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Abstract: In this paper, we propose a robust and high-fidelity 3D face reconstruction method that uses
multiple depth cameras. This method automatically reconstructs high-quality 3D face models from
aligned RGB-D image pairs using multi-view consumer-grade depth cameras. To this end, we mainly
analyze the problems in existing traditional and classical multi-view 3D face reconstruction systems
and propose targeted improvement strategies for the issues related. In particular, we propose a fast
two-stage point cloud filtering method that combines coarse filtering and fine filtering to rapidly
extract the reconstructed subject point cloud with high purity. Meanwhile, in order to improve the
integrity and accuracy of the point cloud for reconstruction, we propose a depth data restoration
and optimization method based on the joint space–time domain. In addition, we also propose a
method of multi-view texture alignment for the final texture fusion session that is more conducive
for fusing face textures with better uniformity and visual performance. The above-proposed methods
are reproducible and can be extended to the 3D reconstruction of any subject. The final experimental
results show that the method is able to robustly generate 3D face models having high geometric and
visual quality.

Keywords: face reconstruction; point cloud filtering; texture fusion; 3D simulation

1. Introduction

3D face reconstruction has become a basic and important part of virtual reality tasks
owing to the increasing demand for virtual human–computer interaction, smart medical
applications, and 3D movies and games. In recent years, considerable research work has
been conducted on 3D face reconstruction from a single RGB image or RGB-D image using
the powerful capabilities of deep convolutional neural networks (DCNNs). Researchers
generally use DCNNs to learn the mapping relationship between the original image data
and the parameterized 3D morphable model (3DMM), thereby transforming the problem
of face reconstruction into an optimization problem of solving parameters [1–5]. Although
these methods have produced many impressive results in recent years, they are still not
widely applicable owing to most of them requiring good initialization parameters, and
the reconstruction quality is largely dependent on the training dataset. Similarly, high-
precision face reconstruction equipment and methods, such as the laser ranging scanner [6],
are greatly limited in practical application due to the high cost of special hardware and the
cumbersome process of manual post-processing.

With the latest advancements in 3D scanning technology and the progress in consumer
depth cameras, it is possible to obtain RGB-D image pairs in real time at an acceptable cost.
The availability of depth and RGB data dramatically strengthens the possibility of wide
applications of 3D face reconstruction using multi-view depth cameras in practical scenes.

Therefore, our goal is to build a high-quality face reconstruction system with the
consumer-grade depth camera and ensure that the method is robust enough (unlike the
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abovementioned DCNNS method, which is deeply affected by sample differences) while
keeping the low cost and efficient, so that face reconstruction can achieve actual applica-
tion viability.

However, in practice, high-quality face reconstruction tasks that rely on aligned
RGB-D image pairs are not as easy as described. Low-cost RGB-D cameras, including
Microsoft Kinect, Asus Xtion, and Intel RealSense, share the common characteristic that
the single depth frames acquired contain severe data noise, especially at the edges of the
discontinuities in the depth domain. The point cloud generated from the RGB-D image
acquired by the depth camera mainly contains two noise parts. One is the accidental
noise caused by the acquisition environment, such noise is minor and contingent, and the
impact of this kind of noise will be as small as possible under the premise that the camera
measurement quality is stable enough. The second is the edge noise (as shown in Figure 1)
at the discontinuity in the depth domain, which is caused by inaccurate depth measurement
of the background due to the depth measurement principle and ambiguity of boundaries.
This noise is attached near the edge of the foreground and densely distributed. There is no
doubt that noise hinders the accurate reconstruction of a 3D model of the observed subject
unless it can be removed by an efficient filtering algorithm. However, the regular point
cloud filtering methods, such as statistical filtering, radius filtering, and voxel filtering,
all have obvious shortcomings in removing the abovementioned edge noise. In addition,
when they are used together, they often ensure better performance but have an issue with
efficiency. At the same time, due to the differences in lighting from different views and
the differences in manufacturing between the cameras, the color inconsistency of the RGB
images captured by the cameras from different views is also quite severe, this certainly
increases the difficulty of recovering the overall uniformity of the textures for the 3D model
from the images.

