
����������
�������

Citation: Maskeliūnas, R.;
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Abstract: Speech impairment analysis and processing technologies have evolved substantially in
recent years, and the use of voice as a biomarker has gained popularity. We have developed an
approach for clinical speech signal processing to demonstrate the promise of deep learning-driven
voice analysis as a screening tool for Parkinson’s Disease (PD), the world’s second most prevalent
neurodegenerative disease. Detecting Parkinson’s disease symptoms typically involves an evaluation
by a movement disorder expert, which can be difficult to get and yield varied findings. A vocal digital
biomarker might supplement the time-consuming traditional manual examination by recognizing
and evaluating symptoms that characterize voice quality and level of deterioration. We present a
deep learning based, custom U-lossian model for PD assessment and recognition. The study’s goal
was to discover anomalies in the PD-affected voice and develop an automated screening method that
can discriminate between the voices of PD patients and healthy volunteers while also providing a
voice quality score. The classification accuracy was evaluated on two speech corpora (Italian PVS
and own Lithuanian PD voice dataset) and we have found the result to be medically appropriate,
with values of 0.8964 and 0.7949, confirming the proposed model’s high generalizability.

Keywords: Parkinson’s disease; voice analysis; voice screening; speech signal processing

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease [1].
PD mostly affects people over 50 years of age, although the number continues to decline,
and the number of affected subjects only increases as the population increases. With
more than 10 million people diagnosed each year in the world, 1 million in the USA
and comparable rates of occurrence have been observed in Europe [2]. The pathogenetic
mechanisms of the disease are variable and not yet fully understood [3]. The disease
presents itself with a wide spectrum of motor and non-motor symptoms, including
those that directly affect a person’s capability to operate. Clinically manifested PD is
preceded by a prodromal period, lasting for decades, when there are no clinical signs
or unspecific symptoms, such as constipation, apathy, daytime sleepiness, inattention,
depression, anxiety, smell impairment, pain, motor slowing, etc., may be present [4–7].
Motor symptoms appear relatively late in the course of neurodegeneration, only when
compensatory mechanisms of smooth motor control are exhausted and do not manifest
until more than half of the dopaminergic neurons in the substantia nigra region in the
midbrain are dead [8]. Nevertheless, they are the signs that make the disease recog-
nizable. The cardinal symptoms of PD are bradykinesia, which represents impairment
of voluntary motor control and is characterized by slowness and gradually decreasing
range of movement, muscle rigidity, and tremor [9]. To date, the diagnosis of PD is ex-
ceptionally clinical and faces many challenges. Firstly, it comes late in the context of the
neurodegenerative process. Secondly, the diagnosis requires experience in recognizing
clinical signs, especially when motor symptoms are mild, as mild motor symptoms as
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well as non-motor symptoms are prevalent in the healthy elderly population [10]. The
symptoms of PD overlap with other neurodegenerative, toxic, or vascular diseases that
might have a different prognosis and require different approaches to treatment, and
even with aging, as mentioned above.

Early identification of PD is important, as disabling motor symptoms, which otherwise
may be attributed to aging or other causes, could be treated highly effectively when recognized.
Earlier disease intervention may result in longer uncompromised working capacity, as well
as the prolonged quality time of the patient’s life. The prospect of neuroprotective treatment
that is expected to emerge in the near future demands identification of those who need it
even earlier, before the symptoms appear. Many studies in the area of neurodegeneration
have recently been directed toward finding the disease biomarkers [11]. Speech is very
vulnerable to degeneration of neural structures [12] and quality decline has been extensively
reported in the PD research literature [13,14]. It is therefore not surprising that speech acoustic
analysis in PD has been receiving an exponentially growing scientific interest in recent years
as it has the potential to reveal a lot of information about fine motor control. The ease and
broad availability of the recording technique makes it an excellent candidate for becoming a
diagnostic biomarker as well as a progression marker for PD.

Fundamental frequency variability has been discovered as early as 5 years before
diagnosable symptoms [15]. Rush et al. have repeatedly shown that subjects with early
PD [16,17] and even with rapid eye movement behavior disorder (RBD) [18] (which is
recognized as the strongest predictor of neurodegeneration, including Parkinson’s disease)
manifest various articulatory, phonatory, and prosodic speech deficits, a combination of
which can discriminate between the people with PD and the control group. Early detection
and diagnosis can help with therapy, but diagnosis usually necessitates an interview with
a healthcare professional or the completion of a formal diagnostic questionnaire. As a
result, inconspicuous techniques to monitor depression symptoms in daily life could be
quite useful in diagnosing and screening PD and determining whether or not it requires
professional treatment [19].

