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Abstract: Fire protection is one of the activities that follow the development of technology in real-time
and implements all the innovations of a detection system. This paper presents a unique solution for
the development of an autonomous robot for the prevention, detection, and extinguishing of fires
by studying the problem of choosing the optimal early-detection sensor in the infrared part of the
spectrum, which characterizes the highest level of excitation in the state of prevention. The robot is
equipped with several different sensors arranged in a hierarchical structure. Thermal detection has
proven to be a significant investment that can be adapted to the different complexity of the objects
to be protected, taking into account image processing and modular implementation of the required
sensors. To this end, it is necessary to calibrate systems for different thermal cameras. The calibration
procedure on seven cameras and two pyrometers resulted in data required for input-data correction
and anomaly detection. The results of the analysis confirmed that devices of a higher price range have
a lower deviation from the reference value compared to low-cost technical solutions. At the same
time, results were observed indicating malfunction of more expensive devices, whose data exceed the
specified nominal accuracy. Thanks to the performed calibration procedure and the obtained results,
the observed problem is not an obstacle for implementation in an autonomous robotic system and
can be used to correct the input data required for computer analysis.

Keywords: fire prevention; fire detection; infrared thermal camera; radiometric data; camera calibration

1. Introduction

Each year, fire causes a significant number of fatalities as well as significant material
losses. As a result, society now places a high importance on fire prevention and early
detection, and thus, it is also the main area of study and development for many scien-
tists and different sectors. Rapid technological advancement, particularly in the areas of
robotics, embedded systems, and machine learning, is having an impact on how the field of
firefighting is developing. This field is becoming more effective and safe, and consequently,
is minimizing the danger for people and property, as well as firefighters. There are some
existing robotic solutions for firefighting in the area of forest firefighting [1]. There is a num-
ber of robotic systems for indoor and outdoor firefighting that can be found in [2–4]. Over
time, there have been several attempts to develop an autonomous robot for firefighting that
uses advanced methods for navigation and mapping as well as different image-processing
techniques for fire prevention and detection [5–7]. More recent work proposes using un-
manned aerial vehicles (UAVs) for both indoor and outdoor firefighting [8–10]. Due to the
many challenges involved, such as real-time prevention and detection, complex mapping
and navigation inside narrow and often dark areas, changes of environment, obstacle
avoidance, and balancing the processing power with energy consumption, none of the
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above-mentioned projects resulted in a commercially available solution. The work in this
paper is focused on developing an autonomous robot for fire prevention, fire detection, and
extinguishing (FPDE). More details about our work will be provided in the next section.

Many existing techniques rely on using different sensors for fire prevention, as pre-
sented in [11–14]. Due to their limitations, they are becoming obsolete, and with the recent
advances in the field of image processing and machine learning, many new techniques
for fire detection have emerged [15–18]. Early detection of a potential fire hazard is most
easily accomplished with an infrared thermal-imaging camera, as shown in [19–21]. An
IR thermal camera is the only one capable of converting the highest excitation that can
be registered by the sensor into a visual image accompanied by radiometric data. IR
thermal-imaging cameras do not measure temperature but register radiation, which can
be converted into object temperature after accounting for the emission coefficient of the
object’s surface and environmental parameters. Detection of anomalies in the form of
hotspots is the basis of an approach that would provide useful information depending on
the algorithm. The accuracy of the information depends on the accuracy of the camera,
the correct choice of emissivity, and the angle of capture. These are the basic parameters
that the algorithm analyzes. Cheap thermal-imaging cameras have been on the market
since 2014, and the price of the single element of the sensor is continuously decreasing
while at the same time the resolution is increasing, which, together with software support,
leads to a wide range of prices for individual thermal-imaging cameras. Choosing the
optimal solution is not easy, as the width of the optics and the need to see detail must be
matched. For the development of FireBot (Faculty of Electrical Engineering, Computer
Science and Information Technology Osijek, Osijek, Croatia), we analyzed the possibility of
using seven thermal-imaging cameras and two pyrometers. Calibration, which served as
the basis for comparison, was performed in the temperature range of 27 ◦C to 45 ◦C, since
this range poses the greatest challenge for the early detection of anomalies. The deviation
analysis provided useful information on the basis of which the accuracy and precision can
be determined, as well as an indicator of the optimal selection based on indicators that
include financial indicators and the deviation of the results. Calibration was performed
with two blackbodies, as the procedure itself requires considerable time for the blackbodies
to heat up and enter a steady state. Two operators performed multiple measurements by ro-
tating the gauges to obtain a mean value that was insensitive and had minimal temperature
deviation of the blackbody due to heating and regulation of the temperature of the active
surface. After five hours of active testing, we found a malfunction in a camera and the
need for laboratory calibration. The novelty of the work is the definition of the numerical
indicator of the price in terms of the accuracy necessary to achieve an optimal technical
solution in accordance with the requirements of the analyzed area.

2. Materials and Methods
2.1. FireBot System Overview

The title of the project is “Research and development of autonomous robotic fire extin-
guisher for prevention, early detection, and fire extinguishing.” It is funded by the European
Regional Department Fund, and it is worth more than EUR 2,200,000.00. Pastor TVA (Pastor
TVA d.d., Bestovje-Rakitje, Croatia), the largest manufacturer of fire-extinguishing devices
in Southeast Europe, is the project’s leader. Pastor is in charge of project management
as well as robot and charger construction, physics, statics, dynamics, a fire-extinguishing
subsystem and logic, energy management, and power supply. The second partner is Orqa
(Orqa d.o.o., Osijek, Croatia), a small company from Osijek, Croatia, that specializes in the
development of technology and protocols for fast and efficient transfer of video signals for
drones. They are globally recognized for developing their First Person View (FPV) goggles
for drones. They are in charge of electronics, sensors, hardware, and remote control of the
robot via FPV goggles. The third partner is the Faculty of Electrical Engineering, Computer
Science, and Information Technology of Osijek. The faculty is in charge of developing
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software for autonomous navigation, fire prevention, and fire detection using various
sensors as well as visual and thermal cameras.

As mentioned in the introduction, the main task is the research and development
of a complex system for FPDE called FireBot. It will be constructed as a highly efficient
yet also highly performant system. This will be achieved by balancing components of
all subsystems to achieve the best power/performance ratio. When combined with an
existing state-of-the-art algorithm that will be further modified and implemented, the robot
will be capable of autonomous navigation in a previously mapped indoor space and fire
prevention and detection in real time. Furthermore, an attached fire-extinguishing device
will be administered in case a fire is detected and will be capable of extinguishing a small
fire. In addition, FireBot will be capable of reporting anomalies to the authorities if an
anomaly is detected. If FireBot suspects an anomaly is detected but it is not completely
confident, a remote user will have the possibility to take control of FireBot and to see
what the robot sees, both with a visual and infrared thermal camera to confirm or to deny
anomaly detection. To further extend FireBot’s capabilities in fire prevention, various
sensors for different types of gases will be implemented, along with a microphone and
sound-processing algorithm for detecting other anomalous events, e.g., gas and water leaks
and other types of noises. More detailed descriptions of FireBot’s architecture as well as
technical information will be presented in the following subsections.

2.1.1. FireBot Architecture

FireBot presents a new and innovative concept for FPDE. It utilizes state-of-the-art
technologies that enable autonomous navigation, including avoiding all obstacles, video
surveillance, and FPDE. It has a LiDAR and a depth camera, as well as the IR and ultrasonic
sensors used in RTAB, a cutting-edge SLAM (simultaneous localization and mapping)
algorithm for autonomous mapping and navigation [22], and a modern convolutional
neural network (CNN) paired with infrared thermal (IRT) and RGB cameras for fire and
temperature-anomaly detection. The final version of FireBot is currently in development,
and the final model is presented in Figure 1.
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FireBot has various other sensors for monitoring the surroundings and detection of
potential anomalies (various gas sensors, microphone for detecting water and gas leaks,
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intrusion detection, etc.). There are three types of fire-extinguishing devices attached to
FireBot (foam, powder, and CO2) for extinguishing different types of fires. Paired with a
rotating mechanical hand, on top of which is an electronic nozzle, FireBot can precisely
direct its nozzle to the source of fire for fast and efficient extinguishing.