(a) (b)

Figure 1. Edge noise at discontinuities in the depth domain. (a) Schematic diagram of edge noise.
The green area is the background and the yellow area is the foreground. The white area is the depth
discontinuity area where the foreground and background are separated, and the green area attached
to the outer contour of the yellow foreground is the edge noise, which is caused by the depth camera
measurement principle. (b) Visualization of edge noise on a point cloud of real data. The detailed
image of the edge noise is contained in the red box.

In this paper, we propose a new and detailed method for efficient and high-quality
face reconstruction based on commercial, low-cost depth cameras that are robust and can
easily be scaled to reconstruct arbitrary subjects. In this multi-view face reconstruction
framework, we do not rely on significant data priors, which frees our method from the
problem of different samples behaving differently. The fast and powerful noise filtering
capability of our method ensures the removal of the deep-rooted edge noise (which severely
hinders the point cloud stitching and fusion) and the accuracy of face reconstruction. In
addition, our method has a firm texture recovery capability, which guarantees that the
reconstructed face meshes with natural texture even in extreme cases. We hope that the
mature process and robustness of our method will improve the applicability of 3D face
reconstruction in future scenarios.
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In summary, the main contributions of this study are as follows:

• We propose a novel, fast two-stage point cloud filtering method, in which we simpli-
fied the filtering process through this two-stage process and employed image matting
technology based on deep learning for the first time to effectively remove the edge
noise at discontinuities in the depth domain.

• We propose an improved time–space joint depth data restoration and optimization
method, which ensures the accuracy and integrity of the point cloud.

• We propose a novel method of multi-view texture alignment, which reduces the
burden of texture fusion and achieves overall unity texture recovery for 3D models.

• We demonstrate the excellent facial shape and texture reconstruction performance of
this method and verify the practicality of the above approaches with both qualitative
and quantitative experiments.

2. Related Work

Our system uses multi-view depth cameras to reconstruct a high-quality 3D face
model; so, in this chapter, we discuss and analyze methods and systems for acquiring 3D
face models using depth data. Generally speaking, such methods can be classified into two
categories: data-driven methods and model-based methods.

Data-driven methods: Data-driven 3D face reconstruction methods usually achieve
complete 3D face reconstruction by integrating depth images acquired in real time into
a final global 3D model. Ref. [7] proposed a real-time reconstruction of a 3D face model
using a low-cost and low-resolution depth camera with frame tracking from the current
frame to the reference frame (a similar approach was used in Ref. [8]). Specifically, the
depth image of the first frame is initialized and regarded as a reference frame, and then
the iterative closest point (ICP) algorithm is used to align the point cloud corresponding
to the subsequent depth frame to the reference frame. They also introduced the bump
image framework to parameterize the 3D facial surface in a so-called cylindrical coordinate
system. Although this method can generate a high-quality 3D face model, it also has
obvious shortcomings. If the pose of the current frame relative to the reference frame
changes too much, the camera tracking system will fail due to the inaccurate pose estimate,
and the cylindrical bump images will only record geometric information and not texture
information. Ref. [9] proposed a new method of Kinect fusion, which fuses all the depth
data streams of the Kinect depth sensor into the truncated signed distance function (TSDF)
volumetric scene by using a coarse-to-fine ICP algorithm (acting on all available depth
data) to track the pose of the current sensor. This framework is robust to drift. Ref. [10]
further extended this method to capture dynamic action in the foreground. Although the
Kinect fusion approach is generic and its application to face reconstruction is optimized for
noise in a single depth frame, there is still a significant gap compared with high-quality
scans. Ref. [11] introduced a method for generating accurate 3D faces based on RGB-D
sensors. They extend and use bump images to reconstruct faces with high accuracy while
keeping memory consumption low. Although this method still works for unknown face
profiles, the validity of the method by Anasosalu et al. is based on the assumption that
facial expressions do not change with small head movements. Ref. [12] proposed a solution
for the marker-less reconstruction of non-rigidly deformed subjects using a GPU pipeline
for non-rigidly aligned, real-time RGB-D images with a smoothed template. However, the
solution requires specific stereo matching algorithms to estimate the real-time depth data.
Ref. [13] proposed a 3D face reconstruction algorithm with continuous face geometry and
texture. However, their method requires special settings, such as two mirrors placed on
both sides of the face and image calibration using the mirror. Ref. [14] proposed a method
for reconstructing full-body meshes with high-resolution texture from RGB-D video. They
used incident illumination to accurately estimate the surface geometry and albedo based
on the coarse human mesh from RGB-D tracking, and further used photometric constraints
to perform more detailed geometric and texture estimation in a self-supervised manner.
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However, their approach is based on the assumption that the deformed invisible areas are
the same or similar as in the keyframes, which is not always correct.

