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Featured Application: Redox and optical features of thiophene-based oligomers and polymers
make them appealing in several technological fields, including light-emitting diodes, solar cells,
electrochromic and electroluminescent devices. In this context, the evaluation of the energy gap
can give useful suggestions on the effect of substituents on the behavior of the oligothiophenes
chain, and on the extension of the electron density delocalization.

Abstract: Oligothiophenes are especially appealing due to their promising applications in different
fields, including photosensitive devices. In this context, anchoring a selected substituent on the
main structure of the starting material can induce changes in redox and spectroscopic features,
according to the nature of the substituent and its position on central or terminal rings. Here, an
electrochemical and spectroscopic comparison between 2,2′:5′,2′′-terthiophene (2), 5-Br-terthiophene
(3) and 5-ethynyl-terthiophene (5-ET) is reported, aimed at elucidating the effect of the nature of the
substituent on the energy gap value of the terthiophene skeleton. Furthermore, in order to understand
the influence of a selected substituent in varying its position on the terthiophene backbone, 5-ET
is compared to the previously described 3′-ethynyl-terthiophene (3′-ET). Experimental results are
confirmed by DFT calculations, showing a higher extension of the electron density in 5-ET compared
to 2 and 3, as well as to 3′-ET. In addition, as a consequence of the presence of the unsaturated
fragment on the C-5-position, the energy gap value of poly-5-ET (the electrogenerated film from
5-ET) appears significantly lower than poly-2 and poly-3. Finally, the higher conjugation effect of
a terminal acetylene fragment compared to a central one is confirmed by the energy gap values of
poly-5-ET and poly-3′-ET.

Keywords: oligothiophenes; conducting polymers; electrochemical synthesis

1. Introduction

Conducting polymers (CPs) are a well-known, wide class of compounds where the
structural flexibility and the mechanical properties of “classical” polymers are coupled to
the electronic and optical properties typical of inorganic semi-conductors. Since the Nobel
Prize that was awarded to Heeger, McDiarmid, and Shirakawa in 2000, CPs have received
a large attention from the scientific community due to their possible application in different
technological fields such as sensors [1–6], photosensitive and electrochromic devices [7–13],
rechargeable batteries [14–16], corrosion protection [17–19], and biomedicine [20,21]. In
this context, polythiophenes (PTs) are especially appealing because of their structural ver-
satility, as well as their environmental and thermal stability in the doped and undoped
states, moderate band gap values, ease in p- and n-doping, and high conductivity [22].
CPs, including PTs, are often successfully achieved by electrochemical polymerization,
with some interesting advantages to this methodology compared to the classical synthetic
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approach. The electrochemical synthesis of a conducting polymer allows for obtaining a
polymer film on an electrode surface, tuning the thickness by the deposition charge, and
monitoring the growth process by electrochemical or spectroelectrochemical techniques.
Furthermore, the CP-modified electrode surface can be directly used in some specific ap-
plications, as in the case of sensors. Additionally, the electro-generated polymer can be
firstly characterized on the same electrode surface where it is grown [23]. The features of
the film can be controlled through an appropriate selection of the experimental conditions,
namely electrode material, monomer concentration, solvent and supporting electrolyte,
temperature, pH (in case of aqueous solutions), and the electrochemical technique of depo-
sition. From a general point of view, the electrical and optical properties of PTs are due to
the extended charge delocalization along the polymer backbone as a consequence of the
overlapping of the π orbital of the thiophene rings, which tend to be coplanar. On the other
hand, the rigidity of the structure causes insolubility of unsubstituted PTs, making their
chemical characterization difficult. The insertion of flexible chains as substituents on the
polymer skeleton increases the solubility of PTs but produces a twisting in the structure,
and consequent changes in the properties of the polymer [24]. Furthermore, the presence of
substituents in the β position of the heterocyclic ring facilitates α-α couplings rather than
the α-β, leading mostly to stereoregular chains. In order to promote α-α couplings, as well
as to reduce the value of the potential in electrochemical polymerization of thiophenes,
chemically synthetized oligomers can be used as starting materials [25,26]. A combination
of all these aspects influences the mean effective conjugation length of the polymer chain
and, consequently, its band gap energy and conductivity values. However, the effect of
using monomers/oligomers as starting materials on the properties of the electrogener-
ated conducting polymers is not totally defined. In 1986, Roncali et al. [25] proved that
polythiophenes obtained by mono-, bi- and ter-thiophene showed an increasing doping
potential moving from poly (thiophene) to poly (terthiophene), suggesting a decrease
of the mean conjugation length when increasing the number of heterocyclic rings in the
relative oligomer. On the other hand, Zotti and Schiavon [26] reported that polythiophenes
obtained from bi- and ter-thiophene showed comparable conductivity, whereas the poly-
mer obtained by thiophene monomer showed lower conductivity values, maybe because
of overoxidation processes that generate degradation phenomena. However, the lower
oxidation potential of bi- and ter-thiophene, compared to thiophene as it is, allows to avoid
overoxidation phenomena on the growing polymer. Therefore, these oligomers are often
used in the electrochemical synthesis of thiophene polymers.