Speech therefore must be constantly reevaluated to improve the patients’ quality of
life; therefore, PD-impacted speech must be monitored and screened on a regular basis.
Deterioration is linked to swallowing problems in PD [20], which in turns raises the possi-
bility of choking, aspiration pneumonia, and untimely death. Swallowing problems are
often underreported by patients with PD, not least related to the lack of suitable screening
methods. Monitoring for speech deterioration with a simple and even remotely available
acoustic analysis method could serve as a tool to schedule a visit to the doctor. Speech disor-
ders impair patients’ capacity to communicate, as they may talk slowly and cannot convey
themselves effectively. Their speech is sometimes breathy and mumbled towards the end of
a phrase. As a result, individuals are unable to express emotions when speaking. It also has
an impact on their socialization capacity, a case that has been especially pronounced during
and after the COVID-19 pandemic [21]. Healthy persons may alter their voices to produce a
variety of sounds that require delicate coordination and control of the articulatory and res-
piratory muscles. Patients with PD, on the other hand, have impaired neuromotor control,
which affects the vocal mechanism and, as a result, the sounds generated. Speech analysis
by machines might help in early identification of PD, however there are large inter- and
intra-individual differences, making this difficult. Recent development of speech-based PD
screening tools based on speech analysis show the acceptable classification rates in distin-
guishing between healthy participants and PD patients. However, in these investigations,
the data used to build the classification model included voice recordings from both early
and late-stage PD patients with varying degrees of speech impairment, resulting in unreal-
istic results for real-life application cases. In a more realistic scenario, healthy participants
or early PD patients with moderate speech impairment will employ an early screening
method in questionable situations [22]. The study [23] showed that vocal tract length
acquired from phoneme recording using a smartphone may reliably identify persons with
Parkinson’s disease.
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Our study’s goal was to discover anomalies in the PD-affected voice and develop an
automated screening method capable of distinguishing between the voices of PD patients
and healthy individuals while also providing a voice quality score. We look at whether
speech recordings might be utilized as a simple, low-cost method of PD assessment and
screening, using deep learning for expert score prediction and evaluation. Acoustic investi-
gations enable high-throughput screening that, if the screening results are aberrant, can be
followed by a comprehensive medical evaluation. We developed an automated screening
method that can discriminate between the voices of patients with Parkinson’s disease and
healthy participants, as well as provide a voice quality score, to detect anomalies in the
voice impacted by Parkinson’s disease. The main challenge was getting the algorithm to
work with different forms of voice input. The Italian PD speech samples (training material)
used sustained vowel phonation, while the Lithuanian samples used phonetically balanced
phrase analysis. However, because sustained vowel phonation is a type of phonation that is
manufactured, that feature establishes the same limitation in the meaning of the sustained
vowel signal analysis. Connected speech, on the other hand, is more common in ordinary
conversation and may be considered more “ecologically legitimate”. As a result, we have
raised a hypothesis to design a dedicated deep learning based PD voice screening system,
that is, if an objective voice evaluation is to be considered robust and ecologically valid
for screening purposes, acoustic measurements should ideally be performed using both
speaking patterns—sustained phonation and running speech.

The manuscript is further organized as follows: initially, we offer a state-of-the-art
review of Parkinson disease voice signal processing, then the dataset and the methodology
of our U-lossian deep neural network approach, followed by the experimental evaluation,
discussion, and conclusions.

2. State of the Art Review of Signal Analysis Based Approaches for Analyzing
Parkinson’s Disease

Given the technological nature of the paper, this section aims to provide a technological
review of numerous computer-driven methodologies utilized for technological Parkinson
disease analysis and investigation, categorization, and screening.

The great majority of patients diagnosed with PD have vocal performance impair-
ment [22], which may often be one of the first signs of the onset of the diseases and there is
a clear demand for objective symptom assessment and screening [24]. Speech faults caused
by Parkinson’s disease include, among other things, decreased voice loudness [25], mono
pitch [26], and improper consonant articulation as was defined by Tukalova’s team [27].
Recent research have created tools to distinguish PD from controls and track speech rehabil-
itation in PD using high-quality voice recordings [28,29]. Recent research have also looked
at the practicality and usefulness of employing smartphone technology [30] to help with
the clinical diagnosis of Parkinson’s disease, which expanded the use of speech data to
include four more tests for dexterity, postural sway, gait, and response times [31]. Modern
AI-powered screening was shown to be hardware-independent, yielding accurate findings.
According to a research conducted by Rusz et al. [32], smartphones can identify speech
problems in those who are at high risk of acquiring PD.

Acoustic measurements such as fundamental frequency variability, pause interval
duration, and speech timing rate extracted from spontaneous speech were sensitive enough
to distinguish between groups and demonstrated a strong correlation and reliability be-
tween the professional microphone and the smartphone. Ehsan et al. [33] found a similar
reliable results when using the k-nearest neighbor (KNN) algorithm. Bot et al. [34] also
introduced an iPhone app to assess the PD patient’s memory, tapping, speech, and walking.
Zhan et al. [35] created an app to assess the feasibility of remotely monitoring PD symp-
toms, and to use an AI-based approach to distinguish between measures before and after
medication. Lipsmeier et al. [36] compared smartphone outcome metrics to traditional
clinical practice with trials that substantially distinguished PD from healthy persons with
p < 0.005.
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Regarding the applications of artificial intelligence (AI), recent research has shown
that the use of machine learning techniques to identify PD from non-PD using extracted
speech data is successful [37,38]. Behroozi et al. [39] developed a multi-classifier frame-
work to distinguish Parkinson’s disease patients from healthy controls. Tsanas et al. in
Refs. [30,40] studied the link between the characteristics of speech signals and the motor
impairment score in Parkinson’s disease patients. Perez et al. [41] created an autonomous
feature extraction system to diagnose Parkinson’s disease and follow its development.
Khan et al. [42] evaluated the severity of PD using audio recordings of the vocal func-
tion. Ensemble learning was also important in boosting PD classification accuracy. As
demonstrated by Mohammadi et al. [43], stacking results of conventional classifiers are
time-efficient, low-cost, and more accurate, with an achieved accuracy of 95–97%. While
these and related studies show great classification accuracy, they have numerous limits as
they progress upward. Small cohort sizes are a more well-known issue, as they limit the
generalizability of conclusions to a wider and more diversified population. Some researches
also disregarded the fact that a person with PD may have greater trouble pronouncing some
words than others. As a result, summarizing the voice examination may result in the loss of
vital information [44]. To overcome this issue, the categorization setting must take into con-
sideration what has been communicated. Identity confounding is a less well-known issue
in which several voice samples are obtained from each subject and these samples appear in
both training and testing data, therefore because the model has trained to identify features
of certain subjects and is utilizing that knowledge to identify the label in the test set, the
model’s performance is too optimistic. Furthermore, adopting a simple classifier does not
lead to high prediction accuracy, thus deep learning based techniques for improving model
performance include data normalization [45], feature selection, and feature extraction [46].
This is a sort of data leakage in which information is transferred between the training and
test sets accidentally, resulting in exaggerated performance measures [47].

