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Abstract: More than four million people worldwide suffer from hearing loss. Recently, new CNNs and
deep ensemble-learning technologies have brought promising opportunities to the image-recognition
field, so many studies aiming to recognize American Sign Language (ASL) have been conducted to
help these people express their thoughts. This paper proposes an ASL Recognition System using
Multiple deep CNNs and accuracy-based weighted voting (ARS-MA) composed of three parts: data
preprocessing, feature extraction, and classification. Ensemble learning using multiple deep CNNs
based on LeNet, AlexNet, VGGNet, GoogleNet, and ResNet were set up for the feature extraction and
their results were used to create three new datasets for classification. The proposed accuracy-based
weighted voting (AWV) algorithm and four existing machine algorithms were compared for the
classification. Two parameters, α and λ, are introduced to increase the accuracy and reduce the testing
time in AWV. The experimental results show that the proposed ARS-MA achieved 98.83% and 98.79%
accuracy on the ASL Alphabet and ASLA datasets, respectively.
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1. Introduction
1.1. Problem Statement

According to the World Health Organization (WHO), approximately 466 million
people worldwide suffer from hearing loss, of whom 34 million are children. Moreover,
an estimated 900 million people will suffer from hearing loss by 2050 [1]. Sign language
is the most effective bridge between the hearing-impaired community and the outside
world. Although hearing-impaired people also use written language to communicate, this
is inefficient and inconvenient. Sign language uses gestures to articulate meaning in text
or speech [2] and sign language recognition uses techniques to recognize these gestures.
The emergence of sign language recognition has made the lives of hearing-impaired people
more convenient and has eased communication, but most available solutions for sign
language recognition are imperfect and inaccurate [3].

Expressions in American Sign Language (ASL) are simple, rich, and diverse [4],
but the complex background recognition influence and similarity between gestures are
very high. Building a reliable ASL letter recognition model is essential for improving
communication as a tool for hearing-impaired people to help spell names and book titles
and correct letters. However, complex backgrounds and similarities between gestures make
recognition challenging.

Deep learning allows computational models with multiple processing layers to learn
and represent data with multiple levels of abstraction, imitating the human brain mecha-
nism and implicitly capturing the complex structures of large-scale data [5]. Deep learning
has also enabled better solutions to hundreds of practical problems and has been widely
used in natural language processing, human–computer interaction, and other fields. With
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the growth of data and the improvement of computing power, the problem of the lack
of data and difficulties in training deep neural networks are gradually being solved. At
present, computer vision based on deep learning has brought significant progress in im-
age classification [6] and face recognition [7], and the appearance of convolutional neural
networks (CNNs) [8] has greatly improved deep learning.

CNNs have different feature extraction structures but a single CNN has difficulty
eliminating the influence of the background, so an ensemble of different CNNs is useful for
accurate recognition by decreasing the background influence.

1.2. Literature Review

Some machine-learning methods have been used in sign language recognition.
Halder et al. [9] proposed a static sign language recognition method based on Principal
Component Analysis (PCA) and Support Vector Machine (SVM) to recognize the five
vowels in English, with an accuracy of 80%. PCA and SVM were used for hand feature
extraction and classification, respectively. Chuan et al. [10] used the Leap Motion sensor
to collect 26 letters in the ASL alphabet. The k-nearest neighbor algorithm and SVM were
used for classification, with accuracies of 72.78% and 79.83%, respectively. Roy et al. [11]
used skin-color detection and contour-extraction techniques to detect sign language in
videos, and the Camshift and hidden Markov models (HMM) algorithms were used for
hand tracking and classification, respectively. Ahmed et al. [12] proposed a skin-color-
based detection method to binarize the input data to obtain the face and hand regions,
and they calculated the similarity between training and testing data by the dynamic time
warping (DTW) algorithm. The DTW algorithm did not use a statistical model framework
for training because it was difficult to connect the semantic information of the context.
Consequently, DTW had disadvantages in problem solving such as large data volumes and
complex gestures. However, most machine-learning methods must convert the original
data into feature vectors that are suitable for operation because the image information is
too complex and diverse. Thus, the incomplete feature vectors limit the image recognition
performance of machine learning methods.

Some deep-learning approaches have been used for sign language recognition.
Hasan et al. [13] used a CNN to recognize ASL, achieving 97.62% accuracy. Pigou et al. [14]
proposed a CNN-based sign language recognition method to recognize 20 words in the
ChaLearn dataset. This model extracted hand and upper-body features from two sets of
input data. Jing et al. [15] proposed a multi-channel, multi-modality framework based
on a 3D-CNN. The multiple channels contained color, depth, and optical-flow informa-
tion, and the multiple modalities included gestures, facial expressions, and body poses.
Huang et al. [16] proposed a 3D-CNN network model based on multimodal input, includ-
ing color, depth, and skeleton-joint point information. However, these methods are limited
to the single-stream feature extraction portion, and obtaining sufficient feature information
to distinguish similar gestures in a single-stream CNN is very difficult due to the high
similarity of gestures in ASL.