In this context, the functionalization of terthiophene (Figure 1) on the C-3′ position is
often adopted to assign new features to thiophene-based CPs.
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The synthesis of terthiophene oligomers with N-chelating moieties, connected to the
central thiophene ring through a saturated or an unsaturated tether, has been previously
reported [22,27,28]. Such arrangements allow to combine the polymerizing ability of the
terthiophene to the coordinating ability of the N-ligand towards metal ions, mixing the
conducting properties of the organic framework to the electronic and optical properties of
the metal center. The resulting metal-containing species can be included in the so-called
“outer-sphere metallopolymers” group [29]. In particular, an unsaturated (ethynyl) spacer
between the polymerizing and coordinating units instead of a saturated (methoxy) one
leads to a higher extension of conjugation, evidenced by a lower energy gap value. On the
other hand, 5-substitued terthiophenes are reported as building blocks in photo-sensitive
arrangements [30,31]. As in the case of 3′-ethynyl-terthiophene, the analogue 5-ethynyl
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derivative could be properly modified to achieve a molecule with a double function, that
is, a polymerizing and a coordinating one. In this last case, the resulting metallopolymers
could be defined as “inner-sphere metallopolymers” [29], with conducting, electronic, and
optical performances higher than in the case of outer-sphere materials. In this context, a
comparison between 3′-ethynyl- and 5-ethynyl-terthiophene could give useful suggestions
to predict the optical and electrochemical behavior of new species, including such fragments
as building block. Unlike 3′-ethynyl-terthiophene, the behavior of the 5-ethynyl- analogue
has been reported only as a part of organic [31] or metallorganic [32,33] compounds,
but its electrochemical characterization has not so far been reported to the best of our
knowledge. Hence, with the aim of studying the influence of the position of an ethynyl
substituent on the properties of the monomers and the resulting polymers, here we report
a voltammetric and UV-Vis characterization of 5-ethynyl-terthiophene and poly (5-ethynyl-
terthiophene), as well as a comparison of the corresponding 3′-ethynyl-terthiophene species.
The experimental results are compared to calculated data by DFT-approach.

2. Materials and Methods

5-bromo-2,2′-bithiophene, 2-thienylboronic acid, tetrakis (triphenylphosphine) palladium
(0) ([Pd(PPh3)4]), 1,1′-bis (diphenylphosphino) ferrocene dichloropalladium ([Pd(dppf)Cl2]),
trimethylsilylacetylene (TMS), and N-bromo-succinimide (NBS) were from TCI Chemicals.

1H NMR spectra were recorded with a Varian VXR 300 spectrometer operating at
300.0 MHz. Chemical shifts are given in ppm relative to residual solvent signal [34].

UV-Vis spectra of the monomers were recorded in CH2Cl2 or CH3CN solvent using a
Hitachi U-2010 spectrophotometer. IR spectra were carried out with a JASCO FT/IR-489
Plus spectrophotometer using KBr disks in the range 4000–400 cm−1.

UV-Vis spectra of polymers were carried out on films electrodeposited on a ITO
(indium-tin oxide) slide.

Electrochemical tests were performed with a AUTOLAB PGSTAT12 instrument, using
the software GPES. The electrochemical synthesis and characterization were performed in
a three-electrodes, single compartment cell using a Pt disk (2 mm diameter) as the working
electrode, a graphite bar as the counter electrode, and Ag/AgCl equipped with a salt
bridge containing the same solvent-supporting electrolyte system as the reference electrode.
CH3CN or CH2Cl2 (99.8%, packaged under nitrogen), and 0.1 M tetraethylammonium
hexafluorophosphate (TEAPF6, puriss. electrochemical grade) were used as a solvent and
supporting electrolyte, respectively. Before each experiment, the working electrode was pol-
ished with 1 and 0.3 µm alumina powder, then rinsed with distilled water in an ultrasonic
bath. The monomer concentration in electrosynthesis and monomers characterizations was
2 × 10−3 M. All the electrochemical experiments were performed under Ar atmosphere.