More fundamentally, studies that merely categorize patients as having Parkinson’s
disease or not having it have limited value in terms of enhancing their quality of life.
Although techniques to improve diagnostic accuracy are needed, diagnosis is usually
achieved only after the disease has advanced to a more severe stage, i.e., when symptoms
appear. Ali et al. [48] proposed to address the above-mentioned issues, with the aim of
creating a hybrid system capable of automatically performing acoustic analysis of voice
signals to identify PD. The suggested smart system employs linear discriminant analysis to
reduce dimensionality and a genetic algorithm to optimize the hyperparameters of a neural
network utilized as a predictive model. Furthermore, to eliminate subject overlap, they
excluded one participant from validation and attained a 95% accuracy. Arora et al. [31]
attempted to investigate the scalability of voice as a population screening tool for PD, and
performed the Parkinson’s Speech Initiative (PVI) research, a PD characterization study
using telephone-quality voice. PVI was the first large-scale study of its sort to gather speech
data from PwP and control participants in free-living acoustic circumstances, with the
goal of distinguishing PD individuals from controls using phonations acquired in non-
acoustically controlled situations. Viswanathan et al. [49] used two complexity measures:
fractal dimension (FD) and normalized mutual information (NMI) to compare the voices
of Parkinson’s disease (PD) and age-matched control (CO) subjects when uttering three
phonemes. They found that the voices of PD patients have lower FD and NMI between
voice recordings of PD–CO and PD–PD is higher than CO–CO. This shows that using
NMI from the sample voice in combination with the known CO and PD groups can be
utilized to detect PD sounds. Hirens et al. [50] proposed an ensemble of convolutional
neural networks for detecting PD from speech samples. For the dataset, the solution
obtained 99% accuracy. To tackle the problem of imbalanced data samples, Polat et al. [51]
employed a Synthetic Minority Over-Sampling Technique, followed by a Random Forest
model to categorize the samples. Gabriel et al. [52] achieved an accuracy of roughly 94%
for a Wrappers feature subset selection preceding an SVM. Tuncer et al. [53] acquired a
greater efficiency by using a KNN technique followed by minimal average maximum
tree and singular value decomposition as feature extractors. According to the findings of
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Pah et al. [54], automated analysis of various phonemes should be used. An approach
for categorizing PD that is sensitive to privacy has been presented by Laganas et al. [55].
Voice characteristics collected from running speech signals were recovered from passively
recorded voice calls. To fuse and predict speech characteristics, language-aware training of
multiple- and single-instance learning classifiers was used, yielding an AUC of 0.84.

Overview of Deep Learning Based Approaches to PD Speech Analysis

Deep learning (DL) architectures and algorithms are rapidly being employed in research
to handle complex PD voice signal processing issues [56]. The initial step is to convert the
input speech stream into voice feature vectors or tensors that DL models can assess. As
previously indicated in the main body of the state-of-the-art review, numerous aspects of
voice are included in the voice characteristics of Parkinson’s disease patients, further varying
in relation to the native tongue of the speaker. The second step in DL-based approaches is to
apply a classification or analysis to the retrieved voice characteristics, as vocal biomarkers are
a potentially useful technique of monitoring symptoms and severity [57]. This section thus
examines DL-related models and the effectiveness of strategies used for PD identification
from voice.

Krishna et al., tested multiple architectures of the 1D CNN model to accurately detect
the illness using extracted speech data and obtained about 87% accuracy [58]. Sparse
kernel transfer learning was proposed by Zhang et al. [59] to extract the effective structural
information of PD speech characteristics from public datasets as source domain data. They
also used a quick alternating direction multiplier iteration strategy to improve information
extraction performance, attaining an overall accuracy of 86.7%. Similarly, Ma et al. pro-
posed a deep dual-side learning ensemble model with a weighted fusion mechanism to fuse
the classification models into a classification ensemble model, attaining 98.4% accuracy [60].
On the Max Little dataset, Ouhmida et al. [61] used traditional CNN with an accuracy of
93.10%. An ensemble of convolutional neural networks with Gaussian blurring allowed
a further increase in accuracy [62]. Similarly, the spectrum of the audio recordings was
computed and utilized as an image input to the pre-trained ResNet18 architecture using
the ImageNet and SVD databases with an accuracy of 97.1% in Ref. [63]. Alexnet adapted
by Ref. [64] showed a very similar performance, while Densnet had lower accuracy, albeit
on a different dataset [65]. Combining the CNN classifier with additional iterative adaptive
inverse filtering (IAIF) and quasi-closed phase (QCP) glottal inverse filtering algorithms
can assist in utilizing the baseline and glottal information generated from each spoken
utterance and the related healthy/PD classifications [66]. Anisha et al. [67] proposed adopt-
ing a method in which weak learners are bagged and boosted before making predictions,
which will certainly provide better outcomes than basic ensemble voting and stacking. The
suggested technique achieved an accuracy of 94.12% by enhancing ensemble classifiers.
Grover et al. [68] using UCI’s Parkinson’s Telemonitoring Voice Data Set of patients, sug-
gested an approach for predicting Parkinson’s disease severity using deep neural networks
with 82% accuracy in controlled conditions, while a very similar approach with mRMR
feature selection improved the accuracy levels on the same dataset [69]. Danish et al. [70]
evaluated the potential of a deep neural network (DNN) and long short-term memory
(LSTM) network-based model for predicting Parkinson’s illness using speech samples
from a person with 97.1% accuracy. Quan et al., proposed an improvement, using a Bidi-
rectional long-short term memory (LSTM) model to identify PD by capturing time-series
dynamic aspects of a speech stream [71]. The authors of Ref. [72] developed an SSWA-based
attention-based LSTM that provided improved performance with 92.5% accuracy on an
Indian language dataset. The experiments by Zhangs et al. [73] showed that DF-EMD can
be utilized to identify PD efficiently since the high-frequency section of the speech signal
carries more information concerning PD. Nagasubramanian and Sankayya investigated the
capability of acoustic-based DL approaches, discovering that combining these techniques
results in around a 3% improvement in performance [74].



Appl. Sci. 2022, 12, 11601 6 of 23

3. Materials and Methods
3.1. Dataset

This study was approved by the Kaunas Regional Ethics Committee for Biomedical
Research (No. BE-2-49). Voice samples were obtained from 104 PD subjects examined in
the Lithuanian University of Health Sciences (Lithuania). Serial numbers were assigned to
each participant at the time of inclusion to protect their identity.