Gated recurrent unit–relative sign transformer [17], STMC-Transformer [18], and a
full transformer network [19] have been successfully used in sign language recognition.
The image frame features from sign language videos were extracted and combined into a
standard encoder to boost gesture sequence attention and improve recognition performance.
However, transformer methods are not appropriate for simple image recognition, such as
ASL letters, because these techniques are designed to handle lengthy and complicated sign
language videos, so much processing power is wasted.

Some researchers have focused on combining the advantages of different deep-learning
models to improve image-recognition performance. Ye et al. [20] proposed a three-dimensional
recurrent convolutional neural network (3DRCNN), which combined a 3D-CNN with a
fully connected recurrent neural network (FC-RNN). The 3D-CNN learned from color,
optical flow, and depth channels. The FC-RNN obtained timing information of sequence
segmentation from the video. Yu et al. [21] used deep ensemble learning to decompose body
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poses automatically and perceive its background information. Zaidi et al. [22] proposed
two methods for automatically constructing ensembles with various architectures, using
different architectures to achieve feature diversity. These methods allow image features to
be extracted more comprehensively. However, due to overly diverse feature information,
the final network layer for decisions tended to ignore small parts of the features.

The self-mutual distillation learning-based system [23] focuses on both short-term and
long-term information to enhance the discriminative power for better sign language recog-
nition. 3D ConvNet with the bidirectional long short-term memory system [24] improved
sign language recognition performance through data extraction and time-series information.
Excellent recognition performance for continuous gestures is achieved by a long short-term
memory (LSTM) technique [25] with four different sequences. However, the above methods
do not perform well for datasets in which most letters are not continuous gestures.

Transfer deep-learning methods [26,27] have been used to recognize ASL. The ad-
vantage of these methods is their ability to fine-tune the weights of the advanced deep
neural networks for image recognition to reduce the waste of computational resources
while performing well. However, these methods have the slight limitation of incomplete
gesture feature extraction. A 2D-CNN with the joint encoding [28] technique performed
excellently but had high hardware requirements. A two-stream CNN [29] method used
the addition and concatenation operations to extend the feature maps and thus help the
CNN better recognize gestures. This method is slightly insufficient in environments with
complex backgrounds.

Some researchers are studying ensemble models [30] to improve image recognition
performance. A trainable ensemble [31] takes the outputs of individual models to the final
decision and demonstrates the possibility of the ensemble being capable of improving sign
language recognition performance in learning the correlation of independent model predic-
tion results. Another ensemble-learning method [32] uses various learning algorithms to
generate recognition results based on multiple features. Better recognition performance is
achieved through a voting scheme. By voting on different recognition results, the models
complement their drawbacks, allowing different CNN models to maximize their perfor-
mance advantages. This allows the CNNs to obtain various features in the feature extraction
and reduce the possibility of losing information in the decision portion. Thus, ensemble
learning brings new opportunities for better ASL recognition performance.

1.3. Contributions and Structure of the Paper

This paper designs an ASL recognition system for translation applications in the
hearing-impaired community, so the goal of this paper is to help hearing-impaired people
communicate better with others. The proposed ensemble-learning model for sign language
recognition is proposed, using multiple CNNs with accuracy-based weighted voting (AWV)
to increase the ASL recognition performance. The contributions of the paper can be
summarized as follows:

• An ASL Recognition System using Multiple deep CNNs and Accuracy-based weighted
voting (ARS-MA) is proposed, which consists of data preprocessing, feature extraction
with multiple deep CNNs, and classification.

• Multiple deep CNNs are designed for feature extraction, and an AWV algorithm is
proposed for classification.

• Three new datasets for classification are created from the feature extraction results,
with two hyperparameters, α and λ, introduced to optimize the accuracy of the
AWV algorithm.

• The proposed model recognizes 29 gestures with accuracies of 98.83% for the ASL
Alphabet dataset and 98.79% for the ASLA dataset with complex backgrounds.

The remainder of this paper is organized as follows: Section 2 introduces the details of
the methods and models. Section 3 presents the results and comparison of our method to
other methods. Finally, Section 4 summarizes the conclusions.
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2. Materials and Methods
2.1. Datasets and Image Preprocessing

This paper uses two datasets, the ASL Alphabet [33] and ASLA (American Sign
Language Alphabet) [34]. The ASL Alphabet dataset includes 29 classes, comprising 26
alphabetic characters A–Z and three other characters: space, delete, and nothing. Each class
has 3000 images, each of which is 200 × 200 pixels in size. The ASLA dataset is similar to
the ASL Alphabet except for the backgrounds, as shown in Figure 1. Each class has 7000
images, each of which is 400 × 400 pixels. The two datasets are split into 85% training
images and 15% testing data.
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Figure 1. Sample images from the ASL Alphabet and ASLA datasets.