The FireBot system architecture consists of the three main logical components for
indoor FPDE: an embedded system module for sensor and actuator management (ESM-
SAM), a system module for SLAM and navigation (SMSN), and a system module for fire
prevention and detection (SMFPD). Another important module is a system module for fire
extinguishing (SMFE), which consists of three different fire-extinguishing devices (powder,
foam, and CO2) along with the movable arm and electronic nozzle. Furthermore, a charging
station is provided separately from the robot. The complete proposed system-architecture
diagram is provided in Figure 2, and a detailed description of FireBot’s architecture and all
its subsystems can be found in [23].
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Figure 2. The proposed FireBot system-architecture diagram.

2.1.2. Hardware Specifications of an Experimental Platform

In this subsection, a brief overview of FireBot’s hardware components will be pre-
sented. At the starting point of developing our complex system, the commercially available
robotic platform TurtleBot2 (Willow Garage, Menlo Park, CA, USA) was used for the
implementation of the SLAM algorithm and for the first tests. TurtleBot2 is a low-cost
robot platform with open-source software, and it is a platform based on a differential
drive, equipped with a gyroscope, three front bumper sensors, and three cliff sensors.
Additionally, RPLidar A2 was added along with the Orbbec Astra RGB-D camera (Orbbec
3D Technology International, Inc., Troy, MI, USA). Since TurtleBot2 does not have a central
processing unit, a portable computer (Intel i7-10610U, 32 GB DDR4, Ubuntu 18.04) was
used on top of a robot. After an initial custom robot specification was defined, a custom
robotic platform was built that is presented in Figure 3. Hardware specifications of the first
custom prototype are presented in Table 1 along with the approximate prices of publicly
available components. Labor hours for software development, hardware assembly, and
indoor-developed components are not included in the final price.
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Table 1. Hardware specifications of the first prototype.

Component Type Component Approximate Price

Drivetrain Skid steering, 4 rubber wheels and
motors with encoders (40 W) USD 150

CPU (navigation) RaspberryPI 4 8 GB USD 120
CPU

(image processing) RaspberryPI 4 8 GB USD 120

Battery 2 × Lead 12 Ah, 5 h autonomy USD 80

Sensors

Gyroscope, accelerometer,
temperature, 5 × ultrasonic sensors

in front + 2 on the sides, 3 × IR
sensors downward facing

USD 20

Sensor-data management Arduino Mega USD 45
LiDAR RPLidar A2 (2D, 12 m range) USD 320

RGB-D camera Orbbec Astra (640 × 480 @ 30 fps,
RGB and depth) USD 150

Weight 15 kg

After the initial tests in different environments, several problems appeared. First of
all, a skid-steering drivetrain with rubber wheels was inefficient, as it was very dependent
on the surface type. Slight changes in ground textures resulted in different behaviors of
the robot. That problem was partially solved by switching to mecanum wheels, but at the
same time, it introduced another problem. Due to the nature of mecanum wheels, a lot
of vibrations were introduced, which significantly reduced video quality from the visual
camera. For that reason, the final version of FireBot will be equipped with a differential
drivetrain with two stronger motors with rubber wheels and two caster wheels for stability.
In addition, full suspension will be added to the chassis to further improve stability. A
second problem was that the Raspberry Pi 4 did not have enough processing power for
both navigation and image processing. That problem will be solved by using an industrial
PC (i7-10750H, 32 GB DDR4, 512 GB SSD, Ubuntu 20.04) for navigation and an NVidia
Jetson Xavier AGX 64 GB for image processing. In addition, sensor-data management
will be upgraded from Arduino Mega to dedicated custom electronics with a CAN Bus
interface. The lead batteries that were used are very heavy, and their capacity proved to be
insufficient for the required autonomy. Therefore, the battery capacity will be increased,
the battery technology will change to LiFePO4, and the total weight of the battery pack
will decrease. The hardware specifications of the final version of FireBot along with the
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approximate prices of publicly available components are presented in Table 2. Labor hours
for software development, hardware assembly, and indoor-developed components are not
included in the final price.

Table 2. Hardware specifications of the final version of FireBot.

Component Type Component Approximate Price

Drivetrain
Differential drive, 2 rubber wheels and
motors with encoders (200 W), 2 caster

wheels for stability, suspension
USD 600

CPU (navigation) Industrial PC (i7-10610U, 32 GB DDR4,
512 GB SSD) USD 1000

CPU (image processing) Nvidia Jetson Xavier AGX 64 GB USD 1700
Battery LiFePO4, 24 V, 100 Ah, 10 h autonomy USD 600

Sensors Gyroscope, accelerometer, temperature
sensor, 3 × ultrasonic sensors in front USD 300

Sensor-data management Custom electronics with CAN Bus interface Indoor built
LiDAR RPLidar A3 (2D, 25 m range) USD 600

RGB-D camera Orbbec Astra (640 × 480 @ 30 fps, RGB
and depth) USD 150

Visual camera 1080p 30 fps RGB camera with NIR area
capabilities Indoor built

Infrared thermal camera 384 × 288 30 fps with full radiometric data Indoor built

Other Various gas sensors, microphone, LED
reflector, laser range finder USD 200

Fire extinguishing 3 × 3 kg (powder, foam, CO2), mechanical
hand, electronic nozzle Indoor built

Weight 30 kg

2.2. Fire Prevention and Fire Detection

When it comes to fire prevention and fire detection, there are many existing solutions.
Some of them use different types of sensors, which include temperature sensors [11], smoke
and gas sensors [12], or flame detectors [13], which are becoming obsolete due to their
limitations. In [14], the authors presented an advanced method for fire detection using
chemical sensors. The advantage of that kind of approach lies in the fact that chemical
symptoms of fire appear even before the smoke or flame, so it presents an excellent method
for fire prevention.

Using CNNs in conjunction with raw RGB picture-processing and computer-vision
algorithms has been a popular fire-detection technology during the past decade. The
two pre-trained networks utilized in [15] were VGG16 and ResNet-50, which the authors
improved by adding more fully connected layers. They evaluated these models using a
dataset that was unbalanced and contained fewer fire images, simulating the environment
of the actual world. The results indicated higher accuracy in comparison to the base models,
but the additional layers also resulted in longer training times. Two steps make up the
unique fire-detection approach that the authors suggested in [16]. The first step is to use a
faster R-CNN network to find and locate potential fire zones. In the second phase, validation
of the fire zones that have been spotted is carried out by analyzing spatial attributes using
linear dynamic systems. Finally, VLAD encoding is used, which greatly enhances efficiency
and decreases detection errors, to differentiate between actual fire and fire-colored objects.
The proposed solution maintained a high true-positive rate while drastically reducing
the false-positive rate since they employed many fire-colored images for training. Based
on CNN’s cutting-edge object-identification models, the authors in [17] suggested four
revolutionary fire-detection techniques: Faster R-CNN, R-FCN, SSD, and YOLOv3. Faster R-
CNN and R-FCN are examples of two-stage object-detection networks since they comprise
both a classification network and a region-proposal network. In the initial step, CNN uses
input images to produce region suggestions. The second stage determines whether the
fire is present in the suggested regions using region-based object-detection CNN. One-
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stage networks (SSD and YOLOv3) were proposed since two-stage networks have slower
detection speeds. They use a single forward CNN to forecast the object class. All suggested
solutions outperformed other non-CNN-based approaches in tests using two separate
datasets. There is frequently a need for an accurate, quick, and portable fire-detection
solution that can be used on hardware with constrained computational power and that
is also reasonably priced. Since GoogleNet is better suited for implementation on FPGA
and other memory-constrained hardware while maintaining good classification accuracy,
the authors presented a low-cost fire-detection CNN architecture based on it in [18]. Two
primary-convolution layers, four max-pooling levels, one average-pooling layer, and seven
inception layers make up the 100 layers of the suggested model. They also employed a
transfer-learning strategy in this work. In terms of accuracy, the experiments produced
great results when compared to more robust models like AlexNet.