Speech recordings of the phonetically balanced Lithuanian sentence “Turėjo senelė žilą
oželį” (‘The grandmother had a little grey goat’) were obtained using a T-series silent room
for hearing testing (T-room, CA Tegner AB, Bromma, Sweden) via a D60S Dynamic Vocal
(AKG Acoustics, Vienna, Austria) microphone placed 10.0 cm from the mouth with an about
90◦ microphone-to-mouth angle. Speech recordings were made at a rate of 44,100 samples
per second and were exported as uncompressed 16-bit deep WAV audio files.

The phonetically balanced Lithuanian sentence “Turėjo senelė žilą oželį” (‘The grand-
mother had a little grey goat’) was recorded using a T-series silent room for hearing testing
and a D60S Dynamic Vocal (AKG Acoustics, Vienna, Austria) microphone placed 10.0 cm
from the mouth with an approximately 90◦ microphone-to-mouth angle. Speech was
recorded at 44,100 samples per second and produced as uncompressed 16-bit deep WAV au-
dio files. Speech samples were obtained from patients diagnosed with Parkinson’s disease
at the Lithuanian University of Health Sciences Hospital, Kaunas Clinics by an experienced
neurologist according to the UK Parkinson’s Disease Society Brain Bank criteria [75]. Only
physically independent patients up to stage 3 on modified Hoehn and Yahr scale (H-Y),
without any concomitant neurological or hearing disorders, respiratory tract infection, or
any voice problems unrelated to PD at the time of the recording, were invited to participate
in the study. The time of the recording was adjusted to best suit the schedule of the patient
as well as the availability of the examiner, therefore, not all the recordings were made
in best “on” state of the patients, who took medication for PD. The sample consisted of
61 patients (28 males and 33 females), aged 39–84 (mean age 64.9 (SD 9.7)), with a duration
of the disease of up to 14 years (mean 3.6 (SD 3.6)), based on the time of diagnosis. Most
participants were in H-Y stage 2 (29.5%), followed by H-Y stage 3 (26.2%), and H-Y stage 2.5
(19.5%). The normal speech subgroup was composed of 43 healthy volunteers who had no
present or pre-existing speech, hearing, neurological, or laryngeal disorders and considered
their speech as normal. Volunteers were free of upper respiratory infection at the time of the
recording. Laryngeal endoscopy was done using the XION EndoSTROB DX device (XION
GmbH, Berlin, Germany) with a 70-degree rigid endoscope without topical anesthesia
for both the patient and control groups. Subjects with any pathological alterations of the
laryngeal fold, such as polyps, granulomas, paralysis etc., were not included in the study.
This dataset was used only for the validation of our U-lossian network.

For the training of the algorithm we have used the publicly accessible ItalianPVS
corpora [76], where each speaker recorded five sustained vowel sounds with two iterations
each. These samples were contributed by 22 (10 men and 12 women) healthy volunteers
(HC) aged 66–77 years and 28 (19 men and 9 women) patients with PD, aged 40–80 years.
The healthy subgroup did not report particular speech or language disorders. The patients
reported no speech or language disorders that were not related to their Parkinson’s disease.
All patients received antiparkinsonian treatment. The disease severity was classified by
the specialists as <4 on the modified Hoehn and Yahr scale for 25 patients, stage 4 for
2 patients, and stage 5 for 1 patient. All of the speakers in this corpus were recorded in
Bari, Puglia, Italy. Each recording session was conducted in a controlled atmosphere in a
quiet, echo-free room, and speech samples were recorded after a short explanation by the
specialist. Elements such as room temperature, microphone distance (15 to 25 cm), time
of day, and a discussion with the subject to warm up their vocal muscles were taken into
account. The sample frequency was set to 16 kHz. The paper [77] has further details.
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3.2. U-Lossian Deep Learning Network

We sought a customized strategy since one of the limitations of traditional loss func-
tion implementation is that it equally weights false positive (FP) and false negative (FN)
identification. In practice, this leads to voice segmentation maps with great accuracy but
low recall. FN detections must be weighted higher than FPs to improve the recall rate
for extremely imbalanced data and smaller ROIs, such as the small Lithuanian Parkinson
dataset. Another problem with typical loss functions is that they have difficulties segment-
ing small ROIs since they do not contribute much to the loss. To address this, we propose
using a custom loss function that is parametrized to control the difference between easy
background and tough ROI training samples. To focus on speech samples recognized with
lesser probability, we propose applying a parameter that exponentiates the cross-entropy
loss. We perform fast Fourier transformation (FFT) to the vocalized audio sample with
201 bins to build the spectrogram. Mel-frequency cepstral coefficients (MFCCs) are then
calculated using 40 mel scale coefficients from the FFTs, as recommended by Ref. [78]. As a
consequence, an MFCC picture with a height of 40 pixels and a length equal to the audio
duration is produced.

The implementation flow is represented in Figure 1 and the process sequence diagram
is given in Figure 2. A doctor has two possibilities when using the PD screening application:
(1) utilize a previously recorded audio file, or (2) record live. The signal is then converted
to a waveform (any system compatible codec is permitted as it has no discernible effect on
classification effectiveness). The signal is then preprocessed for 16 kHz, which speeds up
the computation, and is then transformed to mono. The unique characteristics indicating
the logarithmic perception of a PD patient’s unique intensity and tone were extracted using
MFCC. The actions for assessing MFCC features must be conducted in the sequence of
each speech signal, and then these characteristics were used to train the CNN algorithm,
which also extracts features. Within each vocal outline, a feature vector was saved to hold
the features related to the specific spectrogram “frame”. This also aided in reducing the
complexity of the model and achieving improved recognition accuracy. The doctor receives
a result along with numerous calculated voice parameters.

Figure 1. Implementation flow.



Appl. Sci. 2022, 12, 11601 8 of 23

Figure 2. Process sequence diagram (Symbol ’X’ depicts the end of the sequence).