The ASL Alphabet and ASLA datasets have motion, non-motion, and complex back-
ground properties, which bring challenges for ASL recognition.

The images are preprocessed using gray data normalization, median filtering, re-
shaping, and label encoding to reduce the noise and environmental effects. Gray data
normalization compresses all pixel data into 0–1 space intervals and changes the image
channel to one. Furthermore, it reduces the effects of light in the images and makes them
scale invariant, meaning that the mean and variance are the same for all features. The
median filter removes background noise from the image. The images are reshaped to
227 × 227 pixels for AlexNet and LeNet and to 224 × 224 pixels for GoogleNet, VGGNet,
and ResNet50. Decimal labels are encoded into one-hot vectors to conveniently compare
the results in fully connected layers by the label encoding method.

2.2. Proposed Model

An ensemble-learning method allows different CNN models to maximize feature
extraction and minimize information loss. Deeper CNN models capture deeper semantic
expressions from images but they often ignore information extracted from lower dimen-
sions, losing some image information in the feature extraction process. ARS-MA is proposed
to combine the feature capture capabilities of different deep CNN models, as shown in
Figure 2. It consists of three steps: data preprocessing, feature extraction and probability
prediction by CNN models, and final gesture classification.

CNNs are used for feature extraction and new datasets for different classifiers are
created from the results of the multiple deep CNNs. The features extracted from CNNs
of different depths increase the diversity of the information to improve recognition per-
formance. The five CNN models are LeNet, AlexNet, GoogleNet, VGGNet, and ResNet,
with different feature extraction modes and depths in Step 2, which improve the extraction
ability and reduce incomplete semantic expressions. In addition, the five CNN models
independently predict probabilities and labels to create new datasets for the next classifier
step. The advantage of independent prediction is that it reduces the mutual influence
between different depth information in the feature maps.
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Although it is relatively difficult for machine-learning algorithms to handle image
classification tasks well, they have strong classification abilities for non-image data. SVM,
Random Forest (RF), AdaBoost [35], soft voting [36], and the proposed AWV algorithm are
used as the final classifier to recognize the ASL alphabet in Step 3.

By comparing the classifiers’ recognition performance, the proposed AWV method
was selected as the final classifier for the ARS-MA model as shown in the blue box of
Figure 2.

2.2.1. New Datasets for Classifiers

Three new datasets (ND1, ND2, and ND3) are built with the results of the multiple
deep CNNs for final recognition after they finish the predictions.

Dataset ND1 (PCNN1, PCNN2, PCNN3, PCNN4, PCNN5, LabelCNN1, LabelCNN2, LabelCNN3,
LabelCNN4, LabelCNN5) becomes the new input data for SVM, RF, and AdaBoost to ob-
tain the final recognition results ResultSVM, ResultRF, and ResultAda. PCNN1, PCNN2,
PCNN3, PCNN4, and PCNN5 are the prediction probabilities of the prediction label LabelCNN1,
LabelCNN2, LabelCNN3, LabelCNN4, and LabelCNN5, respectively, from the five CNN models.
For example, LabelCNN1 is the predicted label from the LeNet model.

Similarly, PCNN1 is the set of probabilities of all test images for the predicted class in
the LeNet model, calculated by Equation (1):

PCNN1 = max(P1,1, P1,2, . . . , P1,29), (1)

where P1,1 to P1,29 are the probabilities of 29 gesture classes from the output of the LeNet
model (CNN1). The max() is defined so as to return the largest value and PCNN1 is the
largest value among P1,1 to P1,29.

Dataset ND2 (P1,1, P1,2, . . . , Pi,j, . . . , P5,28, P5,29) is used for soft voting to obtain the
final recognition result of ResultSV .

Dataset ND3 (P1,1, P1,2, . . . , Pi, j, . . . , P5,28, P5,29, ACC1,1, ACC1,2, . . . , ACCi,j, . . . ,
ACC5,28, ACC5,29) is used for the AWV algorithm to obtain the final recognition result of
ResultWDE. Pi, j and ACCi, j refer to the predicted probability and the accuracy of the jth
gesture class in the ith CNN. For example, ACC1,1 is the accuracy gained after finishing the
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training process for the LeNet model in Class A; all test images of Class A have the same
ACC1,1 in the next voting step, and P1,1 is the probability of all test images for Class A in
the LeNet model.

2.2.2. Classification and the Proposed AWV Algorithm

The final classifier in the ARS-MA model was selected from among five algorithms:
SVM, RF, AdaBoost [35], soft voting, and the AWV algorithm. These obtained final re-
sults from the aspects of four classification methods: nonlinear mapping (SVM), an en-
semble tree (RF), a weighted ensemble tree (AdaBoost), and voting (soft-voting and the
AWV algorithm).