The energies of HOMO and LUMO were estimated by the voltammetric response
according to Equations (1) and (2) [35]:

HOMO = −e(Eonset,ox + 4.71) (eV) (1)

LUMO = −e(Eonset,red + 4.71) (eV) (2)

where potential values are in Volts vs. Ag/AgCl and 4.71 is the potential (in Volts) of
the redox couple Ag/AgCl versus vacuum, and taking into account that an electronvolt
(eV) is defined as the energy gained by an electron moving along a potential of 1 V. The
energy gap (Eg) values (difference between LUMO and HOMO) were calculated from the
electrochemical data (Eg,ec), or from the UV-Vis spectra (Eg,opt) according to Equation (3):

Eg,opt = 1239.81/λonset (3)

where λonset is the value of wavelength corresponding to 10% of maximum absorbance.
DFT calculations. DFT calculations were performed on PC GAMESS software [36],

partially based on the GAMESS (US) source code [37] using the PBE0 functional [38] with
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the basis set split-valence according to reference [39]. Concerning iodide, the corresponding
pseudo-potential removing 28 core-electrons was adopted.

Harmonic analysis at PBE0/def2-SVP level was carried out on the equilibrium ge-
ometries of the substituted 2,2′:5′,2′′-terthiophenes to confirm the nature of the minimum
(i.e., the absence of imaginary frequencies) on the PES (Potential Energy Surface). The
first 30 excited states were calculated from the equilibrium geometries at gas phase using
the TD-DFT approach [40]. The resulting files were elaborated under Avogadro [41] and
Gabedit software [42], released under GNU license.

Synthesis of 2,2′:5′,2”-terthiophene (2). 5-bromo-2,2′-bithiophene (1, 0.5827 g, 2.378 mmol)
and [Pd(PPh3)4] (0.1644 g, 0.142 mmol) were dissolved in DME (15 mL). After 10 min,
2-thienylboronic acid (0.4473 g, 4.276 mmol) and 1 M NaHCO3 aqueous solution (5.2 mL)
were added. The reaction mixture was stirred at reflux temperature for 30 min and moni-
tored by TLC (petroleum ether/dichloromethane 9/1 as eluent) until 1 disappeared, then
cooled at room temperature and filtered. H2O (20 mL) was added to the residue, the organic
phase was extracted with diethyl ether (3× 30 mL) and washed with water (90 mL). Finally,
the solution was treated with MgSO4 and filtered, and the solvent was evaporated under
reduced pressure. The crude product was purified by column chromatography on silica,
using petroleum ether/dichloromethane 9/1 as eluent, to give 2,2′:5′,2′′-terthiophene (2,
0.5612 g, 2.259 mmol, yield 95%). 1H NMR (CD2Cl2, ppm), δH: 7.29 (dd, 2H, H5 + H5”,
3J = 5.1 Hz, 4J = 1.0 Hz); 7.23 (dd, 2H, H3 + H3”, 3J = 3.6 Hz, 4J = 1.0 Hz); 7.14 (s, 2H, H3′ +
H4′ ); 7.07 (dd, 2H, H4 + H4”, 3J = 5.1 Hz, 4J = 3.6 Hz).

Synthesis of 5-bromo-2,2′:5′,2”-terthiophene (3). NBS (0.3187 g, 1.790 mmol) was added
drop by drop to a solution of terthiophene (2, 0.4922 g, 1.982 mmol) in DMF (6 mL). The
additions were performed out of light, during 6 h, at −20 ◦C, under stirring. At the end of
the additions, the reaction mixture was taken to room temperature, then the reaction was
let to proceed further for 24 h. Finally, the mixture was poured into iced water (60 mL),
and extraction with CH2Cl2 was performed. The organic phase was washed with H2O,
treated with MgSO4 and filtered, and the solvent was evaporated under reduced pressure.
The crude product was crystallized with hexane to give 3 (0.5107 g, 1.560 mmol), with 79%
yield. 1H NMR (CD2Cl2, ppm), δH: 7.30 (dd, 1H, H5”, 3J = 5.1 Hz, 4J = 1.0 Hz); 7.23 (dd, 1H,
H3”, 3J = 3.6 Hz, 4J = 1.0 Hz); 7.13 (d, 1H, H4′ ,