Model-based methods: These methods mainly use a standard variability model as
a template and learn the corresponding texture and shape parameters from input data;
thus, they adapt the standard template to the input face. In fact, in many applications,
3DMM is suitable for RGB images [15–17] as original data for face rendering, expression
simulation, etc. However, in this section, we focus on applications that use low-cost
depth cameras with depth images or RGB-D image pairs as input data to generate the
corresponding 3D face models with 3DMM. Ref. [1] described a variability model for
depth images acquired by a depth camera. Specifically, the features detected by the
aligned RGB images allow the template model to complete a rough registration with
the depth frame. The template is then non-rigidly aligned with the depth frame data.
Unfortunately, this method eventually produces results that are biased towards the template
and away from the input data. Ref. [18] proposed a novel facial geometry modeling and
reflectivity synthesis procedure to reconstruct the complete head in less than half a minute
by recording an RGB-D video of the user rotating the head. The method first selects
high-quality frame data available for reconstruction through a two-stage frame screening
procedure; then, it recovers facial shapes by fitting 3DMM parameters from multi-view
RGB-D data in a learning-based manner. Although this method can recover accurate
geometric shapes and synthesize realistic detailed textures, the method of recording depth
video is cumbersome for practical applications, and its input data are redundant. Ref. [19]
proposed a fine-grained reconstruction network for the problem of fine-grained geometric
loss in 3DMM template reconstruction; they focused on shape modification by distorting
the network input and output to UV space and constructing a new, fine-grained 3D face
dataset from the RGB-D data. Ref. [20] proposed an efficient face reconstruction and
real-time facial expressions based on RGB-D videos for VR interaction. Specifically, the
depth image is first captured using an RGB-D camera, and a rough face model is then
quickly reconstructed. The user’s specific avatar is generated using standard facial model
templates and shape morphing techniques. In addition, RGB data is used to track the
user’s head movements and localize facial features. The facial features are automatically
linked to the facial model. Finally, the user’s avatar can be driven by the facial features
using Laplacian deformation. However, it still cannot eliminate the algorithm robustness
problem caused by sample differences.

Among all the above methods, the first type of strategy offers real-time processing
and high accuracy but the visual performance is generally not good enough; it requires
redundant data to generate a complete face and does not perform detailed processing of
textures. Meanwhile, the second type of strategy does not require any post-processing step,
but usually depends on a large amount of training data and differences in accuracy between
different samples due to the fitting principle, which is not conducive to practical applica-
tions. Therefore, we hope to combine the advantages of these two types of methods and
adopt a classical multi-view method to achieve considerable reconstruction performance
while maintaining high accuracy and strong generalization so that 3D face reconstruction
can be more widely applied.

3. Materials and Methods
3.1. Overview

The system we designed uses three depth cameras positioned for left, middle, and
right views to acquire aligned RGB-D image pairs for a complete 3D face reconstruction.
The relative positioning of depth cameras ensures that a person’s face (from left ear to
right ear) can be fully captured with a sufficiently overlapping field of view, as shown in
Figure 2.

Finally, the Intel RealSense D435 camera is adopted with comprehensive consideration
for measurement accuracy and the available depth range. In practice, the RealSense D435
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is able to capture both 1280 × 720 depth and RGB images at 30 frames per second (fps) on
our machine, which is the final resolution we used for reconstruction.

RealSense D435

Brightness control

a b

Figure 2. Schematic diagram of the acquisition platform. (a) The acquisition platform contains three
calibrated RealSense D435 cameras and a light source. (b) The acquisition platform with the users.