The keys of the SVM algorithm establish the maximum margin hyperplane for clas-
sification and have a good generalization ability. The RF algorithm creates new training
samples, which are used to train several different decision trees. Then, the final result is
aggregated from the various decision trees. Boosting is a machine-learning approach that
aims to create a highly accurate model by combining many less accurate models. AdaBoost,
the most widely used boosting algorithm, combines many decision trees and gives greater
weights to the higher-accuracy tree classifiers. The new dataset ND1 is used for SVM, RF,
and AdaBoost to fuse the CNNs.

In soft voting, the probabilities of five CNN models for each class are averaged to
predict the result. The new dataset ND2 is used for the soft-voting algorithm, which
compares the 29 average probabilities from the five CNN models for each class, that is,
the comparison of [(P1,1 + P2,1 + P3,1 + P4,1 + P5,1)/5, . . . , (P1,29 + P2,29 + P3,29 + P4,29 +
P5,29)/5].

However, a class result having a high probability from a CNN model does not mean
that the class is correct. For example, AlexNet performs better than LeNet in general.
When both are used in an ensemble together, LeNet incorrectly predicts Class A gestures
into other classes, while AlexNet accurately predicts them in Class A, but the predicted
probability of Class A in LeNet is coincidentally higher than in AlexNet. In this case, soft
voting only considers the probability, which makes it difficult to help the ensemble model
correct the error. Soft voting makes the final recognition of the gesture class result with
the highest prediction probability but does not always consider different CNN models.
Therefore, a new method AWV is proposed to consider accuracy when voting for the
gesture class. This method is called Accuracy-based Weighted Voting (AWV).

The soft-voting algorithm only focuses on the probabilities for the final recognition of
the ensemble model, but the AWV algorithm considers the CNN prediction accuracies and
the probabilities corresponding to each class, which allows the ensemble model to fuse the
results of the CNNs more accurately. The new dataset ND3 is used for the AWV algorithm.
The weights in the proposed AWV algorithm are defined in Equation (2):

wi,j =
ACCi,j

α

λ
, (2)

where wi,j is the weight value of the jth class of the dataset in the ith CNN classifier; ACCi,j
is the recognition accuracy of the jth class in the ith CNN classifier; and α is an arbitrary
number. The accuracy of each CNN is less than one, and ACCi,j

α increases the difference
between wi,j. λ is an arbitrary number to reduce the testing time and its value is assigned
by simulation to prevent the weights from becoming too large.

The output of the AWV algorithm is defined as follows in Equation (3):

Output =Label(max(
∑N

i=1 wi,1 ∗ Pi,2

N
, . . . ,

∑N
i=1 wi,j ∗ Pi,j

N
, . . . ,

∑N
i=1 wi,29 ∗ Pi,29

N
)), (3)

where Pi,j is the probability calculated by the jth class in the ith CNN classifier. Each CNN
model calculates the probabilities for each class, and these probabilities are combined with

weights to calculate a group of values using the formula ∑N
i=1 wi,j∗Pi,j

N . The largest value is
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chosen by the max() function. Label() is defined to take the class number belonging to
the largest value as the final gesture class prediction result, meaning the final ASL letter
recognition result is determined by comparing 29 values: [w1,1 ∗ P1,1 + w2,1 ∗ P2,1 + w3,1 ∗
P3,1 + w4,1 ∗ P4,1 + w5,1 ∗ P5,1)/5, . . . , (w1,29 ∗ P1,29 + w2,29 ∗ P2,29 + w3,29 ∗ P3,29 + w4,29 ∗
P4,29 + w5,29 ∗ P5,29)/5]. The workflow of the AWV algorithm is shown in Figure 3.
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Figure 3. The process of the proposed accuracy-based weighted voting (AWV) algorithm.

In the AWV algorithm, the five probabilities for each sign language class are predicted
by five different CNN models, and the weights of each class are determined by the accuracy
of each corresponding CNN model. The total number of weights is 5 × 29 in the ARS-MA
model, recognizing 29 gesture classes in the ASL Alphabet and ASLA datasets. AWV
makes the CNN models better complement their drawbacks after independent probability
predictions. The execution process of the AWV algorithm with α = 2, λ = 5 is shown in
Algorithm 1. The proposed weighted voting is accuracy-based, where a CNN model with
higher recognition accuracy is given greater weight in the AWV to improve the accuracy of
the ARS-MA model.

Algorithm 1. The AWV algorithm for ASL letter recognition (α = 2, λ = 5).