Another approach to consider when it comes to fire prevention and fire detection is
using infrared thermal (IRT) cameras. The benefit of this method is its capacity for early
fire detection and prevention because it can identify anomalies before other symptoms
manifest (smoke or smell), which can be seen in Figure 4.
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For instance, an electrical installation that is overheating because of an overload
or a faulty connection may catch fire eventually. It is feasible to recognize an increase
in temperature and respond appropriately by using thermal imagery. In [19], scientists
used CNN and IRT images of rotating machinery to extract fault features. Then, fault-
pattern identification was carried out using the Softmax Regression classifier. The proposed
method had outstanding performance in detecting and recognizing various defects on
bearings and rotors during the nine different types of faults that were used to assess the
system’s effectiveness. IRT images were used in [20] to find electrical-facility flaws. As
detection methods, Fast Region-Based CNN (Fast R-CNN), Faster R-CNN, and YOLOv3
were employed. The detected objects were examined using a thermal-intensity-area analysis
(TIAA). The results were most accurate when using a Faster R-CNN. According to the
authors of [21], transforming images in the HSV color space produces better results than
other color schemes such as grayscale. They employed the Otsu, Prewitt, and Roberts
techniques for thresholding. A loose phase connection, an imbalanced phase connection,
an overloaded phase connection, and a solar panel with a fault were used as test cases
for their hot-region-detection approach. Their suggested approach successfully identified
overheating on the device.

Although every kind of approach brings an advantage for a specific use-case, none
of the abovementioned approaches or other commercially available solutions are ideal for
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FireBot. Due to the specific use-case, FireBot should navigate in an indoor closed area
that is changing dynamically and at the same time be able to detect fire using a visual
camera. It should also be able to prevent potential fire outbreaks by using an infrared
thermal camera along with various other sensors and extinguish fire if detected. To be
able to do all that autonomously and efficiently, a new solution that is a fusion of multiple
approaches, specially designed for FireBot’s use-case, is being developed. Some of the
considered approaches are described in the following subsection, and the final solution is
still in development.

2.2.1. Image Classification

When it comes to fire detection using a visual camera, the main goal was to create a
dataset that can be used to train, validate, and test custom or existing convolutional neural
network (CNN) architectures that can detect fire in input images. The first task was to create
a dataset for training. Due to the lack of proper datasets, we had to create a new one. That
was accomplished by obtaining publicly available datasets in addition to images scraped
from the Internet. The final dataset used for training consists of 50,972 non-fire images
and 7359 fire images. The validation dataset consists of 3000 non-fire images and 3000 fire
images, and the test dataset consists of 2000 and 2000 images of non-fire and fire, respec-
tively. The evaluated CNNs include various implementations of ResNets, MobileNets, and
EfficientNets. ResNets represent the oldest evaluated type of CNNs, whereas MobileNets
and EfficientNets are more recent. The best-performing networks out of the four crafted net-
work tiers on the stated dataset include ResNet-101 [25], MobileNetV3-Large variant [26],
and EfficientNet-B3 [27]. All evaluated models were trained for 120 epochs, which indicated
the number of passes of the entire training dataset that the evaluated model completed.
The complete testing methodology, together with training parameters, is available in [28].
The main evaluation metrics of focus were recall and F1-score calculated from the entries
in the confusion matrix. Recall is a measure of how many of the positive cases (fire) the
classifier correctly predicted as a fire over all the positive cases in the dataset. The recall
represents the most important metric because we do not want to misclassify a fire event
as a non-fire event, which can lead to extensive or total property damage and has a very
high chance of claiming human lives. The F1-score metric was chosen to have a balanced
overview of the overall performance of a given model, as it is defined as the harmonic mean
of precision and recall. The metrics for all four tiers (L1–L4) of the evaluated networks for
the first 60 epochs can be seen in Figure 5. On the designed dataset, a similar conclusion
can be derived when looking at all four tiers. EfficientNet outperformed MobileNet, which
was close behind. In comparison to other examined networks, Base ResNet exhibited its
aging characteristics with poor recall and a low F1-score measure. The similarities between
MobileNet and EfficientNet are due to the fact that EfficientNet scales the network width,
depth, and input-image resolution in addition to including numerous components from the
complete MobileNet network stack. As can be expected, the best results were achieved with
network models evaluated in the L4 tier. In Figure 6, the number of parameters, number of
operations, and size on disk are presented to visually compare the complexity and required
computational power for each tested model. It is shown that all ResNet models had the
lowest performance but also the largest number of parameters as well as size on disk, which
makes them least suitable for embedded usage.

In Figure 7, there are several image examples from our test dataset along with the
achieved results of the best-performing model, EfficientNet-B3. The image in Figure shows
the actual class, the class predicted by CNN, and the network’s confidence.
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In Figure 7b,e there are some examples in which the network wrongly classified images.
Figure 7b is a very challenging image since the flame is very small and barely visible. In the
same image, the Figure 7a network correctly classified the image as a fire, but that is due
to the sun, which is very bright and is fire colored, thus leading to the network mistaking
it as fire. That is confirmed in image in Figure 7b in which the sun is covered but small
flames remain, and the network wrongly changed the prediction to non-fire. Figure 7d
shows an example in which the fire is overexposed whereas other parts of the image are
darkened, posing a challenge to the evaluated model, which predicted correctly but with a
lower level of confidence. Because of the stated overexposure, fire morphology cannot be
observed properly. A similar problem occurs when observing various light bodies (light
bulbs, LEDs, neon lights, etc.). For that reason, many such images were included in the
dataset. Figure 7e is another example in which the network made a wrong prediction due
to the light, which is quite bright in a very dark area. The images in Figure 7c,f are examples
in which the network made a correct prediction with high confidence. To further increase
the network’s performance, the dataset must be additionally extended, including more
real-world images, and the used network models should also be enhanced to better suit
our use case. In addition, some of the newer network architectures will be evaluated on the
created dataset.

2.2.2. Semantic Segmentation

To enhance the precision of fire detection even further and to localize the fire in input
images, two approaches were used—semantic segmentation and object detection. The goal
of semantic segmentation is to cluster the parts of an image together that belong to the same
object class. In our case, two target classes are fire and smoke. Semantic segmentation does
not only expect labels and bounding box parameters as output. The result is a high-quality
image with each pixel assigned to a certain class, often the same size as the input image.
Therefore, it is a classification of images at the pixel level. There are two types of image
segmentation: semantic segmentation, which classifies each pixel with a label, and instance
segmentation, which classifies each pixel and differentiates each object instance. For the
purpose of image segmentation, U-Net architecture [29] was used. U-Net architecture
was originally designed for medical-image segmentation but over the time it was adapted
for different purposes. It is one of the earliest deep-learning segmentation models, and
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several GAN variations, including the Pix2Pix generator, use the U-Net design. The model
architecture is fairly simple. It consists of an encoder (for downsampling) and a decoder (for
upsampling) with skip connections. Skip connections are used to concatenate the encoder
feature map with the decoder, which helps the backward flow of gradients for improved
training. Two main metrics when evaluating image segmentation are the dice coefficient
and Intersection-Over-Union (IoU). IoU is the area of the overlap between the predicted
segmentation and the ground truth divided by the area of the union between those two
measures. It ranges from 0 to 1 (0 to 100%). The dice coefficient is calculated exactly the
same as the F1-score, two times the area of overlap divided by the total number of pixels in
both images. The preliminary results, dice score, and IoU of the evaluated U-Net network
are presented in Figure 8. From the obtained score, it can be seen that the dice score and IoU
score were both slightly above the 0.6, which is considered a good score but leaves a lot of
room for progress both in improving the dataset and upgrading the trained network model.
An example of segmented images from the training is presented in Figure 9, which also
confirms the abovementioned statement that the segmentation network already achieved
great results, but additional improvements will make it even better.
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2.2.3. Object Detection

As we mentioned in the previous subsection, the second approach is object detection
using the YOLOv5 network model. YOLOv5 is an upgraded network model of the You
Only Look Once network model presented in 2016 in [30], YOLOv2 presented in [31],
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YOLOv3 presented in [32], and YOLOv4 presented in [33]. It is an extremely fast, state-of-
the-art network model for object detection. Its main task is to detect instances of objects
of a certain class within an image. Object-detection methods can be categorized into two
main types: one-stage methods, which prioritize inference speed, and two-stage methods,
which prioritize accuracy. YOLOv5 is a one-stage method. It works by dividing images
into a grid system; then, each grid is responsible for detecting objects within itself. Outputs
are predicted bounding boxes and probabilities for each component. The architecture of
the YOLO model consists of three parts. The first part is the backbone. It is used to extract
key features from an input image. The neck is the second part. It is used to create pyramid
parts. Feature pyramids aid models in generalizing when it comes to object scaling. It also
helps in the identification of the same object in various sizes. The last part is the head. It
is responsible for the final detection step. It uses anchor boxes to construct final output
vectors with class probabilities and bounding boxes. Figure 10 depicts the YOLOv5 loss
function as a combination of classification loss and localization loss. If an object is detected,
the classification loss at each cell is the squared error of the class conditional probabilities
for each class. The localization loss measures the errors in the predicted boundary-box
locations and sizes. From the presented loss, the YOLOv5 model achieved excellent results
but still leaves room for additional progress. An example of a trained model prediction on
our dataset is presented in Figure 11.
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After the image segmentation and object detection, in addition to knowing whether
fire is present in an image, we also know the exact location of the fire in that image. This
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is critical for directing the fire-extinguishing nozzle to the proper location for quick and
effective fire extinguishment.

