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Featured Application: The study in the paper is focused on how to calculate the mean value of 

each power component in steady- and transient states of PES. Worked-out results can be used to 

determine and size of, e.g., the auxiliary power train of HEV vehicles with oscillating torque 

compensation, also for photovoltaic systems, PFC topologies, and similar. 

Abstract: This paper deals with the quasi-instantaneous determination of an apparent-, active-, and 

reactive (i.e., blind and distortion) power mean values, including total power factor, total harmonic 

distortion, and phase shift of fundamentals of power electronic system (PES) using the p-q method. 

The power components’ mean values are investigated both during transients and steady states. Us-

ing an integral calculus over one period and the moving average method (or digital filtering), the 

power components’ mean values can be determined within the next calculation step directly from 

phase current and voltage quantities. Consequently, with known values of a phase shift of funda-

mentals (using Fourier analysis), the power factor can be evaluated. The results of this study show 

how a distortion power component during transients is generated even under harmonic supplying 

and linear resistive-inductive load. The paper contains a theoretical base, modeling, and simulation 

for the 5-, 3-, and 2-phases of PES transients. A system compensated by switched capacitors as well 

as an active power filter shows a possibility to compensate for distortion and reactive power com-

ponents in the next calculation step. Worked-out results can be used for the right determination and 

sizing of any PES. The presented approach brings the detailed time-waveform and improved qual-

ity of electrical quantities (time-waveforms), and through quasi-instantaneous (single step) re-

sponse time of compensation, minimizes nascent overvoltage of the system. 

Keywords: AC system; apparent power; active power; blind power; distortion power; Clarke trans-

form; instantaneous reactive power theory (�-�); power component mean value; 5-, 3-and 2-phase 

connection; power electronic system (PES); total harmonic distortion; modeling and simulation; 

PAF active filter; blind and distortion power components compensation 

 

1. Introduction 

It is well known that the quality of electrical energy taken from the network is af-

fected by both line disturbances as well as characteristics of the connected appliances. 

Among the first ones, we can mention numerous power quality events and indices, in-

cluding transients, slot harmonics, sags, flicker, etc. [1]. On the other hand, appliances can 

load the network with a spectrum of higher harmonics, impulse waveforms, non-lineari-

ties, and so on. For example, switched-mode power supplies, such as those found in tele-

vision sets, personal computers, etc., often produce a third harmonic current that is nearly 

as large (80–90%) as the fundamental frequency component [2,3]. Together, these load 

types represent the range of harmonic sources in power systems. Note that seemingly 
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minor changes in parameter values and control methods can have significant impacts on 

the harmonic current generation. 

In an AC power network, the electric power features basically by apparent, active, 

blind, and distortion components [4–8], whereas only the active power component is of 

physical importance. The active-, blind-, and distortion power give together an apparent 

power That is maximally transferred from the source to the load and whose size must be 

taken into account in the design. While active power is possible relatively easy to deter-

mine and measure, the measurement of blind and/or distortion power is associated with 

some difficulties, and the ‘sinusoidal’ wattmeter (power meter) of conventional design 

cannot be used for this [5]. 

In general, by substituting rotating phasors of instantaneous time waveforms of volt-

ages and currents in complex plain, the active power is presented by the scalar product of 

voltage and current phasors and the blind power by the vector product of them. By using 

this calculus, the knowledge of phase displacement between phasors is needed. Related 

to this, similarly, is the determination of the value of the performance power factor. A new 

origin idea of instantaneous determination reactive power is presented by Akagi et al. in 

[7,8] for a three-phase system. They use a Clarke transform with an α,β,0-orthogonal co-

ordination system with the invariant power conversion constant. There are also investi-

gated 3-phase systems with the non-linear load as in [8,9]. Adverse effects of such systems 

as blind and distorted power components are possible to compensate using active power 

filters, whether three-phase or single-phase [9–18]. 

The above-mentioned literature [1–11] mostly presented methods for an instantane-

ous calculation of power components as a function of time in steady- and transient states. 

On the other hand, one often needs to determine an average value of apparent, active, 

blind, and distorted power components. The described p-q method was used, e.g., to de-

termine and sizing the auxiliary power train of HEV vehicles with oscillating torque com-

pensation [12] and also for photovoltaic systems [13] and PFC topologies [14]. Therefore, 

the study in the paper is focused on how to calculate the mean value of each power com-

ponent at a single step in steady- and transient states of PES. 

In the article, there are gradually described the following four sections (besides the 

introduction): 

- determination of apparent-, active-, blind- and distortion powers mean values during 

transients with single-step response using the p-q method, 

- modeling and simulation for three-, five- and two phases of the supply systems un-

der different types of loads (as linear R-L, IM motor, rectifier, inverter), including 

nonsymmetrical ones, 

- discussion of each mode of operation, also to time waveform of each power compo-

nent during transient with the possibility of compensating the distortion and blind 

reactive components, and conclusion. 

2. P-Q Method Using Clarke Transform for Three-, Five-, and Two-Phase Systems 

Based on definitional relationships of the instantaneous power value for a three-

phase symmetric system in the Clarke orthogonal coordinate system [8] 

�
�(�)
�(�)

� =  �
��(�)��(�) ��(�)��(�)

��(�)��(�) −��(�)��(�)
�, (1)

where 

�
��(�)

��(�)
� = ��  �

1 −1/2 −1/2

0 √3/2 −√3/2
� �

��(�)

��(�)

��(�)
�, (2)

and the same relation is valid for the currents ��(�), ��(�), analogically. �� is a trans-

formation constant equal �2/3, [6] . However, the original Clarke transformation 
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constant is 2/3. So, in Clarke transform ��(�) for the balanced system is equal to ��(�) 

and vice versa. 

Then 

�
�(�)
�(�)

� =
�

�
�
��(�)��(�) ��(�)��(�)

��(�)��(�) −��(�)��(�)
�, (3)

The difference between the constants is obvious: the constant �2/3 means power 

invariancy ��,�,�(�) = ��,�(�), and constant 2/3 means phase quantity ��(�), ��(�) invar-

iancy. 

For multiphase systems, for instants five-phase one, taking Clarke transformation 

constant 2/5 analogically to the 3-phase system, we get. 

�(�)∗ =
2

5
���(�) + �

��
� ��(�) + �

��
� ��(�) + �

��
� ��(�) + �

��
� ��(�)� = ��(�) + ���(�). (4)

For ��(�), ��(�) we obtain 

��(�) =
�

�
���(�) + cos

��

�
��(�) + cos

��

�
��(�) + cos

��

�
��(�) + cos

��

�
��(�)�, (5)

��(�) =
2

5
�sin

2�

5
��(�) + sin

4�

5
��(�) + sin

6�

5
��(�) + sin

8�

5
��(�)�. (6)

Thus, for powers 

�(�) =
5

2
���(�) + ��(�)� and �

�(�)
�(�)

� =
5

2
�
��(�)��(�) ��(�)��(�)

��(�)��(�) −��(�)��(�)
�. (7)

Similarly, for a two (or single) phase system 

�(�) =
2

2
���(�) + ��(�)� and �

�(�)
�(�)

� = �
��(�)��(�) ��(�)��(�)

��(�)��(�) −��(�)��(�)
�. (8)

In the case of a single-phase system, the imaginary �-phase is created fictitiously. 