Figure 3 shows a diagram of the software system. First, we jointly calibrate the three
relatively fixed cameras, using the middle camera as the reference coordinate system, and
aligning the left and right cameras with the middle camera, respectively, as the initial
parameters of the point cloud registration. The denoising process takes the point cloud
of each viewpoint as input and generates a clean and accurate point cloud by filtering
out the noise and repairing the depth. The denoised and restored point clouds are used
for fine registration by the ICP algorithm and fusion. The output is further processed by
operations such as surface triangulation to complete the geometric reconstruction of the 3D
face. Finally, texture mapping takes as input the RGB images after multi-view alignment to
recover the overall uniform face texture for the geometric model. Sections 3.2–3.4 present
the blocks of denoising and multi-view texture alignment (the orange block in the software
diagram) in detail.

C
alib

rated
C

alib
rated
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Right 

RGB Depth
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Hole restoration 

and depth 

optimization
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Figure 3. Overview of the face reconstruction system.

3.2. Fast Two-Stage Point Cloud Filtering

In this section, we mainly describe a fast two-stage point cloud filtering method of
coarse filtering based on a distance prior and fine filtering based on image matting, to
ensure that the point cloud of the reconstructed subject was clean enough. The stages are,
respectively, used to remove the overall and edge noise at the discontinuity in the depth
domain. The schematic diagram of the whole process is shown in Figure 4.

Specifically, we ensure that there is no other object between the face and the camera
when we capture the face with the device shown in Figure 2. Otherwise, the complete 3D
face reconstruction task would not be possible. This way, the face is the closest foreground
subject to the camera; so, we first extract the current minimum value of depth depthmin
by traversing the Z coordinates of all points in the point cloud, and the point to which
the minimum depth value belongs is the closest point in the face to the XOY plane of
the camera coordinate system. Meanwhile, based on the assumption that the maximum
front-to-back diameter of a normal human head should not exceed β millimeters (mm), we
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perform the first coarse filtering of the reconstructed point cloud based on the following
distance interval:

{P|∀p ∈ P, depthmin ≤ pz ≤ depthmin + β} (1)

where P is the point cloud after coarse filtering for each view, p is a point in the P, and
pz denotes the Z coordinate of p. In this way, we only need a simple traversal to obtain
knowledge of the face position, which can remove most of the noise in the non-face areas
of the point cloud. In order to effectively remove the remaining noise, especially the edge
noise at the discontinuities in the depth domain, we combine the image matting method
with deep learning for the first time to guide the fine filtering completely and accurately
filter this noise.

(Aligned RGB-D image pairs)

Coarse filtering

Fine filtering

Fast two-stage point cloud filtering

Image Matting CNN

(a) (b)

In put

(Equation 2)

(Equation 1)

y
z

x

Figure 4. Schematic diagram of two-stage point cloud filtering. (a) Detailed image after coarse
filtering. (b) Detailed image after fine filtering. It can be seen that the noise at the edges (curtains and
lights in the background) of the hair is filtered out well after fine filtering.

In this module, an advanced work called Robust High-Resolution Video Matting
(RVM) [21], which adopts MobileNetV3-Large [22] as an effective backbone, is used in
our image matting tasks that have a human as the foreground. The whole architecture
consists of an encoder that extracts the features of an individual frame, a recurrent decoder
that aggregates temporal information, and a deep guided filter module for high-resolution
upsampling. RVM is designed explicitly for robust human video matting; however, it can
still show excellent performance in image matting and can handle matting in real-time
without additional input, which is why we chose it. To enhance the robustness of the image
matting task, we combine multiple data sets, including VideoMatte240K (VM) and Adobe
Image Matting (AIM), to train the network according to the training strategy in this study.
The VM contains 484 4K/HD video clips; in the AIM, we select only 420 images containing
humans for training. The MobileNetV3 backbone is initialized with pretrained weights
and uses a 1 × 10−4 learning rate, while the rest of the network uses 2 × 10−4. The final
testing efficiency is about 10 ms. Please refer to Section 4 of the original article for specific
training strategies.