To be able to train an image-segmentation model or object-detection model, a dataset
with a ground truth mask of fire and smoke for every image is required. Because of the
lack of that kind of dataset, we started building a new one and began manually annotating
every image. For that purpose, a new annotation tool was developed that will be further
explained in the next subsection

2.2.4. FireSense Image Annotation Tool

For image annotation, there are many tools available. The drawing of polygons,
rectangles, points, and lines is one of the fundamental features that every annotation tool
must have. Additionally, they must be able to export annotated data in multiple formats
that are used by different deep-learning models for computer vision. Data from various
annotation tools are exported in a variety of formats. The two most popular formats are
Pascal VOC and Microsoft COCO. The main difference between COCO and Pascal VOC
is the file format. COCO is stored in JSON format [34], whereas Pascal VOC is stored in
XML format [35]. There are also some additional distinctions in the way the annotation
data are presented in the stored format. LabelMe [36] is the most-often-used tool for
data annotation and was developed by MIT researchers. It is a Web-application tool for
image annotation. Although the online application is closed to new users, a copy of the
Python-written program has been created and is now in use. This application exports
the data in XML format. The biggest disadvantage of the LabelMe annotation tool is that
the dataset must be distributed to multiple computers in order for numerous users to
annotate it. Another popular annotation tool is the free and open-source browser-based
Computer Vision Annotation Tool (CVAT) [37]. It is used for digital image and video
annotation. The tasks of image classification, object detection, and picture segmentation
can be accomplished with CVAT. Annotators can cooperate on a particular project because
projects can be local or shared online. One of the advantages of CVAT is that it can use the
TensorFlow API to automatically annotate images. The client side of the CVAT application
is limited to working only on the specified browser engine because it only supports Google
Chrome and chromium-based browsers. Make Sense [38] is another well-liked tool for
annotating data. Make Sense is a GitHub-hosted, free-to-use image-annotation online
application. Users can export image-annotation data in a variety of formats.

For the purpose of creating a quality dataset, a new image-annotation tool called
FireSense was developed. It is based on the previously mentioned open-source Make Sense
tool but with several improvements. The dataset is located on a centralized server, and
batches of randomly selected images are sent to the annotators. Administrators can easily
manage the images in the dataset. Additionally, double-blind image annotation with a
90% intersection over union (IOU) overlap is enabled with random batches. Annotations
are manually checked if the IOU is less than 90%. It has a backend (on the server side)
and a frontend (on the client side), both of which are hosted on a dedicated server. Clients
connect using a Web browser. It also allows users to export image-annotation data in a
variety of formats, which include CSV, YOLO, VOC XML, VGG JSON, and COCO. When
a user logs in, they immediately receive a batch of images. The large area in the middle
shows the editor viewport, where polygons can be added or modified. In the left sidebar,
all images from the batch are listed. The top-right sidebar shows all the labels that users
annotated. There, the user can change the polygon’s class, toggle the visibility, or remove
the polygon. In the bottom-right sidebar, the user can change other information about the
image, including type of space, time of day, whether there is an artificial light source, the
size of the flame, etc. The FireSense interface is presented in Figure 12.
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Figure 13. Radiation of the sun and earth by wavelengths. 

Figure 12. FireSense image-annotation tool interface.

To create an annotated-image dataset, some of the images from the dataset mentioned
in Section 2.2.1. were used along with some additional fire images acquired from several
different firefighting departments, and by using the abovementioned image-annotation
tool, we created a dataset of 11,164 manually annotated images. That dataset includes a
total of 48,662 flame annotations, 3350 smoke annotations, and 1230 non-fire images. Out
of all annotated images, 2356 are in a warehouse, 476 are inside an office, and others are
outside or unknown. Half of the images were taken during daytime and a quarter during
night; the rest could not be determined. This dataset is currently being used along with
the image-segmentation network model for fire detection and fire localization. In addition,
this dataset is constantly being increased to enhance the model confidence even further in
determining the presence of fire and smoke pixels. More information about the FireSense
(Faculty of Electrical Engineering, Computer Science and Information Technology Osijek,
Osijek, Croatia) annotation tool and created dataset can be found in [39].

2.2.5. Temperature Anomaly Detection

When it comes to fire prevention by determining potential temperature anomalies,
an infrared thermal camera is used. Infrared thermal imaging is the best way to capture
the temperature-range characteristic of the Earth’s electromagnetic spectrum. Figure 13
clearly shows the maximum of the visible part of the spectrum and the detection range
of the infrared thermal imager. When objects were heated to a temperature higher than
525 ◦C, in addition to thermal radiation, the emission of light detected by a classical camera
began to appear. However, the fire situation had progressed already.
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Figure 13. Radiation of the sun and earth by wavelengths. Figure 13. Radiation of the sun and earth by wavelengths.
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As mentioned earlier, FireBot will be equipped with an infrared thermal-imaging
camera that will provide complete spatial radiometric data of the observed scene to detect
the potential development of a fire in time before it manifests visually. A thermal-imaging
camera does not measure temperature but registers radiation in the infrared part of the
spectrum, as shown in Figure 14. Depending on the recording parameters set, the most
important of which are the emissivity of the object, the amount of radiation reflected from
the surroundings, and, at greater distances, the transmission of the atmosphere, accurate
radiometric data can be obtained.
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The intensity of infrared radiation from the surface of the observed scene is measured
by the camera’s sensor and interpreted as the temperature of every pixel of a thermogram.
The thermogram is used to better understand the scene and the potential temperature
anomaly when inspecting visually, whereas the radiometric data are required for develop-
ing an efficient algorithm for automatic anomaly detection. If an infrared thermal camera
without full spatial radiometric data is used, radiometric data can be accurately estimated
from a thermogram and detected temperature boundaries, as described in [40]. The idea
for anomaly detection is as follows: FireBot will have a predefined route for patrolling,
during which it will actively search for a fire using a visual camera. On that route, it will
have predefined points of interest that present a potential danger or contain some expen-
sive equipment that needs to be monitored regularly—for example, computers, electric
machines, electrical cabinets, server racks, etc. Every time FireBot comes to a certain point
of interest, it will take an image of that scene; detect the hotspots; calculate the area of each
hotspot, average temperature, and maximum temperature of every hotspot; and compare
that data to the data gathered from all previous passes. If the detected temperatures are
increased in comparison to the previous states, the number of hotspots is increased, or
the area of a hotspot is increased beyond the predetermined threshold, it will be a trigger
for an alarm, and an automatic warning message will be sent to the supervisor along
with the location of that point of interest. At that moment, a remote supervisor can take
control of FireBot and visually inspect that point by using an infrared thermal camera. If
a more detailed inspection is required, a remote user can easily adjust the temperature
scale or color map of a thermogram to better understand the scene, as described in [40],
and call maintenance service if required. An example of anomaly detection is presented in
Figure 15, and the flowchart of the temperature anomaly-detection algorithm is presented
in Figure 16.
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2.2.6. Radiometric Data Estimation

As mentioned in the previous subsection, the approach for temperature-anomaly de-
tection requires full spatial radiometric data to be able to successfully analyze the observed
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scene and detect the presence of an anomaly. If the full radiometric data are not available, as
is the case with some lesser-known camera manufacturers, it was shown in [40] that by us-
ing image-processing techniques, it is possible to accurately estimate radiometric data from
a thermogram and detected temperature boundaries (minimum and maximum detected
temperature) of the observed scene. Estimated data can be further used in developing an
anomaly-detection algorithm.