Instantaneous power for ��(�), ��(�) in the orthogonal system, we can recalculate into 

�, �, � (�, �)-phase system using inverse Clarke transform. 

Regardless of the constant with which we derived the power, it is important that the 

instantaneous imaginary power �(�) is a significant electrical quantity that uniquely de-

termines the instantaneous reactive power in each phase [8]. 

2.1. Determination of Power Components and Total Power Factor of PES 

Instantaneous power defined by Equation (1) can be decomposed into a mean value 

���, ��� as DC components and ���(�), ���(�) as AC components, in each �, � phase 

�
�(�)
�(�)

� = �
��(�)��(�) ��(�)��(�)

��(�)��(�) −��(�)��(�)
� = �

��� ���(�)

��� ���(�)
�. (9)

Our aim is now to determine individual components of power as we know them from 

the classical power theory [4,6]. So 

���—apparent power (proportional to ���� ×  ����) 

���—active power 

���re—active blind power 

���—reactive distortion power 

��—power factor (ratio of ���/���), 

and those as quasi-instantaneous quantities. So, the first goal is the determination of 

��� and ��� components. There are more ways to conduct it: 

- using continuous-time filter [15], 

- using digital filtering (DF) [15,16], 

- using integral calculus [17], 
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- using discrete Fourier transform (DFT) [19], 

- using artificial neural networks (ANN) [20]. 

The use of the continuous-time filter seems to be the fastest way to process a signal 

but requires the use of auxiliary hardware for conversion and processing (DAC-ADC con-

verter, multiplier, integrator, etc.). So, the time of calculation also depends on settling 

time, time of conversion of DAC, and similarly. The last two items are not directly bound 

to the � − � method. 

From Equation (1), using integral calculus, we can obtain the active and blind power 

components as 

���(�) ⇔
1

�
����(�)��(�) + ��(�)��(�)�d�

�

�

, (10)

���(�) ⇔
1

�
����(�)��(�) − ��(�)��(�)�

�

�

d�. (11)

But it needs integration over the whole period. Therefore, a moving average filtering 

method (MAF) should be used to provide the results in each computation (integration) 

step �. The use of the MAF method is shown in Figure 1 for a single-phase AC linear 

system (α) with the following parameters:  

���� = 325 V, � = 50 Hz, � = 23 Ω, cos(�) = 0.8. 

 

Figure 1. Principal time-waveform of ���(�) by using of MAF method: step � = 0.5 ms, length of 

sliding window � = �/2 = 0.01 s. 

The length of the sliding window was taken as T/2, and the number of window points 

N = 20. 

2.2. Using Digital Filtering 

The transfer function of a digital filter is formally similar to any system transfer 

�(�) =
����. ���

����. ���
, (12)

where sequence �{����} represents input signal and �{����} output one. It is, therefore, 

relatively easy to use a filter to extract the fundamental frequency of real and reactive 

power components. 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-400

-300

-200

-100

0

100

200

300

400

500

main voltage

load current

instant power

mean power

Pav(T/2)

Pav(k)

t [s]

u

i

p

Pav



Appl. Sci. 2022, 12, 11659 5 of 35 
 

Properties of a stable digital filter type of the finite impulse response (DFIR) show its 

frequency characteristics, in Figure 2. 

  
(a) (b) 

Figure 2. Amplitude—(a) and phase—(b) frequency characteristics of DFIR filter. 

Comparison between DFIR and MAF 

The frequency characteristics of a moving average filter method (MAF) are shown in 

Figure 3. 

  

(a) (b) 

Figure 3. Amplitude—(a) and phase—(b) frequency characteristics of MAF filter. 

Using of digital infinite impulse response filter (DIIR) can lead to instability [15,16]. 

On the other hand, its advantage can be better (faster) attenuation of higher harmonics. 

Similarly, using the Butterworth filter of 4th order gives good results regarding harmonics 

attenuation [11]. A comparison of power waveforms worked out by MAF-, DFIR and DIIR 

filters in the time domain is shown in Figure 4a,b, respectively. 

  

(a) (b) 

Figure 4. Comparison of power waveforms calculated by different methods MAF and direct func-

tion in the time domain �(�) and �(�)—(a), DFIR and DIIR filters for ���(�) and ���(�)—(b). 

The choice of filter is a compromise: the DC term must be passed, and the double 

frequency term rejected. A sharp, high-order filter will give a long-step response, whereas 
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a low-order filter will give poor separation of the terms and imperfect current cancellation. 

The resulting system usually has a response time of 2–3 main cycles. So, regarding the 

speed of calculation and accuracy, we have decided on MAF, although the principal re-

sults of both of them are very similar (see Figure 4a,b). 

After worked-out the DC power components ��� and ��� , we can easily calculate AC 

components ���(�) and ���(�). 

���(�) = �(�) − ���(�), (13a)

���(�) = �(�) − ���(�). (13b)

Now, we can determine all components of power, including the power factor 

���(�) =
3

2
���,���(�)��,���(�) + ��,���(�)��,���(�)� (14)

���(�)—by numerical integration of Equation (10) using MAF (15)

���(�)—by numerical integration of Equation (11) using MAF (16)

���(�) = ���
��,���(�) + ��

��,���, (17)

where ���,���(�), ���,���(�) are determined by the integral calculus of ���(�) and ���(�) 

���,���(�) =
1

�
�� ��

��
(�)

�

�

d�, (18a)

���,���(�) =
1

�
�� ��

��
(�)

�

�

d�. (18b)

Or we can use classical relation 

���(�) = ���
��(�) − ��

��(�) − ��
��

(�) (19)

when a moving average method should be applied to provide the results in each compu-

tation (integration) step �. 

The power factor is defined as the relation between ��� and ���, thus 

��(�) =
���(�)

���(�)
. (20)

Regarding total harmonic distortion, it can be calculated by the definition of IEC 

standards [21] using harmonic analysis or rms values of the sum of higher harmonics 

������ and total quantity ���� 

���[%] =
�∑ ��

����
���
���

�∑ ��
����

���
���

100%   (21a)

that is ���[%] =
������

����

100%. (21b)

Another approach uses the Cauchy method of residues [22]; for impulse system 

quantities using infinite series [23]. Relation (21b) can be adapted for input current (under 

harmonic voltage). See derivation (32). 