To achieve a better balance of accuracy and recall in the processed voice, we presented
a modified Hybrid Mask U-Net architecture with an adaptive custom loss function (further
named U-lossian). Our approach was inspired by the popular architectures Mask U-
Net (often used for “segmentation” of sounds, e.g., [79]) and Resnet18 (often used for
“classification” of sounds, e.g., [80]). We have aimed for an architecture design to operate
well with a modest number of training samples, making it appropriate for less popular
language datasets such as Lithuanian. The network is made up of two paths: one that
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contracts to extract locality characteristics and one that expands to resample the image
maps with contextual information. Skip connections are used to integrate high-resolution
local characteristics with low-resolution global features in order to get more relevant results.
During our research, we noticed that while training a negative gradient over-suppression,
for example, each positive sample of one class in softmax or sigmoid cross-entropy might be
interpreted as a negative sample for other classes, resulting in more suppressed gradients
for tail classes. To prevent gradient over-suppression, we developed a custom loss function
with better regularization. It may also be used to compare the expected and actual sampling
frequencies of each class, and then use the division of these frequencies to re-weight loss
values for different classes. The custom loss function prioritizes less accurate misclassified
predictions. When we detect over-suppression of this custom loss, it typically means that
the model is near convergence. We tested with high learning rates and found that the
learning rate of 1× 107 produced the best results; therefore we trained all experiments
with it. To prevent loss function over-suppression, we trained intermediate layers with
the usual U-net strategy but supervised the final layer with the loss function to reduce
sub-optimal convergence. The input of our U-lossian model is an image representing the
voice spectrogram, which is denoted as X. The network learns to map the input to the
prediction Y according to a convolutional feature given by Equation (1):

Y = Fn(Xn|Θn) = h(WXn + b), Θn = [W, b] (1)

here Xn is a one-dimensional input matrix of N feature maps, W is a set of N one-
dimensional kernels that is used to extract a set of features from the input values, h is
an activation function, and b is a bias vector .

Two maximum pooling layers are included in the U-lossian model. The maximum
pooling approach is used by the pooling layer in the contraction route to extract prominent
characteristics in a region. The pooling size is 2× 2 and the step size is 2, which is the
same as downsampling twice. Two-layer fusion layers are also included in the model.
Combining the features retrieved by the contraction path’s convolutional layer with the
output results of the expansion path’s upsampling layer, and merging the information lost
in feature extraction into the expansion path, can improve the output result.

One-layer Dropout layers are included in the model. We improve the model’s predic-
tion performance on the test set, and employ the Dropout layer in the U-lossian model to
speed up the convergence. Two layers of upsampling are also included in the model. In the
expansion path, the features of the same size retrieved by the respective contraction layer
are combined, and up-sampling is performed twice to generate an output of the same size
as the original input.

A loss function, denoted by ` : H × Z → R+ := [0,+∞), measures the difference
between a predicted label and a true label, e.g., L2 loss: `( fθ , z) = 1

2 ( fθ(x)− y)2, where
z = (x, y).

Training loss for a set S = (xi, yi)
n
i=1 is denoted by LS(θ) or Ln(θ) or Rn(θ) or RS(θ),

LS(θ) =
1
n

n

∑
i=1

`( fθ(xi), yi) + λW. (2)

here λW is a regularization term that penalizes the complexity of the model.
The loss function used in the study is the cross-entropy loss function, which is defined

as follows:

L(Y, P(Y/X)) = −logP(Y/X)

= − 1
N

N

∑
i=1

M

∑
j=1

yijlog(pij).
(3)

The loss function is L, the output variable is Y, and the input variable is X. yij is a
binary index showing whether category j is the real category of input instance xi. N is
the input sample size, M is the number of potential categories, and yij is a binary index
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indicating whether category j is the real category of input instance xi. The probability that
the model prediction input instance xi corresponds to category j is represented by pij. The
optimal model weights and bias settings are determined by minimizing the loss function,
allowing the model to better correctly forecast the PD.

A good optimization strategy may speed up model convergence, improve data feature
learning, fine-tune the neural network’s weight and bias parameters, and reduce the loss
function to the maximum degree possible. The strategy of applying an adaptive learning
rate will be more favorable to model training and prediction accuracy; also, the model
network will be deeper and converge faster. Therefore, the Adaptive Moment Estimation
(Adam) [81] algorithm is used to minimize the loss function of the U-lossian model. The
classification model is presented in Figure 3 and the hyper-parameters are given in Table 1.

Figure 3. Architecture of the U-lossian network classifier.

Table 1. Hyper-parameters of the U-lossian network.

Parameter Value

initial learning rate 1× 103

min learning rate 1× 107

scheduler cosine annealing with warm
restarts—200 epochs

batch size 8
optimizer AdamW

4. Experimental Validation
4.1. Performance Evaluation

We use the following metrics for the evaluation of the performance, which were
calculated according to Ref. [82]:
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Sensitivity or true positive rate (TPR) is the probability that a predicted result will be
positive when the disease is present.

Sensitivity = a/(a + b) (4)

Specificity or true negative rate (TNR) is the probability that a predicted result will be
negative when the disease is not present.

Speci f icity = d/(c + d) (5)

where a represents true positives (TP), participants who have the disease and positive test
findings; d represents subjects who do not have the disease and the test agrees (TN); b
represents individuals who do not have the disease but the test shows ‘disease’ (FP); and c
represents false negatives (FN).

The positive likelihood ratio (PLR) is the ratio of the likelihood of a positive test result
given the existence of the illness to the likelihood of a positive test result given the absence
of the disease, i.e.,

PLR = TPR/FPR = Sensitivity/(1− Speci f icity) (6)

The negative likelihood ratio (NLR) is the ratio of the likelihood of a negative test
result in the presence of disease to the likelihood of a negative test result in the absence of
disease, i.e.,

NLR = FNR/TNR = (1− Sensitivity)/Speci f icity (7)

When screening people, predictive values are more important than sensitivity and
specificity. The positive predictive value (PPV) is the probability that the disease is present
when the prediction is positive.

PPV = a/(a + b) (8)

The negative predictive value (NPV) is the probability that the disease is not present
when the prediction is negative.

NPV = d/(c + d) (9)

Accuracy is the overall probability that a voice sample is correctly classified.