3J = 3.8 Hz); 7.08 (d, 1H, H3′ ,
3J = 3.8 Hz); 7.07

(dd, H4”, 3J = 5.1 Hz, 4J = 3.6 Hz); 7.04 (d, 1H, H4, 3J = 3.9 Hz); 6.98 (d, 1H, H3, 3J = 3.9 Hz).
Synthesis of 5-(3-hydroxy-3-butyl-1-inyl)-2,2′:5′,2′′-terthiophene (4). 5-bromo-2,2′:5′,2′′-

terthiophene (3, 0.2311 g, 0.707 mmol), [Pd(dppf)Cl2] (0.0057 g, 0.007 mmol) and CuI (0.0042
g, 0.022 mmol) were dissolved in diisopropylamine (5 mL), and 2-methyl-3-butyn-2-ol
(0.0663 g, 0.076 mL, 0.788 mmol) was added. The mixture was heated at reflux temperature,
with the initial yellow color turning to brown. The reaction was monitored by TLC (eluent:
petroleum ether/ethyl acetate 5/1) for 24 h, until the substrate 3 disappeared. The mixture
was cooled to room temperature, and CH2Cl2 (25 mL) was added. The solution was washed
with a saturated NaHCO3 aqueous solution (25 mL) and H2O (25 mL), dehydrated with
MgSO4 and filtered, and the solvent was evaporated under vacuum. The crude product
was purified by column chromatography on silica (petroleum ether/ethyl acetate 5/1 as
eluent) to give 4 (0.1568 g, 0.474 mmol, yield 68%). 1H NMR (CD2Cl2, ppm), δH: 7.30 (dd,
1H, H5”, 3J = 5.1 Hz, 4J = 1.0 Hz); 7.24 (dd, 1H, H3”, 3J = 3.6 Hz, 4J = 1.0 Hz); 7.13 (d, 1H,
partially overlapped, 3J = 3.6 Hz); 7.07 (dd, 1H, H4′ , J = 5.1, 3.6 Hz); 7.07 (d, 1H, J = 3.6 Hz);
2.17 (s, 1H, OH); 1.62 (s, 6H, CH3). IR (KBr, cm−1): 3342 (OH), 2203 (C≡C).

Synthesis of 5-ethynyl-2,2′:5′,2′′-terthiophene (5-ET). 5-(3-hydroxy-3-methylbutyn-1-yl)-
2,2′:5′,2′′-terthiophene (4, 0.2654 g, 0.803 mmol) was dissolved in toluene/methanol 1/1
(previously deoxygenated), and a large excess of KOH was added (KOH/substrate 10/1).
The reaction mixture was stirred at reflux temperature and monitored by TLC (eluent:
petroleum ether/ethyl acetate 5/1) for 24 h, until the substrate disappeared. The mixture
was cooled at room temperature and the solvent was concentrated to a small volume. Then,
water (50 mL) was added, and the organic phase was extracted with CH2Cl2 (3 × 50 mL),
washed with a saturated NH4Cl aqueous solution (200 mL), treated with MgSO4 and
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filtered. The solution was evaporated to dryness, and the crude residue was purified
by column chromatography on silica, using petroleum ether/ethyl acetate 5/1 as eluent.
The compound 5-ET was obtained (0.1845 g, 0.671 mmol, 84% yield) as a brown-reddish
powder. 1H NMR (CD2Cl2, ppm), δH: 7.30 (dd, 1H, H5”, 3J = 5.1 Hz, 4J = 1.0 Hz); 7.24 (dd,
1H, H3”, 3J = 3.6 Hz, 4J = 1.0 Hz); 7.23 (d, 1H, J = 3.6 Hz); 7.15 (AB system, JAB = 3.6 Hz); 7.14
(AB system, JAB = 3.6 Hz); 7.09 ÷ 7.06 (m, 2H). IR (KBr, cm−1): 3276 (C≡C-H), 2094 (C≡C).

3. Results and Discussion
3.1. Synthesis

The synthesis of 5-ethynyl-2,2′:5′,2′′-terthiophene has been reported [31] as a combina-
tion of Stille and Sonogashira–Hagihara couplings. In this approach, 2,2′:5′,2′′-terthiophene
obtained by the reaction of 2,5-dibromothiophene with 2-(tributylstannyl)thiophene reacts
with NBS to give the bromo-substituted derivative. The coupling reaction between the
halo-thiophene and trimethylsilylacetylene (TMS) provides the TMS-ethynyl-terthiophene
that is finally deprotected, leading to the ethynyl-derivative.