���(�) =
���(�)

���(�)
. (22)
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The maximal limit for total harmonic distortion for the input voltage is recommended 

at 5% (by IEEE standard [24]), with the largest single harmonic being no more than 3% of 

the fundamental voltage. 

So, now each power component can be determined in any computation step (k). Fur-

ther, using Fourier analysis, applied to active ���(�), or. reactive ���(�) power compo-

nents, we obtain the active and reactive power of the fundamental harmonic ����(�) and 

����(�), and at the same time cos��(�)-power factor of fundamental and sin��(�), re-

spectively. 

2.3. Taking the Clarke Transform for a Non-Symmetrical System 

Since for non-symmetrical system is valid 

��(�) + ��(�) + ��(�) ≠ 0, (23)

because of including a zero-phase sequence component ��(�)  into Clarke transform 

[1,25–27]. 

�

��(�)

��(�)

��(�)

� =
2

3

⎣
⎢
⎢
⎢
⎢
⎡1 −

1

2
−

1

2

0  
√3

2
−

√3

2
1

2
 
1

2

1

2 ⎦
⎥
⎥
⎥
⎥
⎤

�

��(�)

��(�)

��(�)
�. (24)

The inverse transformation into �, �, � -system can be obtained using the inverse 

transformation matrix. Consequently, the power in a non-symmetrical system also fea-

tures an instantaneous zero-sequence component ��(�). 

�

��,�(�)

��,�(�)

��(�)

� =
3

2

⎣
⎢
⎢
⎢
⎡

��(�) ��(�) 0

−��(�) ��(�) 0

0 0
��(�)

3 ⎦
⎥
⎥
⎥
⎤

�

��(�)

��(�)

��(�)

�. (25)

The phase power components ��,�,�(�) can be expressed by the inverse transform of 

this Equation (23) or by introducing a new transform [7]; the following equations are ob-

tained 

�

��(�)

��(�)

��(�)
� = �

���(�)

���(�)

���(�)

� + �

���(�)

���(�)

���(�)

� + �

���(�)

���(�)

���(�)
�. (26)

Instantaneous reactive powers in each phase ���(�), ���(�), ���(�) make no contribu-

tion to the instantaneous power flow in the three-phase non-symmetrical system. The in-

stantaneous active power flow is represented by the sum of ��,�(�), and ��(�) because 

the sum of the instantaneous reactive powers ���(�), ���(�), ���(�) is always zero [7]. 

3. Modelling and Simulation 

The simulation was performed in Matlab/Simulink environment. The ‘moving-aver-

age function’ and ‘moving-RMS function’ has been used to provide a sliding window for 

instantaneously AVE and RMS value calculations. 

Parameters of the phase voltages in �, �-system 

��,��� = 230 � ≫  ��,��� ≅ 325 � ≫  ��(�) = ��,���sin(��), (27a)

��,��� = 230 � ≫  ��,��� ≅ 325 � ≫  ��(�) = −��,���cos(��). (27b)
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Parameters of the Load 

Considering load power factor cos(�) = 0.8 and impedance 23 Ω, the parameters of 

the load will be � = 18.4 Ω, �� = 13.8 Ω ≫  � = 43.93 mH for � = 50 Hz, and the phase 

currents ��,��� = 10 A, ��,��� = 10 A. 

Under harmonic supply voltage, the phase current waveforms are: 

��(�) = ��,���sin(�� − �), ��(�) = −��,���cos(�� − �) (28)

where � = atan(��), � = �/�. 

In the case of harmonic waveforms of the voltage and current (under linear load): 

�� =
��

��

=
��,�����,���cos��

��,���. ��,���

= cos��. (29)

This means that the power factor is equal to the cosine of the phase shift—the funda-

mental harmonic factor. 

In the case of a harmonic voltage profile and a non-harmonic current profile, the 

power factor will be: 

�� =
��,��

���

=
��,����∑ ���,���

�
cos��

�
���

��,���. ����

=
��,���

����

cos�� 
(30)

since all products of the higher harmonic components of the current and ��,��� are zero. 

Analogically, the total harmonic distortion of the input current can be expressed as 

����[%] =
������

����

����

����

100% =
���

���

100% (31)

3.1. Mode #1 Harmonic Supply and Linear R-L Load 

There are considered systems when 3-, 5-, and 2-phase networks supply linear RL 

loads, Figure 5. 
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Figure 5. The basic scheme of the considered linear RL load for 3- (a), 5- (b), and 2- (c) phase systems. 

3.1.1. 3-Phase Network and Linear Passive RL Load 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 1: 

Table 1. Load parameters for steady states before and after load change. 

Load  R [�] L [��] � [�] � [��] � [°��.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 3 − phase system. 

Power components average values, classical calculus are shown in Table 2. 
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Table 2. Classical calculation before and after the change (at steady states). 

Time  ���[��] ���[�] ���[���] ���[���] ��[−] ��[�] ��� ��[�] 

t = 0.1 sec 6 900 5 520  4 140  0 0.8000 14.14  0.8000 

t = 0.2 sec 9 556.6  5 305  7 961  0 0.5546 19.60  0.5546 
��,��� = 230 V, ��,��� = 230 V,  ��,��� = 10 A,  ��,��� = 10 A,  ��,��� = 13.86 �, ��,��� = 13.86 � 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 3. 

Table 3. Simulation results before and after the change (at steady states). 

Time ��,���[�] ��,���[�] ��,���[�] ��,���[�] �� [�] ��[°��. ] �����[−] 

t = 0.1 sec 229.8 229.8 9.991 9.991 14.13 36.88 0.7947 

t = 0.2 sec 229.8 229.8 13.85 13.85 19.60 56.31 0.5547 

Power component average values, computed in Matlab/Simulink are given in Table 4. 

Table 4. Simulation results before and after the change (at steady states). 

Time  ���[��] ���[�] ���[���] ���[���] ��[−] ����[%] ����[�] 

t = 0.1 sec 6 888.5 5 510.6 4 133.3 0 0.7999 0 0 

t = 0.2 sec 9 551.5 5 298.9 7 946.9 0 0.5547 0 0 

As can be seen, the calculated and simulated values of power components are nearly 

the same. Network voltages and currents in �, �, �- system during transient, Figure 6. 

  

(a) (b) 

Figure 6. Phase voltages (a), currents (b) in �, �, �—coordinates. 

Apparent, active, blind, and distortion powers during transient states are shown, due 

to comparison to 5- and 2-phase systems, at the end of subsection 3.1.  

3-Phase Network and Active load—3-Phase IM Motor 

Parameters of the 3-phase 4-pole IM motor at � ∈< 0.2; 0.4 > and � ∈< 0.4; 0.6 > 

are given in Table 5. 