To estimate full radiometric data, we used a white-hot IRT image as input. Pixel values
of the input image were then transferred to the array, in which every element represented
one pixel of the input image with the intensity in a range of 0 to 255. Temperature bound-
aries were detected by the IRT camera, and they will be referred to as detLTB and detHTB.
By using simple linear conversion, radiometric data for every pixel from the input image
was calculated with the following Equation (1):

estRadData =
cIP

maxIP
·detHTB

detLTB
+ detLTB (1)

where cIP represents the value (intensity) of the current image pixel, maxIP represents the
maximum possible value (intensity) of image pixels (in this case 255), detLTB represents
the detected lowest temperature boundary, and detHTB represents the detected highest
temperature boundary.

After all the values were calculated and rounded to two decimal places, they were
stored in a csv file, which represents the estimated radiometric data. Before using estimated
data for developing an algorithm for anomaly detection, it is required to calculate the
estimation error in order to confirm the estimated data are correct. For error estimation, a
Flir E60bx handheld IRT camera that provides full radiometric data was used. The data
provided by the camera were considered ground truth and compared to the estimated data.
First, dataDiffMat was calculated by subtracting the ground-truth matrix from an FLIR
camera with the estimated data using Equation (2).

dataDi f f Mat = groundTruthMat − estRadData (2)

After, the minimum- and maximum-estimation errors were extracted using Equations (3)
and (4), respectively.

minEstErr = min(abs(dataDi f f Mat)) (3)

maxEstErr = max(abs(dataDi f f Mat)) (4)

An average-estimation error was calculated as a sum of all absolute errors divided by
the number of elements in a matrix, as shown in Equation (5).

avgErr =
∑m

i=1 ∑n
j=1 abs

(
dataDi f f Mati,j

)
m·n (5)

The minimum calculated estimation error was 0.000 ◦C, the maximum was 0.077 ◦C,
and the average error was 0.037 ◦C, which are great results, and the estimated results can
be further used for developing an algorithm for anomaly detection.

2.2.7. Generating Images from Radiometric Data

The data estimated in the previous subsection can be used to generate a thermogram
not only in the original temperature range/scale but also in any desired temperature
range to better understand the observed scene. First, the desired temperature range of the
thermogram is defined as definedLowTempBoundary (defLTB) and definedHighTempBoundary
(defHTB). Then, all values/temperatures above/below the defined threshold are set to
low/high boundary. Finally, image pixel intensities are calculated according to Equation (6).

imgPix = estRadData − de f LTB·maxPixVal − minPixVal
de f HTB − de f LTB

+ minPixVal (6)
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where imgPix represents pixel intensities of a generated image (0–255), estRadData represents
the estimated radiometric-data matrix, defLTB represents the defined low-temperature
boundary, defHTB represents the defined high-temperature boundary, minPixVal represents
the minimum intensity of a pixel in an output image (0), and maxPixVal represents the
maximum intensity of a pixel in an output image (255).

In addition to the temperature range, the color map used to generate the image can
also be changed to better understand the scene. Several examples of generated images are
presented in Figure 17.
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Figure 17. IRT images generated from estimated radiometric data (a–d) and IRT images generated 

from estimated radiometric data using different color maps (e–h). LB represents a low-temperature 

boundary and HB represents a high-temperature boundary. (a) Generated image: LB: 18, HB: 

36. (b) Generated image: LB: 15, HB: 50. (c) Generated image: LB: 22, HB: 34. (d) Generated 

image: LB: 25, HB: 30. (e) Generated image: inferno cmap, LB: 22, HB: 34. (f) Generated 
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Generated image: hsv cmap, LB: 22, HB: 34. 

Figure 17. IRT images generated from estimated radiometric data (a–d) and IRT images generated
from estimated radiometric data using different color maps (e–h). LB represents a low-temperature
boundary and HB represents a high-temperature boundary. (a) Generated image: LB: 18, HB: 36.
(b) Generated image: LB: 15, HB: 50. (c) Generated image: LB: 22, HB: 34. (d) Generated image: LB:
25, HB: 30. (e) Generated image: inferno cmap, LB: 22, HB: 34. (f) Generated image: viridis cmap,
LB: 22, HB: 34. (g) Generated image: winter cmap, LB: 22, HB: 34. (h) Generated image: hsv cmap,
LB: 22, HB: 34.

3. Results and Analysis of Radiometric Thermal Data
3.1. Influence of Emissivity on Radiometric Data

A developed system for proactive detection in data analysis relies on the accuracy
of radiometric information. In the thermal part of the spectrum, the choice of the correct
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emissivity of the material plays the most important role for the determination of the real
temperature value. In addition, the acquisition angle should not be neglected. Figure 18
shows the characteristic curve of the emissivity for color and good radiators in red and
blue for shiny metals, which have a low emissivity. The green color indicates the angle of
exposure recommended for thermographic analysis. The reason for this can be clearly seen
in the behavior of the curves, which significantly change the values of the coefficients after
30◦. An analysis of the sensitivity of the measurement result to different emissivity levels
at a reflected ambient temperature of 13.5 ◦C shown in Figure 18 with the red temperature
values was performed on the wall sample presented in Figure 15. We concluded that within
the recommended acquisition angle of 120◦ the measurement error was less than 0.1 ◦C. A
further deviation of the recording angle led to an error of 5 ◦C. It should be noted that the
specified values for each thermogram differed considerably. There were no metal objects
in the image, so an analysis of the blue emissivity characteristic of metals could not be
performed. A detailed description of the directional spectral emissivity can be found in [41].
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Figure 18. Polar diagram of directional spectral emissivity of the object and influence of emissivity
changes on the temperature displayed by the thermal camera Flir E60bx.

3.2. Basic Calibration When Using Several Different Cameras

Infrared thermal-imaging cameras represent a significant financial item in the overall
project cost, and their price increases with resolution. Although the cost of a single pixel
decreases [42], as seen in Figure 19, as resolution increases, the number of pixels increases,
and so does the total cost of the camera sensor. To optimize the final product, it is planned
to install a thermal-imaging camera, which is the optimum in terms of complexity of the
space where the FireBot will patrol. The main technical parameters are field of view (FOV),
spatial resolution (IFOV), thermal sensitivity/NETD, and accuracy in (◦C) or (%) of the
reading. Comparing the data from Figure 18 to the typical camera-accuracy value of ±2 ◦C
or ±2%, we can see that the camera accuracy significantly affects the radiometric data.
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The choice of camera affects the behavior of the system in which it is located. When
developing an algorithm for temperature-anomaly detection using an IRT camera and the
radiometric data provided by the camera, we consider that the data (temperatures) are
correct or within the range of manufacturer-defined error. To ensure that these data are
correct, all IRT cameras must be calibrated. Calibration is a process in which the infrared
radiation that a camera detects is correlated with known temperatures. All cameras on
the market are calibrated to factory specifications, but over time and due to the aging of
electronics, a calibration shift is caused, and consequently, cameras produce inaccurate
temperature measurements. Unfortunately, the owner of the camera cannot recalibrate the
camera on their own but can determine the camera’s deviation for a certain measurement
point with the help of a body with a known temperature. For that purpose, a blackbody
source is used. A blackbody is a physical body with high emissivity, which means that it
radiates and absorbs almost all electromagnetic radiation. The blackbody has a predefined
range of temperatures it can achieve and, as such, can be used as a reference point for
determining the camera’s accuracy. When talking about the manufacturer’s calibration,
the correction table is directly saved in the camera’s firmware and automatically corrects
camera readings, whereas in our case, the correction table was used to manually (or within
our algorithm) correct detected temperatures. In this subsection, we used seven IRT
cameras, presented in Table 3, and two blackbodies, presented in Table 4, to determine
whether their accuracy was within the manufacturer’s margin of error and whether they
can be used as such on FireBot for fast and efficient temperature-anomaly detection. All
seven cameras were calibrated at seven temperature points, ranging from 27 ◦C to 45 ◦C
with a 3 ◦C step in between. This range was chosen because it represents the temperature
interval in the range of increased latent hazards, such as passive consumption of electrical
equipment when overheated and triggering fire hazards. Increasingly higher temperature
values automatically become an area of interest and further analysis due to their height
and temperature difference relative to the environment. All measurements were repeated
10 times and the results were expressed as average values. For this reason, the values in the
tables are expressed in two decimal places. It is important to note that raw camera data can
be downloaded to three decimal places.
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Table 3. Comparison of infrared thermal cameras used for imaging and analysis.