Its network output, which is the transparency image first proposed by [23], represents
the mixing ratio of foreground and background. We know that a larger transparency value
means that the foreground is more visible than the background in the current pixel. On
the contrary, the background is relatively more obvious. The transition region of trans-
parency should theoretically appear in the region of foreground and background separation.
Thus, we use the transparency value as the confidence level of the pixel belonging to the
foreground (i.e., the higher the transparency value, the higher the probability that the
pixel belongs to the foreground) to filter out the uncertain pixels in the region of fore-
ground and background separation. This is not possible with conventional filtering and
segmentation algorithms.
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In particular, we overlay the result of the coarse filtering with a fine filter based on
matting, while using a transparency value of α ≥ Cth as the criterion for edge points retention:

{P|∀p ∈ P, projection(p)α ≥ Cth} (2)

where Projection(·) is the projection function, which indicates the two-dimensional pixel
point in the image that corresponds to the point in the point cloud, Cth indicates the
confidence threshold for retention, and Projection(p)α indicates the transparency value
corresponding to the projection point of p. In fact, in the final experiment, we set Cth to
0.8; filtering by this criterion allows for some loss of the data that belong to the foreground
object at the edge. The lost edge data at the overlap of the point clouds are redundant.
For the edge data lost at the non-overlapping region, the reason why we adopt this strict
limiting value is that we hope the edge parts are kept as accurately as possible, and we
do not want the noise of non-face parts to affect the smoothness and accuracy of the
final model.

3.3. Hole Restoration and Depth Optimization

To perform dense, high-precision reconstruction, we also expect the data for the target
point cloud to be complete and sufficiently accurate. Therefore, this section focuses on
the hole restoration and depth optimization of the current point cloud by combining the
redundant depth data in the temporal and spatial neighborhoods of the depth frame.

Specifically, considering the performance of the RealSense D435 at frame rates up to
30 fps, we take N frames of depth data at the moment of acquisition and its subsequent
time domain, and we define the final depth constraint as follows:

D∗(i, j) = mid(D(1)(i, j), D(2)(i, j) · · · D(N)(i, j)) (3)

where D∗(i, j) denotes the optimized depth value at pixel coordinate (i, j) in the depth
image, D(k)(i, j) denotes the depth value at pixel coordinate (i, j) of the k-th (1 ≤ k ≤ N)
frame depth image in the captured N frames of depth data, and mid(·) denotes the median
operation performed on the current set.

In addition, based on the results of matting in Section 3.2, we can obtain the face
region to be repaired; further, for the points that are still invalid (points without depth
value) in the face region after the median operation, we take the depth value of the spatial
neighborhood to further repair it. Let Dhole(x, y) be the hole point of the face at the (x, y)
position in the depth image; we repair this type of point by the available depth in its spatial
neighborhood and its weight. The specific constraints are defined as follows:

Dhole(x, y) =
∑(i,j)∈R (W(i, j) ∗ D(i, j))

∑(i,j)∈R W(i, j)
(4)

W(i, j) =
1

(i− x)2 + (j− y)2 ∗ S(i, j) (5)

S(i, j) =
{

S(i, j), S(i, j) ≥ αth
0, otherwise

(6)

where R is the set of neighborhood points of the hole point at the (x, y) position; W(i, j) and
D(i, j) represent, respectively, the weight and depth value of the neighborhood point at the
(i, j) position; and the specific definition of the weight is shown in Equation (5). S(i, j) is the
transparency value at the (i, j) position in the transparency image described in Section 3.2.
It is important that the spatial neighborhood used for repair should have explicit properties,
which means that the holes of a certain subject should be repaired with the neighborhood
data of the same subject. The cut-off value αth is to ensure that the spatial neighborhood
used for restoration mentioned in this section belongs to the face.
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3.4. Multi-View Texture Alignment

After we solve the problem of geometric accuracy in face reconstruction, we cannot
ignore the problem of texture fusion if we want to ensure 3D face model reconstruction with
high-quality geometric and visual performance. Although an overlap of textures can be
made almost unnoticeable by the pixel weighting, it is not enough to solve the problem of
color non-conformity in the captured RGB images caused by different views and individual
camera differences.

Inspired by professional color calibration methods [24], we assume that colors ob-
served from the same spatial point at different views are linear, as shown in Equation (7):

 R′

G′

B′

 = ColorMatrix ∗


R
G
B
1

 (7)

where the input and output of the expression are the color representation of different pixels
corresponding to the same spatial point in images acquired from different views, and
ColorMatrix ∈ R3×4 is the color mapping matrix.