Table 5. IM motor parameters for steady-state before and after load change. 

Load  �� [��] ��[����] �� [�] �� [�] �� [��] �� [��] �� [�] 

before  24 0.0343 0.7384 0.7402 3.045 3.045 0.1241 
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after  48 0.0343 0.7384 0.7402 3.045 3.045 0.1241 

���� = 325 V, �� = 2, � = 50 Hz. 

The torque of the motor ��  has been changed to 2 ∗ �� at � = 0.4 sec. 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 6. 

Table 6. Simulation results before and after the change (at steady states). 

Time ��,��� [�] ��,��� [�] ��,��� [�] ��,��� [�] �� [�] �� [°��. ] ����� [−] 

t = 0.4 sec 229.8 229.8 8.145 8.148 11.52 45.66 0.70 

t = 0.6 sec 229.8 229.8 13.21 13.22 18.69 29.30 0.87 

Corresponding power component average values, computed in Matlab/Simulink are 

given in Table 7. 

Table 7. Simulation results before and after the change (at steady states). 

Time  ��� [���] ��� [��] ��� [����] ��� [���] �� [−] ����[%] ���� [�] ���� [�] 

t = 0.4 sec 5.616 3.932 4.010 4.566 0.70 0.08 3.932 0 

t = 0.6 sec 9.109 7.937 4.459 12.27 0.87 0.135 7.936 0 

Network voltages are the same as in the previous case. Phase currents in �, �, �- sys-

tem during transient are shown in Figure 7a. Electromagnetic quantities, namely torque 

and angular speed, are given in Figure 7b. 

 
 

(a) (b) 

Figure 7. Phase voltages (a), currents (b) in �, �, �—coordinates. 

Apparent, active, blind, and distortion powers during the transient state are in Figure 

8a–d. 
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(a) (b) 

  

(c) (d) 

Figure 8. Apparent—(a), active—(b), blind—(c), and distortion (d) power components during tran-

sient states of induction motor. 

3.1.2. 5-phase Network and Linear RL Load 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 8: 

Table 8. Load parameters for steady states before and after load change. 

Load  R [�] L [��] � [�] � [��] � [°��.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 5 − phase system. 

Power components average values, classical calculus are shown in a Table 9. 

Table 9. Classical calculation before and after the change (at steady states). 

Time  ���[��] ���[�] ���[���] ���[���] ��[−] ��[�] ��� ��[�] 

t = 0.1 sec 11 500 9 200  6 900  0 0.8000 14.14  0.8000 

t = 0.2 sec 15 927  8 842  13 268  0 0.5546 19.60  0.5546 
��,��� = 230 V, ��,��� = 230 V,  ��,��� = 10 A,  ��,��� = 10 A,  ��,��� = 13.86 �, ��,��� = 13.86 � 

Simulation Results, Simulation Step 200 μs 

Measurable quantities i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 10. 
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Table 10. Simulation results before and after the change (at steady states). 

Time ��,��� [�] ��,��� [�] ��,��� [�] ��,��� [�] �� [�] �� [°��. ] ����� [−] 

t = 0.1 sec 229.8 229.8 9.991 9.991 14.13 36.88 0.7947 

t = 0.2 sec 229.8 229.8 13.85 13.85 19.60 56.31 0.5547 

Power component average values, computed in Matlab/Simulink are given in Table 

11. 

Table 11. Simulation results before and after the change (at steady states). 

Time  ���[��] ���[�] ���[���] ���[���] ��[−] ����[%] ���� [�] ���� [�] 

t = 0.1 sec 11 479.8 9 182.8 6 689.3 0 0.7999 0.0 9 123.2 0 
t = 0.2 sec 15 916.7 8 828.7 13 243.7 0 0.5547 0.0 8 833.2 0 

As can be seen, the calculated and simulated values of power components are nearly 

the same. Network voltages and currents in �, �, �- system during transient, Figure 9a,b. 

  

(a) (b) 

Figure 9. Phase voltages (a) and currents (b) in �, �, �, �, �—coordinates. 

Apparent, active, blind, and distortion powers during transient states are shown, due 

to comparison to 5- and 2-phase systems, in Figure 11a–d. 

3.1.3. 2-phase Network and Linear RL Load 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 12: 

Table 12. Load parameters for steady states before and after load change. 

Load  R [�] L [��] � [�] � [��] � [°��.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 2 − phase system. 

Power components average values, classical calculus, given in Table 13: 

Table 13. Classical calculation before and after the change (at steady states). 

Time  ��� [��] ��� [�] ��� [���] ��� [���] �� [−] �� [�] ��� �� [�] 
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-400

-300

-200

-100

0

100

200

300

400

u
a

u
b

u
c

u
d

u
e

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-25

-20

-15

-10

-5

0

5

10

15

20

25

i
a

i
b

i
c

i
d

i
e



Appl. Sci. 2022, 12, 11659 13 of 35 
 

t = 0.2 sec 6 371  3 537  5 307  0 0.5546 19.60  0.5546 
��,��� = 230 V, ��,��� = 230 V,  ��,��� = 10 A,  ��,��� = 10 A,  ��,��� = 13.86 �, ��,��� = 13.86 � 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 14. 

Table 14. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 229.8 229.8 9.991 9.991 14.13 36.88 0.7947 

t = 0.2 sec 229.8 229.8 13.85 13.85 19.60 56.31 0.5547 

Power component average values, computed in Matlab/Simulink are given in Table 

15. 

Table 15. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 4 591.9 3 673.1 2 755.7 0 0.7999 0.0 3 649.3 0 
t = 0.2 sec 6 366.7 3 531.5 5 297.5 0 0.5547 0.0 3 533.3 0 

As can be seen, the calculated and simulated values of power components are nearly 

the same. Network voltages and currents in �, � (�, �)- coordinates during transient, Fig-

ure 10a,b. 

  

(a) (b) 

Figure 10. Phase voltages (a) and load currents (b) in �, � coordinates. 

3.1.4. Comparison of Power Components in 2-,3- and 5-phase Supply Systems under RL 

Load 

Apparent, active, blind, and distortion power components during the transient state 

for 3-, 5-, and 2-phase systems are presented in Figure 11a–d. 
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(a) (b) 

  

(c) (d) 

Figure 11. Apparent-(a), active (b), blind (c), and distortion (d) power components during transient 

states for 3-, 5-, and 2-phase systems under mains supplied linear RL load. 

The simulation was performed under the same load phase parameters; therefore, the 

magnitudes are proportionately different. 

The waveforms of all power components per unit are very similar, but the interesting 

is that during the transient response, also a power distortion component is generated, Fig-

ure 11d. It is due to different arises of active and reactive (blind) power components (Fig-

ure 11b,c). Thus, during the transient state (approx. 3–4-time constants), the spectral den-

sity comprises different higher harmonics, which could cause an additional negative in-

fluence on the system. 