Specifications
Camera

Flir E6 Flir One Pro Flir E60bx HTI HT-301 Flir A500 24◦ Flir A70 29◦ Flir A70 95◦

IR resolution 160 × 120 160 × 120 320 × 240 384 × 288 464 × 348 640 × 480 640 × 480

NETD 60 mK 70 mK 45 mK 60 mK 40 mK 45 mK 60 mK

FOV 45◦ × 34◦ 55◦ × 43◦ 25◦ × 19◦ 28.2◦ × 21.3◦ 24◦ × 18◦ 29◦ × 22◦ 95◦ × 74◦

IFOV 5.2 mrad 6 mrad 1.36 mrad 1.28 mrad 0.90 mrad 0.79 mrad 2.59 mrad

Spectral range 7.5–13 µm 8–14 µm 7.5–13 µm 8–14 µm 7.5–14 µm 7.5–14 µm 7.5–14 µm

Temp. range
(◦C) −20 to + 250 −20 to + 120 −20 to + 120 −20 to + 120 −20 to + 120 −20 to + 175 −20 to + 175

Accuracy (◦C) or
(%) of reading

±2 ◦C or ±2% ±3 ◦C or ±5% ±2 ◦C or ±2% ±3 ◦C or ±3% ±2 ◦C or ±2% ±2 ◦C or ±2% ±2 ◦C or ±2%
for ambient temperature 15 ◦C to 35 ◦C

Table 4. Comparison of blackbodies used for imaging and analysis.

Blackbody Voltcraft IRS-350 Flir Systems BB150-P

Temperature range 50 ◦C to 350 ◦C 45 ◦C to 150 ◦C

Accuracy ±0.5 ◦C at 100 ◦C
±1.2 ◦C at 350 ◦C

±0.7 ◦C 0 to 10 ◦C
±0.5 ◦C 10 to 40 ◦C

Stability ±0.1 ◦C at 100 ◦C
±0.2 ◦C at 350 ◦C ±0.2 ◦C

Emissivity of measuring area 0.95 0.98
Operating temperature 5 ◦C to 35 ◦C 0 ◦C to 40 ◦C

It is difficult to compare the characteristics of the cameras listed in the Table 3 from
the point of view of image analysis if the parameters FOI and IFOV are not taken into
account. In Figure 20 a comparison can be seen of the size of the thermogram when the
cameras were 1 m away from the object to be imaged. In the middle, the field of view of
the unit sensor of the IFOV sensor can be seen and compared. From this, we can conclude
that in order to achieve nominal accuracy, it is important that the IFOV completely cover
the area where the analyzed object is located. Furthermore, we can see that for certain
applications where it is important to see a large area in a small space, the resolution itself is
not as important as the optics of the camera, i.e., the angle that the camera captures.
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In addition to the infrared thermal imagers listed in Table 3, two pyrometers were
also used in the calibration. The reason for this was to investigate the possibility of using a
pyrometer as an additional support for a targeted temperature measurement at any point
exposed to a temperature outside the temperature range of thermal imagers due to fire.
Compared to thermal-imaging cameras, pyrometers are inexpensive, widely available, and
easy to integrate into a system. The first was the Raytek RAYMX2D with a temperature
range of −30 ◦C to 900 ◦C and a measurement error of ±1 ◦C or ±1% of the reading;
the other was the Parkside PTIA 1 with a temperature range of −50 ◦C to 380 ◦C and a



Appl. Sci. 2022, 12, 11657 22 of 28

measurement error of ±1.5 ◦C. Two different blackbodies were used during the calibration
process, and their specifications are listed in Table 4.

The reason for this is thermal inertia and the time required to reach a steady state.
Five hours of effective labor and two people were required to calibrate nine devices.
The instruments were divided into two groups depending on the angle of the optics,
paying attention to possible sources of reflected radiation and the influence of the operator.
Figure 21 shows a blackbody Voltcraft IRS-350 with a set temperature value of 50 ◦C (green
diodes) and a current value of 44.9 ◦C (red diodes). The active area where the camera
calibration is performed is shown in red in the thermogram. The calibration process is
performed when the blackbody enters a steady state. For this reason, we decided to perform
the calibration in seven values, from 27 ◦C to 45 ◦C, with a step of 3 ◦C, which is the first
larger amount compared to the specified measurement uncertainty of the camera. The
specified interval covers the values for early detection of hotspots, where accuracy and
precision are important. Higher temperature values quickly become noticeable, and the
detection algorithm had no problems with them.
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Figure 21. Voltcraft IRS-350 in operation.

Using the raw data, Figure 22 shows the detailed temperature distribution on the
active surface of another blackbody whose surface is not flat, unlike the Voltcraft. The
image shows a maximum value of 50.774 ◦C, a minimum value of 50.006 ◦C, and an average
value of 50.41068 ◦C, which was indicated on the display with a value of 50.4 ◦C.
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Figure 22. Temperature distribution on the active blackbody surface.

In Figure 22, a circular area can be seen with slight deviations in temperature, which
were not real or physically possible. This is a result of the surface geometry, which, due
to the different emissivity of individual circle areas, resulted in different emissivities
and different amounts of radiation while the blackbody had a steady temperature-value
camera presenting slight differences in temperature values. We can conclude that the
camera does not measure temperature but registers infrared radiation, based on which the
temperature values are assigned in accordance with the calibration data. In addition to the
changes in geometry, a change in a surface emissivity is also possible and occurs in practice
(degradation in paint due to the sunlight UV exposure or partial surface oxidation). In
order to take into account all influences on the measurement uncertainty of the results, the
camera displays temperature values with one decimal place. During the measurement, it
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was necessary for the spatial resolution IFOV (Instantaneous Field of View), i.e., the viewing
angle of a single pixel of the sensor, be completely within the range of the reference surface.
Figure 23 shows the maximum distance the camera could be from the blackbody for the
measurement to be accurate. The maximum distance of the camera was compared with the
field of view (FOV) that the camera would have at the specified distance, depending on
its resolution.
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In the measurement, we tried to fill the frame as much as possible with the active
element of the blackbody to make it easier to determine the mean, as shown in Figure 23. To
determine the mean value, it was not enough to read 10 different readings from the camera,
and it was necessary to change the camera for each measurement so that the fluctuations
of the temperature of the blackbodies were reduced to a minimum when determining the
mean value. Table 5 shows the mean values of the measurements made according to the
indicated procedure.

Table 5. Temperature readings during the calibration process.

Device
Average Measurements for Defined Reference Points (◦C)

27 30 33 36 39 42 45

Flir E6 29.03 32.13 35.20 38.05 41.25 44.50 45.70
Flir E60bx 27.77 30.85 33.85 36.93 39.95 43.05 45.90
Flir One Pro 27.52 26.63 29.40 30.08 32.50 36.10 37.50
Flir A500 27.07 29.73 32.74 35.92 38.64 41.89 44.68
Flir A70 29◦ 22.03 24.09 27.87 29.27 31.55 34.76 37.22
Flir A70 95◦ 26.50 29.76 32.97 36.27 39.32 42.42 46.10
HTI HT-301 27.64 29.67 35.18 37.01 41.72 42.53 45.73
Raytek RAYMX2D 27.57 30.53 33.65 36.72 39.65 42.61 45.69
Parkside PTIA 1 26.91 29.44 30.84 34.55 37.31 39.12 39.69

3.3. Analysis of Measurement Result Deviations

There are two basic approaches to analyzing thermographic records. One is to deter-
mine the highest temperature that the object under study can withstand. In our case, we
were dealing with temperatures as high as 90 ◦C, which most structural- and electrical-
insulating materials must withstand for a short period of time. The second approach is to
determine the temperature difference between two identical objects, i.e., between a correct
and an incorrect one, and to decide, based on the magnitude of the temperature difference,
which method and time interval should be used to respond to the observed anomaly. It
should always be kept in mind that an infrared thermal imager does not measure tem-
perature but registers radiation. The deviation of the calibration data from the reference
temperature represents an indication of correctness if all recording parameters have been
entered correctly. Table 6 shows the deviations in ◦C and has been expanded to include
information on average camera prices so that the accuracy data can be correlated with
financial indicators.