Accuracy = Sensitivity× Prevalence + Speci f icity× (1−−Prevalence) (10)

The misclassification rate (MCR) is a measure that indicates the ratio of outcomes
predicted incorrectly by a classification model.

MCR = (b + c)/(a + b + c + d) (11)

Youden presented an index to assess the quality of a screening test. The index is
defined using the false positive and false negative values as

Youden = sensitivity + speci f icity− 1 (12)

The false discovery rate (FDR) is the predicted proportion of incorrect positive classifi-
cations to total positive classifications (rejections of the negative class).

FDR = (FP)/(FP + TP) (13)

The false omission rate (FOR) measures the ratio of false negatives that are incorrectly
rejected.

FOR = (FN)/(FN + TN) (14)
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Balanced accuracy (BA) is the average of the recall scores acquired for each class, that
is, the general average of the recall scores per class.

BA = (sensitivity + speci f icity)/2 (15)

The F1-Measure is the harmonic mean of the precision and recall.

F1 = 2× precision× recall/(precision + recall) (16)

The G-measure (or Fowlkes–Mallows index) is a metric for measuring the confusion
matrices that is used to quantify the similarity between two clusterings (clusters formed
following a clustering technique), where each cluster represents a different class.

G =
√

PPV × TPR (17)

Matthews index is a balanced measure that yields a number between 1 and +1 as a
correlation coefficient between predicted and true binary classifications. A coefficient of +1
implies a flawless forecast, a coefficient of 0 shows no better than random prediction, and a
coefficient of 1 indicates absolute disagreement between prediction and observation.

Matthews =
√

PPV × TPR× TNR× NPV −−
√

FDR× FNR× FPR× FOR (18)

The critical success index (CSI) is a categorical prediction performance verification
metric equal to the total number of correct predictions divided by the total number of
predictions plus the number of misses.

CSI = a/(a + b + c) (19)

Cohen’s kappa κ is used to evaluate binary classifications,

κ = 2× (TP× TN −−FN × FP)/[(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)] (20)

The Yule coefficient Y is a measure of association between two binary variables.

Y = (
√

a× d−
√

b× c)/(
√

a× d +
√

b× c) (21)

Diagnostic odds ratio (DOR) is a measure of the efficacy of a diagnostic test. It is
defined as the ratio of the probabilities of a positive test if the subject has a disease to the
odds of a positive test if the subject does not have the condition.

DOR = [sensitivity× speci f icity]/[(1− sensitivity)× (1− speci f icity)] (22)

Discriminant Power is the degree of precision with which a set of predictor factors
categorizes the outcomes.

The confidence ranges for accuracy, sensitivity, and specificity are “exact” Clopper–
Pearson confidence ranges [83]. The “Log technique”, as described in Ref. [84], is used to
compute confidence ranges for likelihood ratios. The standard logit confidence intervals of-
fered by Mercaldo et al. [85] are used to calculate the confidence intervals for the prediction
values.

To visualize the results, the precision-recall (PR) curve, receiver operating characteristic
(ROC) curve, sensitivity-specificity plot, and alluvial plot of confusion matrix are used.

When different probability thresholds are utilized, ROC curves describe the trade-off
between a predictive model’s true positive rate and false positive rate. When different prob-
ability thresholds are utilized, precision-recall (PR) curves describe the trade-off between a
predictive model’s actual positive rate and positive predictive value.
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When the observations in each class are balanced, ROC curves are acceptable, but
precision-recall curves are appropriate for unbalanced datasets. An alluvial diagram is
used to show associations between categorical variables making the confusion matrix.

4.2. Results

The classification results using the ItalianPVS dataset are presented in Figures 4 and 5
(confusion matrix). The results show that the network model achieved good results with
an F1-score of 0.8974, and Area Under Curve (AUC) of 0.9433.

The classification results using the Lithuanian voice dataset are presented in
Figures 6 and 7 (confusion matrix).

Figure 8a display the alluvial plot for the Italian dataset, while Figure 8b display the
aluavian plot for the Lithuanian dataset. The classifier has achieved worse results on the
Lithuanian voice dataset as it is a smaller dataset, achieving F1-score of 0.7778, and Area
Under Curve (AUC) of 0.8179. Perhaps, better results could have been achieved if more
voice data would be available for network, training, which is supported by the shape of PR
and ROC curves, which are not perfect.

Figure 4. Precision-recall curve and receiver operating curve (ItalianPVS dataset).

Figure 5. Confusion matrix (ItalianPVS dataset).
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Figure 6. Precision-recall curve and receiver operating curve (Lithuanian voice dataset).

Figure 7. Confusion matrix (Lithuanian voice dataset).

(a) (b)

Figure 8. Alluvial plot of the classification results: (a) ItalianPVS dataset, and (b) Lithuanian
voice dataset.

The sensitivity-specificity plots for both datasets are presented in Figure 9a,b, respectively.
They show that the best performance of the classifier model is achieved, when the cutoff value
is equal to 0.1 for the ItalianPVS dataset, and 0.8 for the Lithuanian voice dataset.
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(a) (b)

Figure 9. Sensitivity-specificity plot of (a) the ItalianPVS dataset and (b) the Lithuanian voice dataset.

The time performance of the proposed deep learning model on both datasets is com-
pared in Figure 10. An excellent time performance of processing one voice record in just
4 ms was demonstrated, which experimentally validated the characteristics presented in
Table 2. The results show that the proposed model can be used for real-time PD screening.

Figure 10. Time performance of the proposed network model on the ItalianPVS and Lithuanian
voice datasets.

Table 2. Size of the U-lossian model.

Parameter Value

Total params: 11,692,525
Trainable params: 11,692,525

Non-trainable params: 0
Model size (params + buffers): 44.65 Mb

Framework and CUDA overhead: 1942.21 Mb
Total RAM usage: 1986.86 Mb

Floating Point Operations on forward: 1.70 GFLOPs
Multiply-Accumulations on forward: 850.23 MMACs
Direct memory accesses on forward: 863.85 MDMAs
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The performance results of both datasets are presented in Table 3 and summarized
visually in Figure 11. These results show lower performance for the Lithuanian voice
dataset with a higher variability (i.e., wider confidence range), which can be explained by
the smaller size of the Lithuanian voice dataset.