The distortion power calculated by three different methods (MAF, DFIR, and DIIR) 

for a 3-phase system is presented in Figure 12a. The time dependency of the correspond-

ing current ��,��� for the 3-phase system is shown in Figure 12b. 
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(a) (b) 

Figure 12. Waveforms of distortion power components ���(�) during transient states calculated by 

different methods (MAF-, DFIR, and DIIR filters) (a), and the corresponding deformation compo-

nent of the current using the MAF method (b). 

In this simply case-harmonic supply, linear load—we can verify a time course IDRms 

during transient using another method than p-q one. By decomposition of fundamental 

harmonic current into active and reactive (blind) components, we can calculate the RMS 

values of these currents. Knowing the RMS value of total harmonic fundamental, the RMS 

deformation component of the current can be determined as well as in transient states. 

So, knowing ���(�) and ���(�) we get 

�
��(�)

��(�)
� =

2

3

1

�
�
��(�) −��(�)

��(�) ��(�)
� �

���(�) ���(�)

���(�) ���(�)
� (32)

where ���(�) and ���(�) are calculated as (13ab) using the moving average method. Ac-

tually, the term ���(�) − ����(�) is zero (also ���(�)and ���(�)) but sometimes, when 

higher harmonics have to be taken into account, it is not zero. Those ��(�) and ��(�) cur-

rents are simultaneously the reference currents for the active power filter (PAF compen-

sator). 

�
��(�)

��(�)
�

���

=
2
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1

�
�
��(�) −��(�)

��(�) ��(�)
� �

���(�) − ����(�) ���(�)

���(�) ���(�)
�. (33)

Before this, they should be back-transformed into �, �, �, (�, �)-phase system. 

3.2. Mode #2 Harmonic Supply and Nonlinear Load 

Let´s consider systems supplied from a harmonic network and equipped with 3-, 5-, 

and 2-phase diode rectifiers with a capacitive filter and linear resistive R load, Figure 13a–

c. 
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Figure 13. The basic scheme of the considered systems: 3-phase (a), 5-phase (b), and 2-phase (c). 

3.2.1 3-Phase Rectifier with Voltage Output 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 16. 

Table 16. Load parameters for steady states before and after load change. 

Load R [�] C [��] 

before 55.90 1.88 

after 27.95 1.88 

���� = 230 �, � = 50 Hz, 3 − phase supply system. 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 17. 

Table 17. Simulation results before and after the change (at steady states). 

Time  ��,��� [�] ��,��� [�] ��,��� [�] ��,��� [�] �� [�] �� [°��. ] ����� [−] 

t = 0.1 sec 229.8 229.8 19.04 19.12 11.68 −8.045 0.9989 

t = 0.2 sec 229.8 229.8 31.80 30.62 22.69 −10.11 0.9924 

Power component average values, computed in Matlab/Simulink are given in Table 

18. 

Table 18. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 13 127 5 535 −785.4 11 870 0.4211 90.42 5 473.9 0 

t = 0.2 sec 21 474 10 830 −1 041 18 930 0.4973 88.15 10 817.9 0 

Network voltages and currents in �, �, �- coordinate systems at steady-states are in 

Figure 14a,b similar to Mode#1. 
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(a) (b) 

Figure 14. Network voltages (a) and currents (b) in �, �, �- coordinate systems. 

Voltage (a) and current (b) on the DC side of the rectifier, under step change of resis-

tive load, are shown in Figure 15a,b. 

 
 

(a) (b) 

Figure 15. Voltage (a) and current (b) on the DC side of a rectifier, under step change of resistive 

load. 

Apparent, active, blind, and distorted power components during the transient state 

are shown at the end of the subsection 3.2. 

3.2.2. 5-Phase Rectifier with Voltage Output 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 19. 

Table 19. Load parameters for steady states before and after load change. 

Load R [Ω] C [mF] 

before 55.90 1.88 

after 27.95 1.88 

���� = 230 �, � = 50 Hz, 5 − phase supply system. 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 20. 
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Table 20. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 229.8 229.8 12.17 12.17 8.352 −5.988 0.9945 

t = 0.2 sec 229.8 229.8 20.42 20.42 16.60 −7.137 0.9923 

Power component average values, computed in Matlab/Simulink are given in Table 

21. 

Table 21. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 13 247.7 6 359.6 −621.7 11 667.4 0.4797 88.07 6 348.4 0 
t = 0.2 sec 24 278.7 13 887.3 −1 798.8 9 833.4 0.5719 40.50 13 383.1 0 

Network voltages and currents in �, �, �, �, �- coordinate system at steady-states are 

given in Figure 16a,b similar to those in Mode#1. 

  

(a) (b) 

Figure 16. Phase voltages (a), currents (b) in �, �, �, �, �- coordinate system during transient. 

Voltage and current on the DC side of the rectifier under step change of resistive load 

are shown in Figure 17a,b. 

  

(a) (b) 

Figure 17. Voltage (a) and current (b) in the DC side under step change of resistive load. 

Apparent, active, blind, and distortion powers during transient states are shown in 

Figure 20a–d. 
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3.2.3. 2-Phase Rectifier with Voltage Output 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 22. 

Table 22. Load parameters for steady states before and after load change. 

Load R [Ω] C [mF] 

before 55.90 1.88 

after 27.95 1.88 

���� = 230 �, � = 50 Hz, 2 − phase supply system. 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 23. 

Table 23. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 229.8 229.8 24.47 24.47 11.17 14.19 0.9695 

t = 0.2 sec 229.8 229.8 39.93 39.93 21.36 19.50 0.9426 

Power component average values, computed in Matlab/Simulink are given in Table 

24. 

Table 24. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 7 934 3 489 −580.9 7 034 0.4398 88.66 3 484 0 
t = 0.2 sec 12 960 6 548 −2 182 10 722 0.5051 82.73 6 546 0 

Network voltages and currents in �, �- coordinate systems at steady-states are in Fig-

ure 18a,b similar to those in Mode#1. 

  

(a) (b) 

Figure 18. Phase voltages (a), currents in �, � (b) during transient. 

Voltage and current on the DC side under step change of resistive load are shown in 

Figure 19a,b. 
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(a) (b) 

Figure 19. Voltage (a) and current (b) on the DC side under resistive load. 

3.2.4. Comparison of Power Components in 2-,3- and 5-Phase Supply Systems under 

Rectifier Load 

Apparent, active, blind, and distortion powers during transient states are shown in 

Figure 20a–d. 

The simulation was performed under the same load phase parameters (R, C); there-

fore, the magnitudes are proportionately different. 

