stress are
computed with the γ value decreasing from γ = 15.707964/s at t = 0.1 s to γ = 0.523601/s at
t = 3.0 s. Figure 2 shows the time response of w(a/2, b/2) (unit mm) for a/h∗ = 5 and 10,
respectively, with c1 = 0.925925/mm2, Rn = 1, T = 600 K and T1 = 100 K. The maximum
absolute value of w(a/2, b/2) is 0.006138 mm at = 0.1 s found for a/h∗ = 5 with advanced
kα = −3.535402 and γ = 15.707964/s. The time responses of w(a/2, b/2) are converging at
around 0.0 for a/h∗ = 5 and 10.

Typically the stress values vary through the plate thickness by considering the effect of
advanced nonlinear varied kα values. Figure 3a,b show the time responses of the dominated
stresses σx (unit GPa) at the center position of lower surface z = −0.5h∗ as the analyses of
deflection case in Figure 2 for Rn = 1, a/h∗ = 5 and 10, respectively. The absolute value of
maximum stresses σx is −9.685218 × 10−4 GPa found at t = 2.4 s for thick a/h∗ = 5. The
time responses of stresses σx are oscillating around − 9.50 × 10−4 GPa for a/h∗ = 5 and
around −9.035 × 10−4 GPa for a/h∗ = 10.

3.3. Deflection and Stress vs. T and Rn

Figure 4 shows w(a/2, b/2) (unit mm) vs. T (unit K) for Rn (from 0.1 to 10) at t = 2.4 s
with γ = 0.654498/s, advanced nonlinear kα, c1 = 0.925925/mm2, T1 = 100 K, a/h∗ = 5
and 10, respectively. Figure 4a shows the Rn curves in a/h∗ = 5; the absolute value of
maximum w(a/2, b/2) is −0.003227 mm found at T = 600 K for Rn = 2. The absolute
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values of w(a/2, b/2) for Rn = 0.5, 1 and 2 can proceed in higher T = 1000 K of temperature
condition. The center deflection amplitude values are almost keep constant versus T for
Rn = 10. Figure 4b shows the Rn curves in a/h∗ = 10; the value of maximum w(a/2, b/2) is
0.000119 mm found at T = 1000 K for Rn = 2. The absolute values of w(a/2, b/2) for Rn = 2
can proceed in higher T = 1000 K of temperature condition.
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Figure 5 shows the dominated stresses σx (unit GPa) vs. T (unit K) and Rn at center
position of z = −0.5h∗ for a/h∗ = 5. The values of σx for Rn = 0.1 and 0.2 can proceed
in higher T = 1000 K of temperature condition. The absolute value of maximum σx is
−1.001130 × 10−3 GPa found at T = 1000 K for Rn = 0.5 and 1.
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3.4. Transient Responses of Deflection and Stress

The transient responses of w(a/2, b/2) (unit mm) are computed for a/h∗ = 10 with fixed
ω11 = 0.065469/s under c1 = 0.925925/mm2, Rn = 1, advanced nonlinear kα = −3.535402,
T = 600 K and T1 = 100 K. Figure 6 shows the transient w(a/2, b/2) compared by using
simply homogeneous equation and fully homogeneous equation with γ = 785.3982/s,
respectively, for t = 0.001 s–0.025 s. The w(a/2, b/2) amplitudes in the simply homo-
geneous equation are found in greater values and overestimated in the approach. The
explanation provided more clearly for Figure 6. There are two equation types (simply
homogeneous equation and fully homogeneous equation) used to calculate the values of
ωmn for Equation (6). The simply homogeneous equation and fully homogeneous equation
are listed in the Appendix A. Figure 7 also shows the transient w(a/2, b/2) compared with
values of nonlinear varied kα (expression with containing the c1 factor) and linear varied kα

(expression without containing the c1 factor) for the a/h∗ = 10 case of γ = 785.3982/s. The
transient w(a/2, b/2) values in linear varied kα case are overestimated with respect to the
nonlinear varied kα case.

3.5. Future Works

There is some recent research in the field of FGMs, e.g., in 2023, Sirimontree et al. [19]
presented a vibroacoustic study for the sandwich magneto-electro-elastic cylindrical FGM
nanoshell in the external flow and under thermal environment. Based on the fundamental
study for thermal vibration of thick FGM plates in 2019 by Hong [10], it would be interesting
to further study the advanced dynamic vibration of FGM plates/cylindrical shells in
supersonic flow.
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4. Conclusions

The dynamic responses of deflection and stress computed by the GDQ method in
TSDT thick FGM plates under sinusoidal applied heat loads by considering the parameter
effects of advanced kα, T and Rn. By using the simply homogeneous equation to calculate
the natural frequency. The advanced nonlinear kα are usually in functions of c1, Rn and T.
The maximum absolute value of w(a/2, b/2) is 0.006138 mm at t = 0.1 s found for a/h∗ = 5
with advanced kα = −3.535402 and γ = 15.707964/s. The w(a/2, b/2) amplitudes in simply
homogeneous equation are found in greater values and overestimated in the approach. The
transient responses of w(a/2, b/2) are compared with the cases of simply homogeneous
equation and fully homogeneous equation. Also, the transient responses of w(a/2, b/2)
are compared with the cases of nonlinear and linear varied kα.
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Appendix A