As an alternative, the synthetic route reported here can be successfully adopted. Ac-
cording to previous results [22], the synthesis of the ethynyl-terthiophene derivative 5-ET
(Scheme 1) involves a Sonogashira–Hagihara coupling reaction between the correspond-
ing Br-derivative (3) and 2-methyl-3-butyn-2-ol, followed by treatment with KOH. The
synthesis of 3 was first attempted using a classical Suzuki-type coupling between the 5-
bromo-2,2′-dithiophene 1 and 5-bromo-2-thiopheneboronic acid, but it resulted in quite low
yields (about 20%), ascribed to homo-coupling reactions of the bromo boronic acid. For this
reason, 2-thienylboronic acid was employed instead of 5-bromo-2-thiopheneboronic acid,
and its coupling with the Br-derivative 1 allowed to obtain the unsubstituted terthiophene
2 with very good yields (95%). Then, 2 underwent a selective bromination on the C-5 by
reacting with NBS [43], and 3 was obtained with a significative increase in yields (75% on
the whole). The reaction of the halo-thiophene 3 with 2-methyl-3-butyn-2-ol as the ethynyl
synthon gave the intermediate product 4. Finally, the deprotection of 4 with KOH allowed
to obtain the target product 5-ET in good yields (84%).
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toluene/methanol 1/1.

3.2. Characterization of Monomers

The electrochemical behavior of 2,2′:5′,2′′-terthiophene (2), 5-bromo-2,2′:5′,2′′-terthiophene
(3), and 5-ethynyl-2,2′:5′,2′′-terthiophene (5-ET) was investigated by cyclic voltammetry both in
CH2Cl2 and in CH3CN as solvent, using 0.1 M TEAPF6 as the supporting electrolyte.

The cyclic voltammetry response of 2 in CH2Cl2 (Figure 2a) shows a two-step anodic
process, located at +1.13 V and at +1.18 V, with an associated process in the backward
scan at +0.64 V. Both the second anodic process and the backward one evidence a sharp
shape, suggesting adsorbing/desorbing phenomena on the electrode surface, according to
investigations in different experimental conditions reported previously [25,44].
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Using CH3CN as solvent in electrochemical investigations, a similar behavior is
observed, with a double anodic system at lower potential values than in CH2Cl2 (+1.05
and +1.09 V) and an associated backward peak (+0.82 V), the shape of the more anodic
peak being reasonably attributed to the occurrence of absorptions (and corresponding
desorptions) of oligomeric species on the electrode surface.

The presence of an electron-withdrawing -Br substituent on the C-5 position (com-
pound 3) causes a shift of the process towards more anodic values, both in CH2Cl2 and
on CH3CN solvents. In particular, an anodic peak at +1.21 V (with an associated back-
ward process at about +0.7 V), followed by a shoulder at 1.35 V is observed in CH2Cl2
(Figure 2b). The voltammetric response in CH3CN again shows two anodic processes
(+1.13 and +1.23 V, respectively), where the second one increases in current intensity at
subsequent scans.

The behavior of compound 5-ET, where an ethynyl substituent is present in place
of -Br, evidences a single anodic process at +1.15 V, with a backward associated signal
at +0.73 V in CH2Cl2 (Figure 2c). Changing the solvent to CH3CN, an anodic process at
+1.12 V is observed.

Electrochemical data of 2, 3, and 5-ET are reported in Table 1, as well as 3′-ethynyl-
2,2′:5′,2”-terthiophene (3′-ET, [22]) as a comparison, where the ethynyl substituent is on
the central ring of the terthiophene structure rather than on a peripheral ring. HOMO
values were referred to the CH3CN solutions according to the analogous evaluation on the
corresponding polymer species (Section 3.3).

Table 1. Electrochemical data of the terthiophene derivatives in CH3CN/0.1 M TEAPF6 and
CH2Cl2/0.1 M TEAPF6 solvent system.

Compound Eox (V) Eox,onset (V)

CH2Cl2/TEAPF6
0.1 M

CH3CN/TEAPF6
0.1 M

CH2Cl2/TEAPF6
0.1 M

CH3CN/TEAPF6
0.1 M HOMO (eV)

2,2′:5′,2′′-terthiophene (2) 1.13 1.05 0.97 0.95 −5.66
5-Br-terthiophene (3) 1.21 1.13 0.99 0.92 −5.63

5-ethynyl-terthiophene (5-ET) 1.15 1.12 0.93 0.91 −5.62
3′-ethynyl-terthiophene (3′-ET) 1.26 1.19 1.00 1.01 −5.72

Potential values referred to Ag/AgCl. HOMO values referred to electrochemical responses in CH3CN/0.1 M
TEAPF6.