  

(a) (b) 

  

(c) (d) 

Figure 20. Apparent—(a), active—(b), blind—(c), and distortion (d) power components during tran-

sient states for 3-, 5-, and 2-phase systems under mains supplied rectifier load. 
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The waveforms of all power components per unit are very similar to those in the 

previous case, Mode#1. In the case of the reactive power component (Figure 20c), nearly 

the same blind reactive powers of 3- and 5-phase systems are generated at steady-state 

� ∈< 0.1; 0.2 > despite DC powers being different. This is mainly due to the fact that the 

line-to-line voltages of a 5-phase system are not equal to 3 x Ua,b,c as in a 3-phase one, but 

they are lower. Moreover, the distortion power of a 3-phase system is slightly higher than 

in a 5-phase one (Figure 20d, � ∈< 0.04; 0.1 >). Distortion components of all connections 

are rather high due to impulse current taken from the network. Therefore, the power fac-

tors are also rather poor. 

The reference currents �����(�) and �����(�) currents for compensating by power 

active filter (PAF compensator) are calculated using Equation (27a,b). Before this, they 

should be back-transformed into �, �, �-phase system. 

3.3. Mode #3 Non-Harmonic Supply and Linear R-L Load 

Now, let´s consider systems consisting of 3-, 5-, and 2-phase VSI inverters with PWM, 

supplying linear RL load, Figure 21a–c. 
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Figure 21. The basic scheme of the considered systems: 3-phase (a), 5-phase (b), and 2-phase (c). 
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3.3.1. 3-Phase Inverter Type of VSI with Linear RL Load 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 25: 

Table 25. Load parameters for steady states before and after load change. 

Load  R [Ω] L [mH] � [Ω] � [ms] � [°el.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 3 − phase system. 

Power components average values, classical calculus, assuming harmonic currents, 

are given in Table 26: 

Table 26. Classical calculation before and after the change (at steady states). 

Time  ���� [VA] ���� [W] ���� [VAr] ��� [VAd] �� [−] �� [A] ��� �� [W] 

t = 0.1 sec 5 070 4 056  3 042  − − 12.12  0.8000 

t = 0.2 sec 7 028   5 622  4 217  − − 19.60  0.5546 
���,��� = 197.2 V, ��,��� = 197.2 V,  ��,��� = 8.57 A,  ��,��� = 8.57 A,  ��,��� = 11.88 A, ��,���

= 11.88 A 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 27. 

Table 27. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 238.9 238.6 8.551 8,539 12.09 36.89 0.7947 

t = 0.2 sec 238.9 238.6 11.86 11.84 16.77 56.32 0.5547 

For the 3-phase inverter: ��,���(0,1) = 278.9 V, ��,���  (0,2) = 278.9 V 

Power component average values, computed in Matlab/Simulink are given in Table 

28. 

Table 28. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 6 119.5 4 036.0 3 029.8 3 461.1 0.6595 56.56 4 020.9 0 
t = 0.2 sec 8 490.8 3 882.5 5 827.7 4 801.9 0.4573 56.55 3 881 0 

Network voltages and currents in �, �, � - coordinate system during transient is 

shown in Figure 22a,b. 
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(a) (b) 

Figure 22. VSI inverter voltages (a) and currents (b) in �, �, �—coordinate system during the transi-

ent. 

Apparent, active, blind, and distortion power components during transient states for 

3-, 5-, and 2-phase systems are shown at the end of subsection 3.3. 

3.3.2 5-Phase Inverter Type of VSI with linear RL Load 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 29: 

Table 29. Load parameters for steady states before and after load change. 

Load  R [Ω] L [mH] � [Ω] � [ms] � [°el.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 5 − phase system. 

Power components average values, classical calculus, assuming harmonic currents, 

are given in Table 30: 

Table 30. Classical calculation before and after the change (at steady states). 

Time  ���� [VA] ���� [W] ���� [VAr] ��� [VAd] �� [−] �� [A] ��� �� [W] 

t = 0.1 sec 10 141 8 112  6 084  − − 13.30  0.8000 

t = 0.2 sec 14 061   11 249  8 436  − − 18.45  0.5546 
���,��� = 216 V, ���,��� = 216 V,  ���,��� = 9.39 A,  ���,��� = 9.39 A,  ���,��� = 13.02 �, ���,���

= 13.02 � 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 31. 

Table 31. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 237.1 237.1 9.408 9.408 13.30 36.90 0.7947 

t = 0.2 sec 237.1 237.1 13.05 13.05 18.45 56.33 0.5547 

For the 5-phase inverter: ��,���(0,1) = 306.8 V, ��,���  (0,2) = 306.8V 
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Power component average values, computed in Matlab/Simulink are given in Table 

32. 

Table 32. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 11 154.5 8 159.6 6 126.0 4 507.3 0.7315 0.0 8 106 0 
t = 0.2 sec 15 472.0 7 847 11 778.8 6 251.2 0.5071 0.0 7 846 0 

Network voltages and currents of inverter in �, �, �, �, �- coordinate system during 

transient is shown in Figure 23a,b. 

  

(a) (b) 

Figure 23. VSI inverter voltages (a) and currents (b) in �, �, �, �, �- coordinate system during the 

transient. 

Subsequently, the voltages and currents are converted into an �, �-system, and then 

the power components in the � − � system are calculated. Apparent, active, blind, and 

distortion power components during transient states for 3-, 5-, and 2-phase systems are 

shown in Figure 24a–d. 

3.3.3 2-Phase Inverter Type of VSI with Linear RL Load 

There is a considered system having two 1- phase inverters with PWM and supplying 

linear RL load, as in Figure 21c. 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 33: 

Table 33. Load parameters for steady states before and after load change. 

Load  R [Ω] L [mH] � [Ω] � [ms] � [°el.] ��� � [−] ��� � [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 2 − phase system. 

Power component average values, and classical calculus-assuming harmonic currents, 

are given in Table 34. 

Table 34. Classical calculation before and after the change (at steady states). 

Time  ���� [VA] ���� [W] ���� [VAr] ��� [VAd] �� [−] �� [A] ��� �� [W] 

t = 0.1 sec 7 597 6 077  4 558 − − 18.17  0.8000 
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t = 0.2 sec 10 535   8 428  6 321  − − 25.20  0.5546 
���,��� = 295.6 V, ���,��� = 295.6 V,  ���,��� = 12.85 A,  ���,��� = 14.83 A,  ���,��� = 17.82 A, ���,���

= 17.82 A 

Simulation Results, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 35. 

Table 35. Simulation results before and after the change (at steady states). 

Time ��,��� [V] ��,��� [V] ��,��� [A] ��,��� [A] �� [A] �� [°el. ] ����� [−] 

t = 0.1 sec 336.7 346.8 12.84 13.42 18.81 36.90 0.7947 

t = 0.2 sec 337.4 347,3 17.84 18.63 26.09 56.33 0.5547 

For the 2-phase inverter: ��,���(0,1) = 418.5 V, ��,���  (0,2) = 419.5V 

Power component average values, computed in Matlab/Simulink are given in Table 

36. 