We design the solution as follows. First, we take a captured RGB image of a human face
with standard color as a template; then, we use the color transfer [25] in traditional image
processing algorithms to align all the image colors to the template to prevent excessive
differences between the colors of images captured by different cameras. Then, because we
have the aligned RGB-D image pairs, each point in the point cloud has not only its spatial
location information but also its corresponding color information. Next, we use the results
of the ICP algorithm to obtain the matching point pairs in different views of the point cloud
using the following point-matching constraints:{

(pi, qj∗)
∣∣∣∥∥Rpi + t− qj∗

∥∥2 ≤ r2
}

(8)

j∗ = argmin
1≤j≤N

∥∥Rpi + t− qj
∥∥2 (9)

where R, t are the results obtained by the ICP algorithm; pi is the i-th point in the source
point cloud (the source point cloud is the point cloud in the left and right views); qj is the
j-th point in the target point cloud (the target point cloud is the point cloud in the middle
view); N is the number of points in the target point cloud; j∗ is the label of the nearest point
in the target point cloud to pi in the source point cloud; and r is the hyperparameter used
as the upper limit for the distance between pi and qj∗ , above which the points cannot be
regarded as matching points. Based on the matched point pairs obtained by Equation (8),
the corresponding color matching pairs (prgb

i , qrgb
j∗ ) are obtained. prgb

i represents the color

information (RGB value) of the i-th point in the source point cloud, and qrgb
j∗ represents the

color information of the j∗-th point in the target point cloud. Finally, the corresponding
color matching pairs are used to solve the following optimization problem to determine
the optimal color matrix ColorMatrix∗:

ColorMatrix∗ = argmin
ColorMatrix

∑
i,j∗

∥∥∥ColorMatrix ∗ prgb
i − qrgb

j∗

∥∥∥2
(10)

This is a classical least-squares problem [26], which can be efficiently solved with
the orthogonal Procrustes algorithm [27,28] using singular value decomposition (SVD).
ColorMatrix∗ is then used to adjust the source photo to a new color. This ensures that the
left and right view textures are the same color as the middle view textures.
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4. Experiments

In this section, we describe the experiments performed to evaluate our method. The
experiments mainly consisted of quantitative and qualitative experiments. Note that there
were no public datasets available that could be used as our input. Thus, in the first part,
we quantitatively evaluate our system and the methods proposed above using synthetic
data. In the second part, we qualitatively analyze the final reconstruction results with a
real dataset.

Test data. In our experiments, we used both synthetic and real test data. The real data
were acquired by our system using the RealSense D435 camera, and the synthetic data were
generated from the high-fidelity face data acquired by [29]. We generated synthetic data for
each view by setting up three virtual depth cameras and recording the relative positions
between virtual depth cameras as the original calibration parameters in the system, which
are consistent with the real system settings. In addition, to simulate the real photography
situation, we also added random noise (including accidental and edge noise) to the depth
data, especially the edge noise similar to the real data, to prove the effectiveness of our
method. In the synthetic data, each depth image is disturbed by random noise in the
interval [−a, a], and the value of a is taken from 1 mm to 10 mm at an interval of 1 mm.
Note that the accidental error of the depth data acquired by the RealSense D435 camera
after calibration at short distances should be less than 2 mm.

4.1. Quantitative Comparison

We first compared our filtering algorithm with other classical filtering algorithms by
mesh reconstruction error. We used the ICP algorithm to densely align each of our generated
3D face meshes with the ground truth meshes corresponding to the synthetic data, and
we followed [30] using the average symmetry point-to-plane distance as the evaluation
metric for this error measure. The normalized point-to-plane errors on reconstructed face
mesh with different filtering methods are shown in Table 1 in mm. We can see in the final
results that our method is on par with the best-performing method (radius filtering) for
mean error, and very close to the best-performing method (statistical filtering) for standard
deviation. The reason our method is not significantly better than the other methods we
analyzed is that the accidental noise we added to the synthetic data was not explicitly
filtered in our fast two-stage filtering method, allowing other methods to narrow the gap
in accuracy with our method. However, in practice, the range of accidental noise of the
depth camera we used is less than 2 mm under calibration, which means that the accidental
noise caused by the regular depth camera is minimal (much smaller than the interval of
±10 mm we set); so, this experimental condition is actually unfavorable for us. In other
words, the smaller the interval of the level of accidental noise, the higher the accuracy of
our method will be. Even so, our method still achieves the best performance. The reason
why we chose such a considerable error interval (beyond the conventional error range)
is that we feel if we want to promote the practical application of our face reconstruction
method, we should overcome the drawbacks of the lower cost and worse measurement
quality of the consumer-grade depth cameras that bring more accidental noise. We set a
considerable error interval that all the depth cameras we know can satisfy.