Table 1 evidences that an ethynyl substituent on the central ring makes the terthio-
phene structure more stable, whereas (Br- or ethynyl-) functionalization on the external
ring does not meaningfully influence the voltammetric parameters and the corresponding
HOMO values.

Compounds 2, 3, and 5-ET were also investigated by UV-Vis spectroscopy, both in
CH2Cl2 and CH3CN, and spectroscopic data were again compared to 3′-ET. In all cases,
λmax values are always in the range 340–390 nm, and are ascribed to π-π* transitions on the
terthiophene [44,45], as confirmed by theoretical calculations (Table 2).
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Table 2. Experimental λmax and Eg values compared to calculated values.

λmax (nm) Eg,opt (eV)

CH2Cl2 CH3CN Calculated CH2Cl2 CH3CN Calculated

2,2′:5′:2”-terthiophene (2) 355 358 364 3.10 3.10 3.41
5-Br-terthiophene (3) 359 359 374 3.04 3.04 3.32

5-ethynyl-terthiophene (5-ET) 383 379 388 2.88 2.88 3.20
3′-ethynyl-terthiophene (3′-ET) 352 348 375 2.90 2.95 3.31

The analysis of UV-Vis data suggests that the presence of -Br as a substituent on the
C-5 atom of the terthiophene skeleton slightly affects the maximum absorbance wavelength,
whereas an -ethynyl fragment on the same position of the ring results in a red shift in the
λmax value, as well as a decrease in the Eg value. Furthermore, the comparison between 3′-
ET and 5-ET suggests a slight lowering in Eg when the ethynyl substituent is in a peripheral
position instead of on the central thiophene ring.

Experimental results were compared with theoretical calculations using the TD-DFT
approach. Initially, a level RHF/STO-3G was tested to obtain an equilibrium geometry of
the reference molecules that is the quaterthiophene [46]. Then, different functional/basis
set couples were adopted and compared, as reported in Table 3. According to such a
preliminary study, PBE0 functional with split-valence (def2-SVP) basis set shows the
strongest agreement with the proposed structure, although the time required is quite long.
Therefore, the PBE0/def2-SVP level was selected to calculate the singlet excited states.

Table 3. Computing time and percent average error (AE%) at different functionals and basis sets.

PBE96 OLYP B3LYP5 B3PW91 BHHLYP O3LYP5 PBE0

3-21G

Time (min) 85.6 123.8 94.9 100.2 91.1 99.1 82.9
% AE (dist) 2.65 2.49 2.31 2.02 1.91 1.76 1.85
% AE (ang) 3.06 21.24 3.47 3.63 4.69 3.46 1.68
% AE (all) 2.70 4.83 2.45 2.22 2.26 1.97 1.83

6-31G

Time (min) 150.2 167.1 113.3 166.1 137.4 113.9 148.3
% AE (dist) 2.63 2.49 2.33 2.01 1.70 1.77 1.87
% AE (ang) 1.74 15.22 4.63 5.95 5.84 4.75 3.85
% AE (all) 2.52 4.08 2.61 2.50 2.22 2.14 2.12

MC

Time (min) 269.4 392 360.9 348.2 255.9 311.9 320.6
% AE (dist) 2.54 2.37 2.23 1.89 1.70 1.63 2.13
% AE (ang) 4.78 20.95 8.76 10.09 9.15 8.56 6.57
% AE (all) 2.82 4.69 3.05 2.92 2.63 2.49 2.69

def2-SVP

Time (min) 445.9 476.2 382 435.3 523.9 455.4 470.6
% AE (dist) 1.28 1.14 1.01 0.72 0.34 0.70 0.63
% AE (ang) 5.53 12.93 5.19 6.67 7.69 5.41 4.77
% AE (all) 1.81 2.62 1.54 1.47 1.26 1.29 1.15

% AE: percent average error.