Appl. Sci. 2022, 12, 11657 24 of 28

Table 6. Deviation in ◦C from the reference value, and camera-price information.

Device
Deviation in ◦C from the Reference Value, and Camera-Price Information Price

(USD)27 30 33 36 39 42 45

Flir E6 2.03 2.13 2.20 2.05 2.25 2.50 0.70 2259.00
Flir E60bx 0.77 0.85 0.85 0.93 0.95 1.05 0.90 4295.00
Flir One Pro 0.52 −3.37 −3.60 −5.92 −6.50 −5.90 −7.50 259.99
Flir A500 0.07 −0.27 −0.26 −0.08 −0.36 −0.11 −0.32 10,079.00
Flir A70 29◦ −4.97 −5.91 −5.13 −6.73 −7.45 −7.24 −7.78 6950.00
Flir A70 95◦ −0.50 −0.24 −0.03 0.27 0.32 0.42 1.10 6950.00
HTI HT-301 0.64 −0.33 2.18 1.01 2.72 0.53 0.73 787.00
Raytek RAYMX2D 0.57 0.53 0.65 0.72 0.65 0.61 0.69 124.41
Parkside PTIA 1 −0.09 −0.56 −2.16 −1.45 −1.69 −2.88 −5.31 20.80

If the mean value of the deviation for the individual devices is plotted, a comparison
can be made with the data from Table 3. From Figure 24, it is clear that the Flir A70
(Teledyne FLIR LLC, Wilsonville, Oregon, USA) with a lens angle of 29◦ was not correctly
factory calibrated and it is not suitable for further use. The Flir One Pro showed a deviation
from the nominal accuracy of 34%, but considering the price and the purpose, which is
primarily qualitative, we cannot consider it to be deficient. When the data from Table 6
were put into a graphical form, as shown in Figure 25, it was possible to clearly distinguish
the cameras that were accurate and precise in terms of accuracy over the entire temperature
range of the calibration.
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Figure 24. Average deviation in ◦C for the analyzed thermal cameras.
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Going one step further and analyzing the percent deviation from the mean of the
deviation for each temperature, as shown in Figure 26, can lead to a false conclusion, as the
most accurate camera showed an increase in deviation as the temperature increased. The
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above procedure can still be useful when analyzing cameras with similar characteristics,
which can be seen from the characteristics of the cameras that were below 1% deviation in
the class.
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Figure 26. Percentage deviation from the mean deviation for individual cameras.

From Table 6 and Figure 26 it is evident that it was necessary to perform the laboratory
factory calibration of the Flir A70 29◦ camera, whose deviation of 3.23 times greater than
the specified accuracy designation indicates that factory calibration was necessary. From
the above, there was a need to introduce an indicator that links the accuracy and price
range of each camera. Figure 27 shows the numerical value of the price ratio in relation to
the mean temperature deviation. It is expressed in USD per ◦C. The two cameras shown in
red justified the investment’s accuracy, as determined by the calibration procedure. We left
the Flir A70 29◦ for comparison, although we concluded that said camera is not to be used.
By further analysis of the calculated indicator, it was concluded that a simple indicator
that valorizes the possibility of using the optimal camera is not applicable in this case, but
the decision to choose a camera must be determined by the technical characteristics of the
individual application, taking into account the need for details and the need for accuracy
and indicators within a narrow group of similar characteristics. The aforementioned
analysis must not be performed until the minimum resolution and accuracy of the camera
installed in the FireBot have been determined for the exact application, since the investment
optimum must be taken into account.
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4. Conclusions

Obtaining calibration data for infrared thermal-imaging cameras for implementation
in the FireBot autonomous fire protection robotic system represents the starting point for
optimizing the algorithm for detecting anomalies that may lead to the development of a
fire. The proposed algorithm provides a clear insight into the operational performance of
a self-driving autonomous solution. The proposed FireBot system-architecture diagram
provides insight into the complex structure and a detailed approach for realizing the
optimal technical solution. Accordingly, special emphasis is placed on the detection of the
excitation maximum, which can be detected in the early phase of the anomaly. Infrared
thermography was prescribed as the solution. Although this is a widely used method
of non-destructive testing, the price of cameras increases significantly with increasing
resolution and detection accuracy. In order to select the optimal camera, a blackbody
calibration procedure must be performed. The calibration procedure indicated a defective
camera and provided the necessary indicators for optimal selection depending on the
complexity and specific characteristics of the space under investigation. The procedure
itself and the observation of a defective camera led to the conclusion that, regardless of the
specifications, camera calibration must be performed before installation in FireBot to ensure
control over the installed component in addition to correcting the input data. In addition,
this procedure enables faulty cameras that do not comply with factory specifications to be
detected, as shown in the example of one camera analyzed in this paper.

Author Contributions: Conceptualization, J.B., H.G. and K.V.; methodology, J.B., K.V. and H.G.;
software, K.V., J.B. and H.G.; validation, K.V., J.B. and J.J.; formal analysis, J.B., H.G. and K.V.;
investigation, H.G., K.V., J.B. and J.J.; resources, K.V. and J.J.; data curation, K.V., H.G. and J.B.;
writing—original draft preparation, K.V., H.G. and J.B.; writing—review and editing, J.B., K.V. and
J.J.; visualization, J.B., H.G. and K.V.; supervision, J.B.; funding acquisition, J.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by the project “Research and development of autonomous robotic
fire extinguisher for prevention, early detection and fire extinguishing” under grant KK.01.2.1.02
co-financed by the European Union from the European Regional Development Fund within the
Operational Programme Competitiveness and Cohesion 2014–2020 of the Republic of Croatia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request from the authors.

Acknowledgments: The authors thank the editors and anonymous reviewers for their valuable
comments. The authors also thank NVIDIA and Teledyne FLIR for hardware support and recognizing
our work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roldán-Gómez, J.J.; González-Gironda, E.; Barrientos, A. A Survey on Robotic Technologies for Forest Firefighting: Applying

Drone Swarms to Improve Firefighters’ Efficiency and Safety. Appl. Sci. 2021, 11, 363. [CrossRef]
2. Smart Robots for Fire-Fighting. A Report Encapsulating the Secondary Research and Findings from the Survey to Inform the Database of

WP2–Literature Survery; European Commission: Maastricht, The Netherlands, 2018.
3. Liu, P.; Yu, H.; Cang, S.; Vladareanu, L. Robot-Assisted Smart Firefighting and Interdisciplinary Perspectives. In Proceedings of

the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; pp. 395–401.
[CrossRef]

4. Tan, C.F.; Liew, S.M.; Alkahari, M.R.; Ranjit, S.S.S.; Said, M.R.; Chen, W.; Sivakumar, D. Fire Fighting Mobile Robot: State of the
Art and Recent Development. Aust. J. Basic Appl. Sci. 2013, 7, 220–230.

5. Khoon, T.N.; Sebastian, P.; Saman, A.B.S. Autonomous Fire Fighting Mobile Platform. Procedia Eng. 2012, 41, 1145–1153. [CrossRef]
6. AlHaza, T.; Alsadoon, A.; Alhusinan, Z.; Jarwali, M.; Alsaif, K. New Concept for Indoor Fire Fighting Robot. Procedia Soc. Behav.