Table 36. Simulation results before and after the change (at steady states). 

Time  ��� [VA] ��� [W] ��� [VAr] ��� [VAd] �� [−] ����[%] ���� [W] ���� [W] 

t = 0.1 sec 8 975.0 6 358.0 4 767 4 173 0.7084 46.5 6 255.5 0 
t = 0.2 sec 12 490 6 133 9 196 5 816 0.4 911 46.57 6 071.6 0 

Network voltages and currents in �, �, resp. �, �- system during transient are shown 

in Figure 24a,b. 

  

(a) (b) 

Figure 24. VSI inverter voltages (a) and currents (b) in �, �, resp. in �, �- systems during the transi-

ent. 

3.3.4. Comparison of Power Components in 2-,3- and 5-Phase Supply Systems under Inverter 

Supply 

Apparent, active, blind, and distortion power components during transient states for 

3-, 5-, and 2-phase systems are shown in Figure 25a–d. 
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(a) (b) 

  

(c) (d) 

Figure 25. Apparent—(a), active—(b), blind—(c), and distortion (d) power components during tran-

sient states for 3-, 5-, and 2-phase systems under inverter-supplied linear RL load. 

The simulation was performed under the same load phase parameters; therefore, the 

magnitudes are proportionately different. 

The waveforms of apparent, active, and reactive (blind) power components during 

transient states for 3-, 5-, and 2-phase systems look similar to those under harmonic sup-

ply (Figure 11a–d). However, the distortion component of power is different substantively 

and features nearly 42% of total power. Therefore, the supply voltages of the inverters 

were adapted to be the total apparent power the same as under harmonic supply (approx. 

16 kVA/5-phase system, Figure 25a vs. Figure 11a). The reason was an easier comparison 

between inverter- and harmonic supply. During the transient state, the distortion compo-

nent is characterized by a typical overshoot, Figure 25d. Note to create the 2-phase inverter 

network. Two single full-bridge inverters were used. Distortion components of all con-

nections are rather high due to the impulse character of the voltages produced by VSI 

inverters. Therefore, the power factors are also rather poor. 

The reference currents �����(�) and �����(�) for compensating by power active fil-

ter (PAF compensator) are calculated using Equation (27a,b). Before this, they should be 

back-transformed into �, �, �-phase system. 

3.4. Mode #4 Non-Harmonic Supply and Nonlinear Load 

3.4.1. Symmetrical Network, Non-Symmetric Load 

The load asymmetry has been provided by step change of the resistor �� = 18.4 Ω 

to 9.2 Ω in phase a at the time of 0.1 sec (after settling). 
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Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 37: 

Table 37. Load parameters for steady states before and after load change. 

Load  �� [Ω] L [mH] � [Ω] �� [ms] �� [°el.] ��� �� [−] ��� �� [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 3 − phase system. 

Simulation Results Using Matlab/Simulink, Simulation Step 200 μs 

Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 38. 

Table 38. Simulation results before and after the change (at steady states). 

Time  ��,���[V] ��,���[V] ��,���[V] ��,���[A] ��,���[A] ��,���[A] 

t = 0.1 sec 229.7 229.8 0 9.971 9.998 0 

t = 0.2 sec 229.7 229.7 0 12.42 9.991 1.846 
�� changed from 18.4 Ω to 9.2 Ω at 0.2 sec. 

Power component average values, computed in Matlab/Simulink are given in Table 

39. 

Table 39. Simulation results before and after the change (at steady states). 

Time  ���[VA] ���[W] ���[VAr] ���[VAd] ��[−] ����[W] ����[%] 

t = 0.1 sec 6 888 5 510 4 134 0 0.8 0 0.0 

t = 0.2 sec 7 727 5 442 5 404 957 0.7039 0 12.39 

Network voltages and currents in �, �, �, �-coordinate system at steady-states are 

shown in Figure 26a,b. 

 

 

(a) (b) 

Figure 26. Network voltages (a), load, and neutral currents (b). 

Apparent, active, blind, and distortion power components during transient states for 

a 3 –phase system are shown in Figure 27a–d. 
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Figure 27. Apparent-(a), active-(b), blind-(c), and distortion (d) power components during transient 

states for 3-phase system under a symmetrical network supplying non-symmetrical linear RL load. 

In this case, the network neutral is connected to the load neutral. Therefore, current 

IN flows through the neutral wire despite the voltage zero-sequence being zero. It is inter-

esting that active power in steady state after the transient is a little bit smaller than before, 

Figure 27b, although load resistance in phase “a” was changed to one-half. However, the 

phase current ia and current of neutral IN are in antiphase (shifted by 180° el.), Figure 27b. 

So, the power loss (Joule loss) in neutral wire acts negatively on the load active power. 

During the transient state, waveforms feature oscillating characters, and power compo-

nent �� is zero due to zero-sequence component �� equal to zero. 

3.4.2. Non-Symmetric Network, Symmetrical Load 

The network asymmetry has been provided by a step change of voltage in phase a 

from 325 V by 33% at the time 0.1 sec (after settling). 

Parameters for steady states at � ∈< 0.0; 0.1 > and at � ∈< 0.1; 0.2 > are given in 

the Table 40: 

Table 40. Load parameters for steady states before and after load change. 

Load  �� [Ω] L [mH] � [Ω] �� [ms] �� [°el.] ��� �� [−] ��� �� [−] 

before  18.4 43.93 23 2.39 36.76 0.8 0.6 

after  9.2 43.93 16.59 4.78 56.33 0.5545 0.8322 

���� = 230 �, � = 50 Hz, 3 − phase system. 

Simulation Results Using Matlab/Simulink, Simulation Step 200 us 
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Measurable quantities, i.e., voltages and currents in �, � (���), and their parameters 

are given in Table 41. 

Table 41. Simulation results before and after the change (at steady states). 

Time ��,���[V] ��,���[V] ��,���[V] ��,���[A] ��,���[A] ��,���[A] 

t = 0.1 sec 229.5 230.1 0 10.01 9.969 0 

t = 0.2 sec 306.1 230.1 38.26 13.33 9.986 1.666 

��,��� changed from 325 V to 432 V (by 33%). 

Power component average values, computed in Matlab/Simulink are given in Table 

42. 

Table 42. Simulation results before and after the change (at steady states). 

Time  ���[VA] ���[W] ���[VAr] ���[VAd] ��[−] ����[W] ����[%] 

t = 0.1 sec 6 888 5 510 4 134 0 0.8 0 0.0 

t = 0.2 sec 9 567 7 729 5 511 1 186 0.8079 51.02 12.4 

Network voltages and currents in �, �, � - coordinate system at steady states are 

shown in Figure 28a,b. 