The second step was the choice of the proper structure of terthiophene for the relative
position of heteroatoms (i.e., cis-cis, cis-trans, or trans-trans). From a general point of view,
the structure of 2,2′:5′,2′′-terthiophene has a conformational variability due to the free
rotation of aromatic rings. For this reason, a tridimensional map has been calculated
to observe the changing energies as a function of dihedral angles S-C-C-S in 2,2′:5′,2′′-
terthiophene (Figure 3). The map evidences a symmetric behavior with respect to the
diagonal, suggesting an equivalence of the external aromatic rings. Moreover, the trans-
trans configuration (with 180◦ dihedral angles) shows the lowest energy. Hence, although
the situation in a solution phase is certainly more dynamic, the trans-trans configuration
was selected for the optimizations adopted here.
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On these bases, the singlet excited states were calculated (Table 2) evidencing that all
λmax values are in a narrow range (360–390 nm), being ascribable to π-π* transitions on the
common terthiophene skeleton of the investigated species. Experimental and theoretical
λmax values are in good agreement, as well as Eg,opt values, showing a 15% maximum
difference between the calculated and experimental data. The red-shift in λmax and the
corresponding lowering in Eg,opt argue a more extended conjugation in the terthiophene
framework, due to the presence of an unsaturated fragment on the C-5 atom instead of on
the C-3′ position.

3.3. Electrochemical Polymerization and Polymer Characterization

Electrochemical polymerization of 2, 3, and 5-ET was performed on a Pt disk as
a working electrode by cyclic voltammetry (Figure 4), as well as, when successful, by
chronoamperometry on a 2 × 10−3 M solution of each monomer in CH2Cl2/TEAPF6.
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Figure 4. Cyclic voltammetry polymerization of 2 (a), 3 (b) and 5−ET (c) on a Pt disk electrode in
CH2Cl2/TEAPF6 0.1 M solvent system. Potential scan rate: 100 mV s−1.

The potentiodynamic polymerization of terthiophene 2 by cycling the potential be-
tween 0 and 1.3 V evidences an increase in the current intensity when increasing the scan
number. After 10 scans, a homogeneous deep-red polymer film was observed on the
electrode surface.

A film of poly-2 obtained by potentiostatic polymerization proved to be scarcely stable
on the electrode surface, maybe due to the absorption/desorption processes mentioned
in the previous section, as well as to a possible partial solubility of low-molecular-weight
oligomer species.

The polymerization behavior of the Br-derivative 3 was similar to the unsubstituted
terthiophene 2, and a red polymer film of poly-3 was obtained only by cyclic voltammetry,
whereas the potentiodynamic polymerization was unsuccessful.

Lastly, the polymer form of 5-ethynyl-terthiophene (poly-5-ET) was initially obtained
by cyclic voltammetry, scanning the potential from 0 and +1.25 V for 10 cycles. The
potentiostatic approach was also successful in the polymerization of 5-ET, being performed
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at +1.12 V for 300 s, then neutralizing the film at 0 V for 60 s. In both cases, a stable
brown-red film of poly-5-ET formed on the electrode surface.

To compare the electrochemical behavior of the polymer species here reported and
poly-3′-ET [22], the voltammetric characterization of poly-2, poly-3 and poly-5-ET was
performed in CH3CN/TEAPF6 0.1 M solution (Figure 5 and Table 4).
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Figure 5. Cyclic voltammetry characterization of poly−2 (a), poly−3 (b) and poly−5−ET (c) in
CH3CN/TEAPF6 0.1 solution.

Table 4. Voltammetric data in CH3CN/TEAPF6 0.1 M and UV-Vis data of the polymer films.

Eox (V) Erid (V) HOMO (eV) LUMO (eV) Eg,ec (eV) Eg,opt (eV)

Poly-2 1.24 −1.44 −5.68 −3.34 2.34 2.08
Poly-3 1.28 −1.48 −5.81 −3.35 2.46 2.21

Poly-5-ET 0.93 −1.68 −5.37 −3.63 1.74 1.89
Poly-3′-ET 1.05 −1.73 −5.47 −3.40 2.07 2.06

The voltammetric response of poly-2 shows a doping/de-doping process at +1.26/0.57 V.
The sharp shape of the anodic peak, quite unusual for a conducting polymer, is commonly
ascribed to a narrow distribution of molecular weights along the polymer chains, leading
to a harder oxidation process and to less conductive polymers [25]. On the following scans,
the doping peak shifts to +1.1 V and becomes broader, suggesting a rearrangement of the
polymer chains with different internal interactions.