Sci. 2015, 195, 2343–2352. [CrossRef]
7. Varghese, S.; Paul, A.; George, B.; M.A., F.; Warier, S. Design and Fabrication of Fire Fighting Robotic Arm for Petrochemical

Industries. Int. J. Ind. Eng. 2018, 5, 14–17. [CrossRef]

http://doi.org/10.3390/app11010363
http://doi.org/10.1109/IConAC.2016.7604952
http://doi.org/10.1016/j.proeng.2012.07.294
http://doi.org/10.1016/j.sbspro.2015.06.191
http://doi.org/10.14445/23499362/IJIE-V5I1P103


Appl. Sci. 2022, 12, 11657 27 of 28

8. Imdoukh, A.; Shaker, A.; Al-Toukhy, A.; Kablaoui, D.; El-Abd, M. Semi-Autonomous Indoor Firefighting UAV. In Proceedings
of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 310–315.
[CrossRef]

9. Kinaneva, D.; Hristov, G.; Raychev, J.; Zahariev, P. Early Forest Fire Detection Using Drones and Artificial Intelligence. In
Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1060–1065. [CrossRef]

10. Spurny, V.; Pritzl, V.; Walter, V.; Petrlik, M.; Baca, T.; Stepan, P.; Zaitlik, D.; Saska, M. Autonomous Firefighting Inside Buildings by
an Unmanned Aerial Vehicle. IEEE Access 2021, 9, 15872–15890. [CrossRef]

11. Nii, D.; Namba, M.; Harada, K.; Matsuyama, K.; Tanaka, T. Application of Common-Use Temperature Sensors to Early Fire
Detection. In Proceedings of the 11th Asia-Oceania Symposium on Fire Science and Technology, Taipei, Taiwan, 21–25 October
2018; Springer: Singapore, 2018. [CrossRef]

12. Wu, Q.; Gong, L.-X.; Li, Y.; Cao, C.-F.; Tang, L.-C.; Wu, L.; Zhao, L.; Zhang, G.-D.; Li, S.-N.; Gao, J.; et al. Efficient Flame Detection
and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano 2018, 12,
416–424. [CrossRef] [PubMed]

13. Erden, F.; Toreyin, B.U.; Soyer, E.B.; Inac, I.; Gunay, O.; Kose, K.; Cetin, A.E. Wavelet Based Flickering Flame Detector Using
Differential PIR Sensors. Fire Saf. J. 2012, 53, 13–18. [CrossRef]

14. Fonollosa, J.; Solórzano, A.; Marco, S. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review. Sensors
2018, 18, 553. [CrossRef] [PubMed]

15. Sharma, J.; Granmo, O.-C.; Goodwin, M.; Fidje, J.T. Deep Convolutional Neural Networks for Fire Detection in Images. Proc. Int.
Conf. Eng. Appl. Neural Netw. 2017, 744, 183–193. [CrossRef]

16. Barmpoutis, P.; Dimitropoulos, K.; Kaza, K.; Grammalidis, N. Fire Detection from Images Using Faster R-CNN and Multidimen-
sional Texture Analysis. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP
2019), Brighton, UK, 12–17 May 2019; pp. 8301–8305. [CrossRef]

17. Li, P.; Zhao, W. Image Fire Detection Algorithms Based on Convolutional Neural Networks. Case Stud. Therm. Eng. 2020, 19,
100625. [CrossRef]

18. Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional Neural Networks Based Fire Detection in Surveillance
Videos. IEEE Access 2018, 6, 18174–18183. [CrossRef]

19. Li, Y.; Du, X.; Wan, F.; Wang, X.; Yu, H. Rotating Machinery Fault Diagnosis Based on Convolutional Neural Network and Infrared
Thermal Imaging. Chin. J. Aeronaut. 2020, 33, 427–438. [CrossRef]

20. Kim, J.S.; Choi, K.N.; Kang, S.W. Infrared Thermal Image-Based Sustainable Fault Detection for Electrical Facilities. Sustainability
2021, 13, 557. [CrossRef]

21. Haider, M.; Doegar, A.; Verma, R.K. Fault Identification in Electrical Equipment Using Thermal Image Processing. In Proceedings
of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, Uttar
Pradesh, India, 28–29 September 2018; pp. 853–858. [CrossRef]

22. Labbe, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for
large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [CrossRef]

23. Balen, J.; Damjanovic, D.; Maric, P.; Vdovjak, K.; Arlovic, M. FireBot–An Autonomous Surveillance Robot for Fire Prevention,
Early Detection and Extinguishing. In Proceedings of the Future of Information and Communication Conference (FICC) 2023,
Virtual, San Francisco, CA, USA, 2–3 March 2023.

24. Orglmeister, A. Early Fire Detection and Automatic Extinguishing in Waste-to-Energy Power Plants and Waste Treatment Plants,
Waste Management. In Waste-to-Enery; Thomé-Kozmiensky, K.J., Thiel, S., Thomé-Kozmiensky, E., Winter, F., Juchelková, D., Eds.;
TK Verlag Karl Thomé-Kozmiensky: Neuruppin, Germany, 2017; Volume 7, ISBN 978-3-944310-37-4.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

26. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1314–1324.

27. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Volume 97, pp. 6105–6114.

28. Vdovjak, K.; Maric, P.; Balen, J.; Grbic, R.; Damjanovic, D.; Arlovic, M. Modern CNNs Comparison for Fire Detection in RGB
Images. In Proceedings of the 17th International Conference on Machine Learning and Data Mining MLDM 2022, New York, NY,
USA, 16–21 July 2022.

29. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany,
5–9 October 2015; pp. 234–241. [CrossRef]

30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

http://doi.org/10.1109/ICAR.2017.8023625
http://doi.org/10.23919/MIPRO.2019.8756696
http://doi.org/10.1109/ACCESS.2021.3052967
http://doi.org/10.1007/978-981-32-9139-3_55
http://doi.org/10.1021/acsnano.7b06590
http://www.ncbi.nlm.nih.gov/pubmed/29240398
http://doi.org/10.1016/j.firesaf.2012.06.006
http://doi.org/10.3390/s18020553
http://www.ncbi.nlm.nih.gov/pubmed/29439490
http://doi.org/10.1007/978-3-319-65172-9_16
http://doi.org/10.1109/ICASSP.2019.8682647
http://doi.org/10.1016/j.csite.2020.100625
http://doi.org/10.1109/ACCESS.2018.2812835
http://doi.org/10.1016/j.cja.2019.08.014
http://doi.org/10.3390/su13020557
http://doi.org/10.1109/GUCON.2018.8675108
http://doi.org/10.1002/rob.21831
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/CVPR.2016.91


Appl. Sci. 2022, 12, 11657 28 of 28

31. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

32. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018. [CrossRef]
33. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020. [CrossRef]
34. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, L. Microsoft COCO: Common Objects in

Context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014;
European Conference on Computer Vision. pp. 740–755.

35. Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

36. Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A Database and Web-Based Tool for Image Annotation. Int. J.
Comput. Vis. 2008, 77, 157–173. [CrossRef]

37. Sekachev, B.; Manovich, N.; Zhavoronkov, A. Computer Vision Annotation Tool: A Universal Approach to Data Annotation. 2019.
Available online: https://github.com/opencv/cvat (accessed on 23 February 2022).

38. Skalski, P. Make Sense. 2019. Available online: https://github.com/SkalskiP/make-sense (accessed on 25 February 2022).
39. Maric, P.; Arlovic, M.; Balen, J.; Vdovjak, K.; Damjanovic, D. A Large Scale Dataset For Fire Detection and Segmentation in

Indoor Spaces. In Proceedings of the 2nd International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), Maldives, 16–18 November 2022.

40. Vdovjak, K.; Maric, P.; Balen, J.; Glavas, H. Radiometric Data Estimation Using Thermogram and Comparison to the Data
Provided by the Camera. In Proceedings of the 16th conference on Quantitative Infrared Thermography, Paris, France, 4–8 July
2022; pp. 440–446.

41. Baehr, H.D.; Stephan, K. Heat and Mass Transfer, Second, Revised Edition; Springer: Berlin, Germany; Springer: New York, NY, USA,
2006; ISBN 13 978-3-540-29526-6.

42. Corsi, C. New Frontiers for Infrared. Opto-Electron. Rev. 2015, 23, 3–25. [CrossRef]

http://doi.org/10.1109/CVPR.2017.690
http://doi.org/10.48550/arXiv.1804.02767
http://doi.org/10.48550/arXiv.2004.10934
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.1007/s11263-007-0090-8
https://github.com/opencv/cvat
https://github.com/SkalskiP/make-sense
http://doi.org/10.1515/oere-2015-0015

	Introduction 
	Materials and Methods 
	FireBot System Overview 
	FireBot Architecture 
	Hardware Specifications of an Experimental Platform 

	Fire Prevention and Fire Detection 
	Image Classification 
	Semantic Segmentation 
	Object Detection 
	FireSense Image Annotation Tool 
	Temperature Anomaly Detection 
	Radiometric Data Estimation 
	Generating Images from Radiometric Data 


	Results and Analysis of Radiometric Thermal Data 
	Influence of Emissivity on Radiometric Data 
	Basic Calibration When Using Several Different Cameras 
	Analysis of Measurement Result Deviations 

	Conclusions 
	References