Table 1. Comparison of reconstruction accuracy of mesh on synthetic data using point-to-plane
distance with different filtering methods. The table reports the mean error (Mean) and the standard
deviation (Std).

Method Mean Std

Voxel filtering 1.75 0.272
Statistical filtering 1.46 0.147
Radius filtering 1.42 0.165

Fast two-stage filtering 1.42 0.153
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We also tested the speed of our filtering method and compared it with voxel filtering,
radius filtering, and statistical filtering. Fast face reconstruction can now be effectively
applied in virtual reality interaction scenarios, such as future 3D digital conferences and
the hot metaverse games of today. A real-time or quasi-real-time 3D reconstruction of
the user’s face is required to achieve real-time face view correction and rendering of the
digital face after correction. Thus, time consumption must be taken into consideration for
the vision of the practical application of face reconstruction; as point cloud filtering is an
essential component of the face reconstruction process, the evaluation of the filtering speed
is also necessary. We used the PCL library implementations of statistical filtering, radius
filtering, and voxel filtering. The machine used in the experiment is equipped with an Intel
Core i7 2.80 GHz CPU. Speed is measured by the average time for point cloud filtering, in
seconds per frame (point cloud), and the results are shown in Table 2. It can be seen that
our method outperforms other filtering algorithms in terms of filtering efficiency; it is also
nearly twice as fast as the best-performing method (voxel filtering). Although the statistical
filtering performed best on the reconstructed standard deviation, it is also the slowest. One
possible reason is that the statistical filtering method requires information about the nearest
neighbors of each point and this search process is time-consuming.

Table 2. Comparison of the speed of different filter methods. Speed is measured in seconds-per-frame
(point cloud).

Method Time

Voxel filtering 0.088
Statistical filtering 1.77

Radius filtering 0.776

Fast two-stage filtering 0.046

We also tested the results of hole restoration and depth optimization combined with
fast two-stage filtering, shown in Table 3, which can be used to evaluate the performance of
our method for shape reconstruction. We can see that the reconstruction error is further
reduced compared with the previous fast two-stage filtering, which shows that the depth
optimization and hole restoration methods are effective for improving shape reconstruction.
The reason for further improvement is that the method effectively responds to the noise
and holes in the inner area of the face. Although we removed as much non-face noise as
possible in the filtering stage, the depth data within the face still contain a part of random
noise; the hole restoration and depth optimization methods are precisely aimed at solving
this problem. The reconstructed error relative to the ground truth meshes in Table 3 shows
that our method exhibits robust shape reconstruction performance that fully meets the 3D
face reconstruction requirement in relevant fields.

Table 3. Reconstruction accuracy of mesh on synthetic data using point-to-plane distance with fast
two-stage filtering combined with hole restoration and depth optimization (F + H). The table reports
the mean error (Mean) and the standard deviation (Std).

Method Mean Std

F + H 1.26 0.125

Figure 5 shows the reconstruction capability of our method at different noise levels,
and it can be seen that the total reconstruction error (both mean error and standard devia-
tion) of the shape reconstruction of our method is always less than 1 mm within the actual
noise range (2 mm) captured by the RealSense D435 camera.
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Figure 5. Reconstruction accuracy of our method on synthetic data with different noise levels.

As the noise increases, the reconstruction accuracy of our method decreases, but our
method still maintains a high accuracy level.

4.2. Qualitative Evaluation

In this section, we qualitatively evaluate the methods above and the 3D face recon-
struction capability of our system on the real dataset we captured.