Input:
X = [P1,1, P1,2, . . . , Pi,j, . . . ,P5,28, P5,29, ACC1,1, ACC1,2, . . . , ACCi,j, . . . ,ACC5,28, ACC5,29]

Output: Y
Process:
1) Initialize the weights matrix for memory
weights = W[wi,j]

wi,j = 1 for i = 1, 2, . . . , 5 and for j = 1, 2, . . . , 29
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2) Calculate weights
For i from 1 to 5 do
For j from 1 to 29 do

wi,j =
ACCi,j

2

5
weights← wi,j
3) Initialize the values matrix for memory
values = V[valuej]
valuej = 1 for j = 1, 2, . . . , 29
4) Calculate a total of 29 values for the final decision

For j from 1 to 29 do
valuej = (w1,j × P1,j + w2,j × P2,j + w3,j × P3,j + w4,j × P4,j + w5,j × P5,j) / 5
values← valuej
5) Sort a total of 29 values from largest to smallest

For j from 1 to 29 do
sorted_values = largest_to_smallest_sort(values)
6) Take the class j belonging to the largest value
Largest value = sorted_values.take(0) = valuej //take the first largest value
Y← j

2.2.3. CNN Algorithms

The main structures in LeNet [37], AlexNet [38], and VGGNet [39] are shown in
Figure 4a–c. The inception structure of GoogleNet [40], whose width increases by branching
and merging to improve the accuracy of the model, is shown in Figure 4d. The residual
module of ResNet [41] in Figure 4e generates an output F(x) + x from an input x and reduces
the gradient-vanishing problem, improving the model performance in the prediction task.
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(c) VGGNet, (d) the inception structure in GoogleNet, and (e) the residual module in ResNet.

Five M-CNN models are designed based on the above models: M-LeNet, M-AlexNet,
M-GoogleNet, M-VGGNet, and M-ResNet.
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Table 1 shows the structure of M-LeNet in detail. The size of the kernels is modified,
and one convolution layer is reduced to decrease the consumption time. Table 2 shows the
structure of M-AlexNet. Batch normalization [42] is added after each convolution layer
in M-AlexNet to reduce the impact of unstable gradients. Table 3 shows the structure of
M-GoogleNet in detail, where MP indicates a max-pooling layer, the convolution stride
is one, and there is one MP layer in the inception block. Table 4 shows the structure of
M-VGGNet in detail, where the 3 × 3 convolution kernel and 2 × 2 max-pooling size are
used in the entire network to improve the performance by continuously deepening the
network structure. Batch normalization is added behind each convolution layer. The layer
configuration in M-VGGNet is similar to LeNet and AlexNet. The purpose of using M-
LeNet, M-AlexNet, and M-VGGNet is to help the ARS-MA model extract gesture semantic
information at different depths with a similar layer configuration in the feature extraction
step. Table 5 shows the structure of M-ResNet in detail, where the number of convolution
layers is reduced to obtain better performance for the ASL Alphabet and ASLA datasets.

Table 1. The architecture of M-LeNet5.

CNN Model Architecture Kernel Size Output Shape

M-LeNet

Input - 227 × 227 × 1
Convolution_1 5 × 5, 64, stride = 2 75 × 75 × 64
Maxpooling_1 2 × 2, stride = 2 37 × 37 × 64
Convolution_2 5 × 5, 128, stride = 2 11 × 11 × 128
Maxpooling_2 2 × 2, stride = 2 5 × 5 × 128

Flatten - 3200
Fully connected_1 - 640
Fully connected_2 - 128

Output - 29

Table 2. The architecture of M-AlexNet.

CNN Model Architecture Kernel Size Output Shape

M-AlexNet

Input - 227 × 227 × 1
Convolution_1 11 × 11, 64, stride = 4 55 × 55 × 64
Maxpooling_1 3 × 3, stride = 2 27 × 27 × 64
Convolution_2 5 × 5, 128, stride = 1 27 × 27 × 128
Maxpooling_2 3 × 3, stride = 2 13 × 13 × 128
Convolution_3 3 × 3, 256, stride = 1 13 × 13 × 256
Convolution_4 3 × 3, 256, stride = 1 13 × 13 × 256
Convolution_5 3 × 3, 128, stride = 1 13 × 13 × 128
Maxpooling_5 3 × 3, stride = 2 6 × 6 × 128

Flatten - 4600
Fully connected_1 - 2096
Fully connected_2 - 2096

Output - 29

M-GoogleNet, M-VGGNet, and M-ResNet are all high-depth models with different
layer configurations. Hence, the ARS-MA model gains the ability to obtain more high-depth
information from the feature extraction because the gesture semantic information is easily
captured in the high-depth feature maps [43] and deeper feature information categories are
obtained. In all models, dropout is used to reduce overfitting, the activation function in the
convolution layers is the rectified linear unit (ReLu) function, and the softmax function is
used for multi-class prediction.
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Table 3. The architecture of M-GoogleNet.