Table 3. Summary of the performance results.

Parameter Value (Confidence
Range) Italian Dataset

Value (Confidence
Range) Lithuanian

Dataset

Sensitivity 0.9543 (0.9283–0.9720) 0.7671 (0.6914–0.8300)
False Negative rate (FNR) 0.0457 (0.0285–0.0712) 0.2329 (0.1706–0.3080)
Specificity 0.8440 (0.8047–0.8771) 0.8193 (0.7479–0.8753)
False Positive rate (FPR) 0.1560 (0.1231–0.1951) 0.1807 (0.1255–0.2513)
Positive Likelihood Ratio (PLR) 6.1188 (5.7392–6.5236) 4.2447 (3.6150–4.9842)
Negative Likelihood Ratio (NLR) 0.0541 (0.0508–0.0577) 0.2842 (0.2421–0.3338)
Precision 0.8468 (0.8077–0.8796) 0.7887 (0.7147–0.8489)
False discovery rate (FDR) 0.1532 (0.1206–0.1921) 0.2113 (0.1518–0.2847)
Negative Predictive Value (NPV) 0.9534 (0.9272–0.9713) 0.8000 (0.7269–0.8587)
False omission rate (FOR) 0.0466 (0.0292–0.0724) 0.2000 (0.1420–0.2724)
Accuracy 0.8964 (0.8620–0.9235) 0.7949 (0.7213–0.8543)
Mis-classification Rate (MCR) 0.1036 (0.0768–0.1377) 0.2051 (0.1464–0.2780)
Balanced Accuracy (BA) 0.8992 (0.8651–0.9259) 0.7932 (0.7195–0.8528)
F1-measure 0.8974 (0.8631–0.9244) 0.7778 (0.7029–0.8393)
G-measure (Fowlkes–Mallows index) 0.8990 (0.8649–0.9258) 0.7779 (0.7029–0.8394)
Matthews index: 0.8996 (0.8656–0.9263) 0.7938 (0.7201–0.8533)
Critical success index (CSI) 0.8139 (0.7723–0.8496) 0.6364 (0.5552–0.7110)
Cohen’s Kappa 0.7935 (0.7351–0.8519) 0.5874 (0.4599–0.7148)
Yule’s coefficient 0.9825 (0.9628–0.9918) 0.8745 (0.7453–0.9404)
Critical Diagnostic Odds Ratio (DOR) 1.1326 1.2643
Discriminant Power 2.6066 1.4906

Figure 11. Summary of the performance measures.

4.3. Statistical Evaluation

We evaluated the results statistically using Bayesian credibility assessment by Ref. [86]
to assess the credibility of our results considering the existing evidence. The odds ratio
had to be smaller than 0.96 so that our results could be considered credible. It specifically
indicates if the new finding, when integrated with existing information, may be considered
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to have genuinely proved efficacy at the 95% confidence level. At the 95% confidence
threshold, such a finding is deemed to be credible.

For the ItalianPVS dataset, the Critical Error Odds Ratio (EOR) is 1.6841. Error Odds
Ratio (EOR) is 3.8599. As EOR > COR, the test is credible at the 95%. Critical Diagnostic
Odds Ratio (DOR) is 1.1326. Diagnostic Odds Ratio (DOR) is 113.0458. As DOR > COR,
the test is credible at the 95%.

For the Lithuanian voice dataset, Critical Diagnostic Odds Ratio (DOR) is 1.2643.
Diagnostic Odds Ratio (DOR) is 14.9333—the classifier discriminates between diseased and
not diseased. As DOR > COR, the test is credible at the 95%.

4.4. Summary of the Results

It is worth noting that the current work employed two quite distinct datasets of
PD voices (Italian and Lithuanian) for analysis and algorithm building. The Italian PD
voice samples were based on sustained vowel phonation, whereas the Lithuanian samples
were based on phonetically balanced phrase analysis. However, because sustained vowel
phonation is an artificial sort of phonation, that feature defines the same constraint in the
meaning of the sustained vowel signal analysis. Connected speech, on the other hand, is
more typical of everyday speaking and might be deemed more “ecologically valid” (i.e.,
more representative of daily speech and voice use patterns). As a result, if an objective
voice evaluation is to be deemed robust and physiologically valid for screening purposes,
the acoustic measurements should preferably be done utilizing both speaking patterns–
sustained phonation and running speech (used in our approach).

As a result, the PD classification findings shown on speech samples from two indepen-
dent datasets must be regarded with caution. The Italian dataset represented Parkinson’s
disease patients with a minor incidence of advanced PD stages according to the H-Y scale,
and hence more pronounced voice abnormalities. This characteristic may have improved
classification accuracy, resulting in the somewhat superior PD classification results pre-
sented on the Italian dataset.

The current study, on the other hand, shows that the suggested Hybrid U-lossian
deep learning network technique is successful in analyzing and classifying PD voice
samples of various sorts, hence expanding PD screening options. It is vital to note that
the recommended algorithm is not currently regarded a medical device or diagnostic
tool. Nonetheless, the suggested technique has the potential to be applied in clinical
settings as a sensitive tool for the screening of Parkinson’s disease-related voice and speech
abnormalities.