Figure 6 shows a comparison of our point cloud filtering method with other filtering
methods; in this experiment, we first performed the same depth filtering on all the method
groups to filter out the approximate face results, and then conducted the comparison
experiment. It is obvious from the comparison results that our filtering algorithm is
excellent in removing edge noise. The statistical filtering excessively filters out the data that
originally belonged to the face based on the core idea that the characteristics of apparent
noise are sparsely distributed in space. The distribution of edge noise is not in isolated areas
but closely attached to the edge area of the reconstructed subject, making the statistical
filtering unable to distinguish the edge noise and remove it effectively. Radius filtering is
better than the other two filtering algorithms, except for our method, in terms of results.
However, radius filtering is also to determine whether the point is noise by its outlier;
so, it still cannot effectively remove the edge noise attached to the face. Voxel filtering is
used for noise removal by downsampling and is also ineffective for edge noise. Compared
with the other methods, the point cloud after voxel filtering is the most sparse. Our fast
two-stage filtering method does not consider the distribution characteristics of the edge
noise but accurately segments the face region (including the edges) through human matting
on the RGB image. It then combines the connection between the 2D RGB image and
the 3D point cloud to make an accurate guide for point cloud filtering, thus achieving
excellent performance.

Figure 7 shows a comparison of the results of our multi-view texture alignment
method for the real image set, including the original data and the comparison results of the
generated facial model before and after the method was adopted. For the left image set in
Figure 7, the overall color of the face captured in the right view is darker and more reddish
than the other views, and after the multi-view texture alignment, the right face is closer to
the middle face than before. Even in an extreme case where the hues of the right image set
in Figure 7 are completely inconsistent, our texture alignment method is still able to ensure
uniform face color from all views. This is very important for texture fusion.
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Figure 6. Comparison of point cloud filtering results under different camera views. The red box
contains the noise that the other filtering method failed to filter out.

Before

After

Figure 7. Multi-view texture alignment results.

Figure 8 shows the results of our face reconstruction on the real data acquired by
RealSense D435, which shows that our method can accurately recover the 3D facial model
of the acquisition users with excellent results for both geometry and texture.

The shape reconstruction details can be seen in Figure 9, from which we can see that
we have clearly recovered the geometric shape of facial features even for slight differences
in depth. Note that all of these results were achieved automatically without any user
intervention, and our data acquisition was performed in a single moment, which makes for
a good user experience and practical applications. In summary, our approach performs face
reconstruction tasks with high standards for geometry and visual performance, and it can
be extended to other tasks using arbitrary depth sensors for arbitrary subject reconstruction.
At the same time, our algorithm maintains high efficiency to meet the requirements of
practical applications while relying only on a CPU. The current system maintained an
average time of 30 s on a machine equipped with an Intel Core i7 2.80 GHz CPU to
complete the entire 3D face reconstruction process described above.
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Input geometric shape front view right side view left side view

Figure 8. Face reconstruction results from aligned RGB-D image pairs using our approach. The first
column contains the input RGB and depth image pairs, and our geometric shapes are shown in the
second column. Columns 3–5 show our texture geometry results from different views.

Figure 9. Geometric shape detail of facial reconstruction. We can see that we have clearly recovered
the geometric shape of facial features even for small differences in depth.

5. Conclusions

In this paper, we present an algorithm for the accurate reconstruction of 3D faces
using multiple depth cameras. Our method ensures the geometric accuracy and textural
visualization of the reconstruction. The strength of our method is the use of the distance
prior and matting technology to remove the non-subject noise from the point cloud, and the
optimization and restoration of the depth data for the current reconstructed subject using
redundant depth data in the spatiotemporal neighborhood. In addition, we also propose
a new method of texture alignment through the idea of professional color correction to
align the facial textures in different views globally. The experimental results show that
our method has the ability to reconstruct face shapes stably and its recovered textures are
highly uniform without the use of additional, prior, and strong 3D facial knowledge. Of
course, the main limitation of our method is that it needs to combine multi-depth cameras
to complete the data acquisition task synchronously. This also means that the data of our
method are specific and no such public dataset exists on the web; so, we can not compare it
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with the related methods we mentioned. However, this result is a compromise to ensure
the integrity of the face and the most simplified data acquisition operations.
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