CNN Model Architecture Kernel Size Output Shape

M-GoogleNet

Input - 224 × 224 × 1
Convolution_1 7 × 7, 64, stride = 2 112 × 112 × 64
Maxpooling_1 3 × 3, 64, stride = 2 56 × 56 × 64
Convolution_2 3 × 3, 192, stride = 1 56 × 56 × 192
Maxpooling_2 3 × 3, 64, stride = 2 28 × 28 × 192

Inception_1 1 × 1, 64
1 × 1, 96 1 × 1, 32 3 × 3, 32

(MP) 28 × 28 × 256
3 × 3, 128 5 × 5, 32 1 × 1, 32

Inception_2 1 × 1, 128
1 × 1, 128 1 × 1, 32 3 × 3, 64

(MP) 28 × 28 × 480
3 × 3, 192 5 × 5, 96 1 × 1, 64

Maxpooling_3 3*3, stride = 2 14 × 14 × 480

Inception_3 1 × 1, 192
1 × 1, 96 1 × 1, 16 3 × 3, 64

(MP) 14 × 14 × 512
3 × 3, 208 5 × 5, 48 1 × 1, 64

Inception_4 1 × 1, 160
1 × 1, 112 1 × 1, 24 3 × 3, 64

(MP) 14 × 14 × 512
3 × 3, 224 5 × 5, 64 1 × 1, 64

Inception_5 1 × 1, 128
1 × 1, 128 1 × 1, 24 3 × 3, 64

(MP) 14 × 14 × 512
3 × 3, 256 5 × 5, 64 1 × 1, 64

Inception_6 1 × 1, 112
1 × 1, 144 1 × 1, 32 3 × 3, 64

(MP) 14 × 14 × 528
3 × 3, 288 5 × 5, 64 1 × 1, 64

Inception_7 1 × 1, 256
1 × 1, 160 1 × 1, 32 3 × 3, 128

(MP) 14 × 14 × 832
3 × 3, 320 5 × 5, 128 1 × 1, 128

Maxpooling_4 3 × 3, stride = 2 7 × 7 × 832

Inception_8 1 × 1, 256
1 × 1, 160 1 × 1, 32 3 × 3, 128

(MP) 7 × 7 × 832
3 × 3, 320 5 × 5, 128 1 × 1, 128

Inception_9 1 × 1, 384
1 × 1, 192 1 × 1, 48 3 × 3, 128

(MP) 7 × 7 × 1024
3 × 3, 384 5 × 5, 128 1 × 1, 128

Avgpooling_1 7 × 7, 1024, stride = 1 1 × 1 × 1024
Fully connected_1 - 1 × 1 × 1000

Output - 29

Table 4. The architecture of M-VGGNet.

CNN Model Architecture Kernel Size Output Shape

M-VGGNet

Input - 224 × 224 × 1
Convolution_1 3 × 3, 64, stride = 2 112 × 112 × 64
Convolution_2 3 × 3, 64, stride = 1 112 × 112 × 64
Maxpooling_1 2 × 2, stride = 2 56 × 56 × 64
Convolution_3 3 × 3, 128, stride = 1 56 × 56 × 128
Convolution_4 3 × 3, 128, stride = 1 56 × 56 × 128
Maxpooling_2 2 × 2, stride = 2 28 × 28 × 128
Convolution_5 3 × 3, 256, stride = 1 28 × 28 × 256
Convolution_6 3 × 3, 256, stride = 1 28 × 28 × 256
Convolution_7 3 × 3, 256, stride = 1 28 × 28 × 256
Maxpooling_3 2 × 2, stride = 2 12 × 12 × 256
Convolution_8 3 × 3, 512, stride = 1 12 × 12 × 512
Convolution_9 3 × 3, 512, stride = 1 12 × 12 × 512

Convolution_10 3 × 3, 512, stride = 1 12 × 12 × 512
Maxpooling_4 2 × 2, stride = 2 6 × 6 × 512
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Table 4. Cont.

CNN Model Architecture Kernel Size Output Shape

Convolution_11 3 × 3, 512, stride = 1 6 × 6 × 512
Convolution_12 3 × 3, 512, stride = 1 6 × 6 × 512
Convolution_13 3 × 3, 512, stride = 1 6 × 6 × 512
Maxpooling_5 3 × 3, stride = 2 3 × 3 × 512

Flatten - 4600
Fully connected_1 - 4096
Fully connected_2 - 1000

Output - 29

Table 5. The architecture of M-ResNet.

CNN Model Architecture Kernel Size Output Shape

M-ResNet

Input - 224 × 224 × 1
Convolution_1 7 × 7, 64, stride = 2 112 × 112 × 64
Maxpooling_1 3 × 3, stride = 2 56 × 56 × 64

Residual module_1
×2

3 × 3, 128, stride = 13
× 3, 128, stride = 1 56 × 56 × 128

Residual module_2
×1

3 × 3, 256, stride = 23
× 3, 256, stride = 1 28 × 28 × 256

Residual module_3
×1

3 × 3, 256, stride = 13
× 3, 256, stride = 1 28 × 28 × 256

Residual module_4
×1

3 × 3, 256, stride = 23
× 3, 256, stride = 1 14 × 14 × 256

Residual module_5
×1

3 × 3, 256, stride = 13
× 3, 256, stride = 1 14 × 14 × 256

Residual module_6
×1

3 × 3, 512, stride = 23
× 3, 512, stride = 1 7 × 7 × 512

Residual module_7
×1

3 × 3, 512, stride = 13
× 3, 512, stride = 1 7 × 7 × 512

Avgpooling_1 7 × 7, stride = 1 1 × 1 × 512
Fully connected_1 - 512

Output - 29

2.3. Evaluation Methods

The performances of the five M-CNNs were evaluated after completing the training.
The performance scores [44] were compared using the receiver operating characteristics
(ROC) curve, area under the ROC curve (AUC), accuracy, recall, precision, and F1-score
evaluation methods. The ROC curve is a tool to examine the classifier performance. AUC
is an important metric for model comparison calculated from the ROC. The ROC curve for
a multi-class problem is obtained by averaging the ROC curves of each class.