The voltammetric behavior of poly-3 is similar to poly-2, showing a sharp doping at
1.24 V, with a double-step de-doping at +1.03 V and +0.80 V. In the case of the polymer form
of Br-terthiophene, besides the narrow molecular weight distribution (attributed to the
high conjugation of terthiophene monomer), the C-5 position is not available to the growth
of the polymer chain due to the presence of -Br, hence reasonably only dimer species are
formed. Both poly-2 and poly-3 show a cathodic process at −1.44 and −1.48 V, respectively,
associated to the n-doping process on the polymer chain.

The voltammetric response of poly-5-ET evidences a significative lowering in the po-
tential value of the doping/de-doping process, that appears at +1.05/+0.87 V. Furthermore,
a pre-peak at +0.5 V is visible, maybe due to charge trapping phenomena [22]. The cathodic
scan shows a sharp peak at−1.39 V and a second, broad at−1.68 V, suggesting the presence
of charge trapping processes also in the negative section of the potential window.

UV-Vis characterization of neutral polymers (Table 4 and Figure 6) was performed on
films grown on ITO as a working electrode. The spectra of poly-2 and poly-3 show three
broad absorption bands between 600 and 450 nm ascribed to short-chain oligomers, and
a transition around 360 nm due to the unreacted monomer. Hence, UV-Vis spectra of the
polymer species deriving from unsubstituted and Br-substituted terthiophene confirm the
hypothesis from the electrochemical data about the low efficiency of the polymerization
process giving only low-molecular-weight species.
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On the other side, the spectra of poly-5-ET and poly-3′-ET [22] do not evidence the
presence of unpolymerized monomer, showing a broad absorption band over 400 nm.
Eg,opt values were calculated from the onset wavelength. They are in good qualitative
agreement with the corresponding values from the electrochemical investigation (Table 4).
For all polymers, both electrochemical and spectroscopic Eg values are lower than the
relevant monomers. Furthermore, the lowering of the Eg value from poly-2 (unsubstituted
poly-terthiophene) to poly-3′-ET (ethynyl substituent on the central ring) looks smaller
than to poly-5-ET (ethynyl on a peripheral ring). Such a difference suggests some comments
on the effect of the ethynyl fragment depending on the position (central or external ring,
respectively) where it is anchored on the relevant terthiophene monomer. A plausible
reason for this behavior can be found according to the proposed coupling route for poly-
3′-ET and for poly-5-ET in Figure 7. In particular, an unsaturated function on the central
heterocycle ring (3′-ET) seems to be scarcely influencing the growing mechanism of the
polymer chain. This feature can be reasonably attributed to α-α couplings between external
thiophene rings of two different terthiophene units, not directly involving the ethynyl
substituent on C-3′, which appears outside of the main chain. On the other hand, the
growth of a poly-5-ET chain can also involve homo-couplings between terminal ethynyl-
functions, as well as hetero-couplings between a free α position on a terminal ring and
the ethynyl fragment on a second one. The presence of the unsaturated portion inside
the polymer chain facilitates a more extended electron density delocalization along the
polymer chain, causing the observed higher lowering of Eg values in poly-5-ET.
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4. Conclusions

The effect of the nature of the substituent on a terthiophene skeleton has been in-
vestigated based on electrochemical, UV-Vis and theoretical data. In particular, 2,2′:5′,2′′-
terthiophene (2), 5-Br-terthiophene (3) and 5-ethynyl-terthiophene (5-ET), as well as the
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resulting electrogenerated conducting polymers were considered. Experimental and
theoretical data indicate a more extended electron density delocalization in 5-ethynyl-
terthiophene, compared to both 5-Br-terthiophene and unsubstituted terthiophene. On
these bases, the use of 5-ET as the building block for highly delocalized conducting poly-
mers can be expected to be more efficient than 2 and 3. Such a prediction was confirmed
by characterization of films obtained by electrochemical polymerization of the investi-
gated thiophene-species. Voltammetric and UV-Vis responses evidenced a higher extended
charge delocalization (expressed as Eg values) for poly-5-ET compared to poly-2 and poly-3.
Voltammetric data suggest that the lowering in Eg is mainly ascribable to a lowering in the
LUMO and, in minor extension, to an increasing in the HOMO.

Finally, a comparison of 5-ethynyl-terthiophene and the resulting polymer film with
the analogues reported previously, 3′-ethynyl-terthiophene (3′-ET) and its polymer, re-
spectively, was performed to take into account the effect of the position of the substituent.
Experimental and theoretical results again indicate a higher electron delocalization when
the unsaturated fragment is located on a terminal heterocyclic ring (5-ET) rather than on
the central one (3′-ET), both in the monomer and in the polymer species.
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