5. Discussion

Despite extensive research of the potential for acoustic analysis in the classification of
PD voices, the methods used, as well as parameters considered, vary immensely among
studies. The standardization of study protocols as well as reproducibility studies are
lacking. The acoustic speech signal carries a massive amount of information. Nevertheless,
the direct link between voice production and acoustics has not been explicitly studied [87].
Moreover, the patophysiology of speech production itself is not yet fully understood in
PD [88]. Speech function is well known to deteriorate with disease progression up to
unintelligible levels in the latest stages. However, only a fraction of studies analyze speech
in the early phase of PD. The phonetics of spoken languages differ in some aspects and
are shared in others. Therefore, some acoustic parameters may have similar values and
meanings in different populations [89], while others are not to be universalized directly.
Acoustic studies in different languages may shed some light on the topic and the achieved
results. Moro-Velasquez [90] declared his group the first to successfully implement the
cross-corpora trials for AI PD detection. They used databases of Czech and two dialects
of Spanish speakers and only used diadochokinetic speech task for training with one and
testing with another database, as these utterances were supposed to not differ across the
databases. Our approach of a cross-corpus trial was driven by the fact that Lithuanian is a
language, spoken by as little as 3 million native speakers, and is largely underinvestigated.
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Considering the sample size, losing part of the subjects to testing was chosen not an option.
The bold approach to test on other language speech samples, was encouraged by the work
of Rush et al. [89] who had implemented a composite dysarthria score for testing early PD
and RBD speakers of 7 different languages with comparable results and an overall AUC
of 0.8. Therefore, It can be considered that PD differently affects certain phonetic groups,
with those requiring the narrowest contact between the articulators (such as fricatives),
being influenced the most, correlating with results shown by Ref. [90]. Still, naturally,
a substantial effect on other phonetic groups cannot be overlooked as the disease has
been shown to impair the articulatory sequence as a whole [90]. A comparison of the
effectiveness of different deep learning approaches is offered in Table 4.

Table 4. Comparison of different methods of PD voice analysis.

Method Accuracy Dataset (Language, Availability)

Sparse kernel transfer learn-
ing [59]

86.72% UCI repository v.2013 (English, open on request) [91]

Linear DL network [68] 81.67% Telemonitoring voice dataset (Unspecified, closed)
Linear DL network + mRMR fea-
ture selection [69]

99.1% UCI repository v.2019 (English, open on request) [92]

Ensemble classifier [67] 94.12% UCI repository v.2019 (English, open on request) [92]
Dual-side learning ensemble [60] 98.41% LSVT voice rehabilitation dataset [93]
LSTM [70] 97.12% UCI repository v.2013 (English, open on request) [91]
1D CNN [58] 87.76% UCI repository v.2013 (English, open on request) [91]
ADCNN [74] 98.11% UCI repository v.2013 (English, open on request) [91]
Bidirectional LSTM [71] 75.56% GYENNO SCIENCE Parkinson Disease Research Cen-

ter dataset (Chinese, closed)
LSTM with SSWA-based atten-
tion [72]

92.5% Proprietary (Indian, closed)

ResNet18 [63] 91.7% PC-GITA database (Spanish, open) [94]
Alexnet [64] 91.7% Dataset of Department of Neurology at the Medical

University of Warsaw (Polish, closed)
DenseNet161 [65] 89.75% mPower PD dataset (English, open) [34]
CNN-ANN [61] 93.10% Max Little dataset (English, open)
Ensemble CNN [62] 97.3% PC-GITA database (Spanish, open) [94]
CNN with IAIF and QCP [66] 97.3% PC-GITA database (Spanish, open) [94]
EDF-EMD [73] 92.59% Dataset-CPPDD (Chinese, closed)
Hybrid U-lossian network
(our approach)

89.64% LSMU Lithuanian dataset (Lithuanian, open on re-
quest)

With the above-mentioned studies, to date there is no established universal approach
to study speech impairment in PD. Speech acoustic analysis has not been included in the
latest Movement disorder society (MDS) criteria for PD [95,96], nor MDS Research Criteria
for Prodromal Parkinson’s Disease [97]. As was stated by Godino-Llorente in his editorial
for [98], automatic systems to assess PD will benefit from new knowledge generated in
the research area to develop more accurate and robust systems, as was also shown in our
experimental overview.

Finally, the fact that hypokinetic dysarthria is not the integral symptom of PD, with an
estimated prevalence of up to 90% of cases with rising expression in the latest stages [99], the
accuracy of classification obtained on both the Italian and Lithuanian corpora is satisfactory
from a medical perspective. Furthermore, our proposed approach reaches an accuracy not
markedly lower in the cross corpora–cross linguistic trial, indicating the generalizability of
the method to different populations and recording conditions.

6. Conclusions

In this paper, we introduced a method for speech signal processing to illustrate the
utility of deep learning-driven voice analysis as a screening tool for Parkinson’s disease
(PD). We investigated whether voice recordings might be used to provide a simple, low-cost
approach to the assessment and screening of Parkinson’s disease, using deep learning to
predict and evaluate expert scores. As a consequence, we created a Deep U-lossian model,
a modified Hybrid Mask U-Net architecture with an adaptive custom loss function, for
PD evaluation and detection in order to achieve a better balance of accuracy and recall
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in processed speech. The classification accuracy on two speech corpora (ItalianPVS and
Lithuanian voice dataset), 0.8964 and 0.7949, respectively, is satisfactory from a medical
aspect, confirming the proposed model’s excellent generalizability. Furthermore, the
proposed model has demonstrated exceptional performance in terms of speed, ensuring
real-time performance.

The method has a strong potential to be employed in clinical settings as a sensitivity
test for the screening of Parkinson’s disease-related voice and speech alterations and as
a result, the future work of the study will be a proper clinical validation in the hospital
environment, with the idea being in line to create a system that could analyze a large
number of telephone voice calls (patients calling the Department of Otorhinolaryngology
for remote consultation, allowing doctors to acquire live data on a patient while he is still
speaking).
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The following abbreviations are used in this manuscript:

PD Parkinson Disease
DL Deep learning
HC Healthy Control
TP True Positive
FP False positive
AI Artificial Intelligence
PVI Parkinson Speech Initiative
NMI Normalized Mutual Information
CO Control
KNN K-Nearest Neighbor
AUC Area Under The Curve
ROC Receiver Operating Characteristics
ADAM Adaptive Moment Estimation
EOR Error Odds Ratio
DOR Diagnostic Odds Ratio
MCR Mis-classification Rate
FOR False omission rate
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BA Balanced Accuracy
NPV Negative Predictive Value
FDR False discovery rate
NLR Negative Likelihood Ratio
PLR Positive Likelihood Ratio
FPR False Positive rate
FNR False Negative rate
CSI Critical success index
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