The boundary equations of displacements and shear rotations with amplitudes: amn,
bmn, cmn, dmn, and emn for 4-sided simply supported plates are given explicitly as follows,

u0(x, y) = amn cos(mπx/a) sin(nπy/b)
v0(x, y) = bmn sin(mπx/a) cos(nπy/b)
w(x, y) = cmn sin(mπx/a) sin(nπy/b)

ψx(x, y) = dmn cos(mπx/a) sin(nπy/b)
ψy(x, y) = emn sin(mπx/a) cos(nπy/b)

(A1)

The fully homogeneous equation is expressed as follows,



Appl. Sci. 2022, 12, 11776 11 of 13



FH11 FH12 FH13 FH14 FH15

− I0λmn
I0

+
c1 I3(mπ

a )λmn
I0

− J1λmn
I0

FH12 FH22 − I0λmn
I0

FH23 FH24 FH25

+
c1 I3( nπ

b )λmn
I0

− J1λmn
I0

FH13 FH23 FH33 FH34 FH35

+
c1 I3(mπ

a )λmn
I0

+
c1 I3( nπ

b )λmn
I0

−
[

I0 + c1
2 I6
(mπ

a
)2

+
c1 J4(mπ

a )λmn
I0

+
c1 J4( nπ

b )λmn
I0

+c1
2 I6
( nπ

b
)2
]
λmn/I0

FH14 FH24 FH34 FH44 FH45

− J1λmn
I0

+
c1 J4(mπ

a )λmn
I0

−K2λmn
I0

FH15 FH25 FH35 FH45 FH55

− J1λmn
I0

+
c1 J4( nπ

b )λmn
I0

−K2λmn
I0




amn
bmn
cmn
dmn
emn



=


0
0
0
0
0



(A2)

where λmn = I0ωmn
2, Ii =

N∗

∑
k=1

∫ k+1
k ρ(k)zidz (i = 0, 1, 2, . . . , 6), ρ(k) is the density of

k th constituent ply, FH11 = A11(mπ/a)2 + A66(nπ/b)2, etc. all of the parameters and
coefficients can be referred [10].

The simply homogeneous equation is expressed as follows,



FH11 − λmn FH12 0 0 0
FH12 FH22 − λmn 0 0 0

0 0 FH33 − λmn FH34 FH35

0 0 FH34 FH44 − K2
I0

λmn FH45

0 0 FH35 FH45 FH55 − K2
I0

λmn




amn
bmn
cmn
dmn
emn

 =


0
0
0
0
0

 (A3)

The typical ωmn (unit 1/s) vs. mode shapes m and n (from 1 to 9) of the vibrating plate
are reported in the Table A1 under nonlinear varied kα, c1, Rn = 0.5 and T = 300 K.
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Table A1. ωmn vs. m and n under nonlinear varied kα, c1, Rn = 0.5 and T = 300 K.

a/h∗
ω1n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.030248 0.012079 0.010355 0.005455 0.003399 0.007451 0.006401 0.005629 0.005048

10 0.060513 0.042673 0.035361 0.020371 0.015934 0.031821 0.014847 0.011815 0.006108

a/h∗
ω2n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.019082 0.009523 0.010442 0.004176 0.007139 0.007156 0.006237 0.005555 0.005061

10 0.023112 0.030248 0.014602 0.012079 0.015355 0.010355 0.015735 0.005455 0.006460

a/h∗
ω3n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.008481 0.007713 0.010970 0.009022 0.007734 0.006781 0.006089 0.006744 0.001734

10 0.027054 0.023712 0.012403 0.016924 0.009628 0.011476 0.015462 0.004309 0.006783

a/h∗
ω4n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.010463 0.009661 0.008689 0.007765 0.007011 0.006711 0.002147 0.001856 0.001620

10 0.012677 0.019082 0.010558 0.009523 0.012944 0.010442 0.013141 0.004176 0.007080

a/h∗
ω5n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.005210 0.007929 0.007340 0.006738 0.006999 0.002301 0.001972 0.001712 0.001502

10 0.010366 0.015779 0.014532 0.008480 0.008050 0.017151 0.011124 0.004087 0.008826

a/h∗
ω6n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.006944 0.006693 0.006307 0.005852 0.005405 0.004941 0.004526 0.004152 0.003821

10 0.008856 0.008481 0.008063 0.007713 0.008185 0.010970 0.009856 0.009022 0.003542

a/h∗
ω7n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.005915 0.005753 0.005469 0.005921 0.005027 0.004625 0.004279 0.003964 0.003679

10 0.012552 0.008211 0.011614 0.010954 0.010263 0.009585 0.006448 0.008361 0.007834

a/h∗
ω8n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.005130 0.005009 0.006575 0.005036 0.004590 0.004284 0.004006 0.003746 0.003506

10 0.010707 0.010463 0.010102 0.009661 0.009180 0.008689 0.004282 0.007765 0.007361

a/h∗
ω9n (unit 1/s)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

5 0.004509 0.007183 0.005173 0.004502 0.004205 0.003967 0.003743 0.003530 0.003328

10 0.005754 0.005626 0.005439 0.005199 0.004907 0.007963 0.007584 0.007228 0.006915
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