The accuracy, recall, precision, and F1-score are calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− score =
2Precision× Recall
Precision + Recall

, (7)

where TP is true positive, FN is false negative, FP is false positive, and TN is true negative.
These four evaluation methods are used to measure the effectiveness of the model.
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3. Results and Analysis

The performance results for the five M-CNN models are shown in Table 6. The accura-
cies for all M-CNNs are higher than 93%, which means that each M-CNN model effectively
extracts useful features for gesture prediction in ASL letter images. The performance scores
of the M-CNNs decrease in the ASLA dataset, which has complex background environ-
ments, but they are no more than 1% lower than the ASL Alphabet dataset, which proves
that the M-CNN models achieve almost the same results on both datasets. M-ResNet
with the residual module had the best recognition performance for both datasets of all
five M-CNNs because high-depth models with high-depth feature maps are well suited to
extracting semantic information for prediction.

Table 6. Performance evaluation of the five CNNs on both datasets.

CNN
Methods

ASL Alphabet ASLA

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

M-LeNet5 94.45% 94.76% 94.67% 94.71% 93.53% 95.11% 94.27% 94.69%
M-AlexNet 95.56% 94.46% 94.38% 94.42% 94.61% 94.11% 93.87% 93.99%

M-GoogleNet 96.07% 91.84% 90.41% 91.12% 95.54% 90.87% 90.92% 90.89%
M-VGGNet 97.39% 93.48% 93.74% 93.61% 96.86% 93.78% 92.69% 93.18%
M-ResNet 97.76% 95.42% 96.13% 95.77% 97.27% 95.61% 96.33% 95.97%

The recognition scores of the five different classifiers in the classification step are
shown in Table 7. The accuracy, precision, recall, and F1-scores range from 97.89% to
98.83%, 96.12% to 97.98%, 95.78% to 97.59%, and 95.95% to 97.60%, respectively. Comparing
Tables 7 and 8 shows that the classification accuracies of the fusion classifiers are higher
than those in a single CNN, proving that the proposed ensemble models using multiple
deep CNNs are superior to single CNN models.

Table 7. Performance evaluation of five classifiers on two datasets.

Final Fusion
Classifiers

ASL Alphabet ASLA

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

SVM 98.35% 97.67% 97.12% 97.39% 98.27% 97.59% 97.31% 97.45%
RF 97.96% 96.32% 96.27% 96.29% 97.89% 97.56% 96.22% 96.89%

AdaBoost 98.11% 96.12% 95.78% 95.95% 98.04% 96.24% 96.51% 96.37%
Soft voting 98.46% 97.19% 96.51% 96.85% 98.41% 96.74% 96.84% 96.79%
AWV (α = 2,

λ = 5) 98.83% 97.98% 96.94% 97.46% 98.79% 97.61% 97.59% 97.60%

Table 8. Accuracies by α in ARS-MA model.

α Accuracy on ASL Alphabet Accuracy on ASLA

1 98.7843% 98.7432%
2 98.8319% 98.7943%
3 98.8317% 98.7937%
4 98.8317% 98.7942%

The recognition accuracies for the two datasets in Table 7 are nearly the same, proving
that the proposed ARS-MA effectively removes the noise in a complex background. The
proposed AWV model was the most accurate, at 98.83% and 98.79% for the ASL Alphabet
and ASLA datasets, respectively, so it was chosen as the classifier in the classification step.

The ROC curves and AUC values of the five M-CNNs for the two datasets are shown
in Figure 5a,b, respectively; M-ResNet achieved the highest AUCs of 0.89 on the ASL
Alphabet dataset and 0.88 on the ASLA dataset. The ROC curves and the AUC values of
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the five classifiers for the two datasets are depicted in Figure 5c,d. The AWV algorithm
achieved the highest AUCs, of 0.93 and 0.91, on the ASL Alphabet and ASLA datasets,
respectively. The AUCs of all single M-CNNs were lower than that of AWV in the ARS-MA
model, which proves the proposed ARS-MA model works well for both datasets.
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To obtain the best model in the feature extraction step, three types of multiple deep
CNNs were designed: CNN-3, CNN-4, and CNN-5. CNN-3 uses M-LeNet, M-AlexNet, and
M-GoogleNet; CNN-4 adds M-VGGNet to CNN-3; and CNN-5 adds M-ResNet to CNN-4.
Figure 6 shows the performance of the ARS-MA models with the three types of CNNs.
It shows that increasing the diversity of the higher-depth CNN models (M-GoogleNet,
M-VGGNet, and M-ResNet) in the feature extraction step improves recognition accuracy.
The accuracies and AUC values of the five classifiers increase as the number of M-CNNs
increases, as shown in Figure 6a,b. CNN-5 with the AWV algorithm performed better than
other types of CNN models on both datasets.