  

(a) (b) 

Figure 28. Network voltages (a), load, and neutral currents (b). 

Apparent-, active-, blind-, and distortion power components during transient states 

for a 3-phase system are shown in Figure 29a–d. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-500

-400

-300

-200

-100

0

100

200

300

400

500

u
a

u
b

u
c

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t [s]

-25

-20

-15

-10

-5

0

5

10

15

20

25

i
a

i
b

i
c

i
N



Appl. Sci. 2022, 12, 11659 30 of 35 
 

  

(a) (b) 
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Figure 29. Apparent- (a), active-(b), blind-(c), and distortion (d)power components during transient 

states for the 3-phase system under inverter-supplied non-symmetrical linear RL load. 

Zero power component �� is not equal to zero, and it is shown in Figure 30. 

 

Figure 30. The waveform of zero power component Po. 

Unlikely previous cases, the network voltages feature zero-sequence since �� is 33% 

higher, Figure 28a. Thus, the active power of the load is proportionally higher, Figure 28b, 

despite the phase current ia and current of neutral IN being in antiphase as in a non-sym-

metrical load case. So, this time the zero-sequence component Po is not zero, and it shows 

a little bit more than 50 W, Figure 30. 
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Compensation of reactive and distortion power in the case of non-symmetry systems 

needs 4-leg PAF instead of three. Calculation of reference currents for such a PAF config-

uration is similar to Equation (27a,b) but needs to consider zero-sequence components 

Equation (22), and it is done, e.g., [8,9,27]. 

4. Discussion 

Among the most interesting worked-out result belongs to the generated distortion 

component during the transient of the harmonic supply linear load (mode M1a Figure 

11d), while at steady state, it is zero. In the case of long system time constants (lightly 

loaded large motors, induction furnaces) and the need for precise compensation, it is, 

therefore, necessary to compensate for deformation power, although we consider a bal-

anced network and linear RL load. Under rectifier supply system Mode #2, in the case of 

the apparent power component (Figure 20a), nearly the same apparent powers of 3- and 

5- phase systems are generated at steady-state � ∈< 0.0; 0.1 > despite DC powers being 

different. Distortion components of all connections are rather high due to impulse current 

taken from the network. Therefore, the power factors are rather poor. In Mode #3, under 

non-harmonic inverter supply, distortion components of all connections are rather high 

due to the impulse character of the voltages produced by VSI inverters. Therefore, the 

power factors are also rather poor. In the case of the Mode #4 version ‚a‘, the harmonic 

network supplies an unbalanced load. The current IN flows through the neutral wire de-

spite the voltage zero-sequence being zero. It flows from an unbalanced load to a sym-

metrical network. Mode #4 version ‚b‘, the unbalanced harmonic network supplies the 

symmetrical linear load. The active power of the load is proportionally higher, Figure 29b, 

and the zero-sequence component �� is added to the phase active power. 

If compensating reactive blind power under linear RL load using static compensator 

SC (Figure 31a), the distortion power component has still remained during transient, Fig-

ure 31b,c. SC compensator comprises capacitors switched on by antiparallel thyristors at 

zero voltage crossing. 
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Figure 31. Using switched capacitors (a) for compensating reactive blind power (b) under linear RL 

load and distortion power (c). 

If compensating reactive power (blind and distortion) under linear RL load using an 

active PAF compensator (Figure 32a), the distortion power component is compensated 

already during transient, Figure 32b,c. The PAF compensator comprises 3-, 5-, and 2-phase 

voltage inverters and DC link capacitor C. 
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Figure 32. Using PAF active filter (a) for compensating reactive blind power (b) under linear RL 

load and distortion power (c). 
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In this case of using an active PAF compensator, if the transient was significantly 

longer than the time period (e.g., ten times), the deformation power would be fully com-

pensated already during the transient state. 

5. Conclusions 

The paper shows the behavior of power electronic systems as well as power systems 

under transient states presented by step change of the load or another quantity, using the 

instantaneous reactive power p-q method. The simulation was performed under different 

types of loads and supply voltages (linear and non-linear load, sinusoidal and non-sinus-

oidal voltage). There are shown the simulation results with the quasi-instantaneous de-

termination of power components’ mean values, including phase shift of fundamentals 

��(resp. cos ��) and total power factor ��. The waveform of apparent, active, blind, and 

distorted power components are displayed in the timeline. As has been shown, the dis-

tortion power components are generated during transient also under harmonic supply 

conditions and linear load. 

The moving average- and moving rms methods have been used for determining a 

power component’s mean values in the next calculation step directly from measurable 

phase current and voltage quantities. Thus, using those methods and the direct measure-

ment of a voltage and current in �, � orthogonal system, we can calculate acting variable 

quantity for compensating or filtering any undesirable power components such as blind-

, distortion, or total reactive power. This is important for active power filters mainly for 

their dynamics. Of course, all simulated power component waveforms will be then quite 

different from those displayed in the paper without compensation. 
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Nomenclature 

PES Power Electrical and Electronic Systems 

PAF Power Active Filter 

SC Static Compensator 

DAC/ADC Digital to Analogue/Analogue to Digital Converter 

DFIR Digital Finite Impulse Response filter 

DIIR Digital Infinite Impulse Response filter 

MAF Moving Average Filtering method 

AVE (ave) average value or function 

RMS (rms) root mean square value or function 

N number of sliding window points 
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�� Clarke transformation constant 

�(�) digital filter transfer function in Z-domain 

� − � instantaneous active and reactive power method 

�(�), �(�) instantaneous active and reactive power components 

��(�), ��(�) phase voltages in �, �-coordinate system 

��(�), ��(�) phase currents in �, �-coordinate system 

A� the amplitude of phase current 

���� active power of fundamental harmonic 

���� active power of a zero-sequence component 

���(�). . . ���(�) discretized power components at �- time instants 

���(�),  ���(�) oscillating terms of distortion power component 

��,�,�,�(�) instantaneous active power components in each phase �, �, � 

��,�,�,�(�) instantaneous reactive power components in each phase �, �, � 

��,�,�,�(�) instantaneous zero-sequence power components in each phase �, �, � 

��,�,�(�) components of a non-symmetrical system in �, �- coordinates 

��,�,�(�) components in �, �, �- coordinates 

��(�), ��(�) voltage and current zero-sequence power components 

��(�) neutral wire current 

��, cos�� phase shift, PF of fundamental harmonic 

��, ��, �� moment of inertia, load torque, and pole pairs of the IM motor 

��,�, ��,�, �� 
stator and rotor resistance, inductance, and mutual inductance of the IM 

motor 

�, �, � impedance, resistance, and inductance of the load 

Some others are being completed or modified in the text. 
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