When wi,j is calculated in Equation (2), two parameters must be assigned. α is related
to the relative accuracies among the M-CNN models. Table 8 shows the accuracy of the
ARS-MA model by α when λ is 5.

Table 9 shows the accuracy and average test time for an image in ARS-MA as λ varies
from 1 to 9 when α is 2. An optimal value of 5 is assigned to λ because it reduces the
training time, despite accuracy and average test time being nearly the same over the range
of 3 to 7. The proposed ARS-MA model performed best when α = 2 and λ = 5, as shown in
Table 7.
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Table 9. Accuracy and time/image by λ.

λ
ASL Alphabet ASLA

Accuracy Average Time/Image Accuracy Average Time/Image

1 98.8319% 0.312 s 98.7943% 0.324 s
3 98.8327% 0.282 s 98.7945% 0.286 s
5 98.8332% 0.276 s 98.7946% 0.279 s
7 98.7953% 0.273 s 98.7471% 0.271 s
9 98.7139% 0.270 s 98.6816% 0.267 s

Each dataset has 27 non-motion gesture images and two motion gesture images (J and
Z) and has different background complexity. Relative to motion and non-motion gestures,
the ARS-MA model prioritizes non-motion character with a more significant proportion.
ARS-MA has accuracies of 98.98% and 96.88% for non-motion and motion gesture images,
respectively. This result means that the accuracy for non-motion images is around 2%
higher than for motion images, and that a model for motion image gestures is necessary for
better performance.

Table 10 compares the proposed method to other methods for sign language recogni-
tion with motions or gestures in recent papers. The proposed ARS-MA model achieved
better recognition accuracy on both datasets.

Table 10. Comparison of proposed work and previous works.

Types Authors Works Accuracy

Sign Language
Recognition

Marek et al.,
2022 [31] Ensembles for Isolated Sign Language Recognition 73.84%

Hao et al.,
2021 [23] Self-mutual distillation learning 80%

Adaloglou et al.,
2022 [24] Inflated 3D ConvNet with BLSTM 89.74%

Kayo et al.,
2020 [18]

Sign Language Translation with
STMC-Transformer 96.32%

Du et al.,
2022 [19] Full transformer network with masking future 96.17%
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Table 10. Cont.

Types Authors Works Accuracy

ASL recognition

Kania et al.,
2018 [26]

Transfer learning using WRN (Wide Residual
Networks) on ASL alphabet 93.30%

Bousbai and Merah,
2019 [27]

Compare custom CNN model and transfer
learning using MobileNetV2 on ASLs 97.06%

Hasan et al.,
2020 [13] Deep learning classification on ASL MNIST dataset 97.62%

Li et al.,
2021 [28]

2D-CNN with joints encoding hand gesture
recognition for 14-class ASL alphabet 96.31%

Kothadiya et al.,
2022 [25]

Four different sequences of LSTM and GRU for
ASL recognition 95.3%

Ma et al.,
2022 [29]

Two stream fusion CNN for ASL
alphabet recognition 97.57%

Proposed Work
(ARS-MA)

The ARS-MA model on 29 classes of ASL Alphabet
and ASLA datasets, respectively

98.83% (ASL Alphabet)
98.79% (ASLA)

4. Conclusions

ASL letters are used as an auxiliary language for exceptional cases, such as names,
book titles, and letter correction. Building a reliable ASL letter recognition model is essential
to improving communication as a tool for hearing-impaired people.

In this paper, the ARS-MA model was proposed which consists of data preprocessing,
feature extraction, and classification. Five M-CNN models with different depths and
feature capture methods were designed to combine feature extraction and a novel AWV
algorithm using an accuracy-based weighted voting proposed to increase accuracy in
the final classification step, where two parameters, α and λ, in AWV were introduced to
improve the accuracy and consumption time. The best performance was achieved when
α = 2 and λ = 5. Three new datasets, ND1, ND2, and ND3, for accuracy-based weighted
voting, were created by the results of the multiple deep CNNs. The two datasets used in
this paper have two types of images: non-motion gestures and motion gestures (J and Z).
The ARS-MA model obtained 98.83% and 98.79% accuracies for the ASL Alphabet and
ASLA datasets. In addition, it has accuracies of 98.98% and 96.88% for non-motion and
motion gesture images, respectively, and the accuracy for non-motion images is around 2%
higher than for motion images.

In the future, the research on increasing the accuracy of motion gesture images will be
conducted for a real-time ASL recognition system and it will help hearing-impaired people
better communicate.
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