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Abstract: Complex dynamic behavior of nonlinear structures makes it challenging for uncertainty
analysis through Monte Carlo simulations (MCS). Surrogate modeling presents an efficient and accu-
rate computational alternative for a large number of MCS. The previous study has demonstrated that
the multi-input multi-output nonlinear autoregressive with exogenous input (MIMO-NARX) model
provides good discrete-time representations of deterministic nonlinear multi-degree-of-freedom
(MDOF) structural dynamic systems. Model order reduction (MOR) is executed to eliminate insignifi-
cant modes to reduce the computational burden due to too many degrees of freedom. In this study,
the MIMO-NARX strategy is integrated with different meta-modeling techniques for uncertainty
analysis. Different meta-models including Kriging, polynomial chaos expansion (PCE), and arbitrary
polynomial chaos (APC) are used to surrogate the NARX coefficients for system uncertainties. A
nine-DOF structure is used as an MDOF dynamic system to evaluate different meta-models for
the MIMO-NARX. Good fitness of statistical responses is observed between the MCS results of the
original system and all surrogated MIMO-NARX predictions. It is demonstrated that the APC-NARX
model with the advantage of being data-driven is the most efficient and accurate tool for uncertainty
quantification of nonlinear structural dynamics.

Keywords: nonlinear autoregressive with exogenous input (NARX); multi-degree-of-freedom; non-
linear structure; uncertainty analysis; meta-model

1. Introduction

Uncertainty analysis in structural engineering has attracted considerable research
efforts in recent years [1–4]. It accounts for the influence of various uncertain factors
including material property, external load, ground motion excitation, and experimental
measurement, therefore is important for the design and optimization of structures and
experiments to meet the performance target of robustness or reliability and to reduce
the adverse impact of uncertainty propagation on system performance. Monte Carlo
simulation (MCS), as the most direct and effective method for uncertainty analysis [5,6],
however, requires significant computational efforts to obtain the statistical information of
the uncertain outputs. Meta modeling also known as surrogate, has recently emerged as
an efficient method for uncertainty analysis. The meta-models are trained by a number of
samples of the original model to approximately predict the response quantities of interests
in the entire sample space of uncertain inputs. The most commonly used meta-models
include Kriging [7], polynomial chaos expansion (PCE) [8], arbitrary polynomial chaos
expansion (APC) [9], etc.

Engineering structures generally involve nonlinear complex mechanical behavior
related to the time history-dependent states of responses. Required computational time
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significantly increases for accurate dynamic time-history simulations. The complex be-
havior exhibited by nonlinear systems brings great challenges to uncertainty analysis
due to the requirement of a large number of samples for MCS. Dynamic analysis of a
deterministic nonlinear structure can be considered as solving differential equations in the
discrete-time domain. Nonlinear autoregressive with exogenous input (NARX) models
provide good discrete-time representations of system dynamics as a function of previous
response values as well as current and/or previous input signals [10,11]. The NARX model
thus has been successfully applied for describing nonlinear dynamic behavior for single-
degree-of-freedom (SDOF) systems [12]. In the case of multi-degree-of-freedom (MDOF)
systems, the single-input single-output (SISO) strategy establishes a separate NARX model
for each output of the MDOF system. Multi-input multi-output (MIMO) formulation
considers the inevitable response coupling between the multiple outputs of the NARX
model [13,14]. Nevertheless, a large number of degrees of freedom imposes significant
computational demands for building the NARX model through the MIMO strategy. The
model order reduction (MOR) method is usually utilized to reduce the degrees of free-
dom for the MIMO-NARX model, which has been demonstrated to significantly improve
computational efficiency with little effect on its accuracy [15–17].

The NARX model can capture the nonlinear dynamic behavior of the deterministic
system. A stochastic NARX model is characterized by a set of specified NARX model terms
and associated random coefficients [18]. Once the NARX model is built from a series of
nonlinear dynamic responses, the NARX coefficients need to be calibrated based on the
specific system conditions including structural property and external excitation. This means
that the NARX coefficients vary for different nonlinear dynamic behavior due to system
uncertainties such as ground motions and structural properties. In uncertainty analysis, the
nonlinear dynamic behavior of an MDOF system from a large number of MCS is difficult
to obtain due to the unbearable computational cost of dynamic analysis. It means that the
NARX coefficients cannot be calibrated directly by the target dynamic behaviors. Meta
models have been used to govern the uncertainties in the nonlinear system represented
by SISO-NARX in previous research [18,19]. Different from the Li et al. [14] method of
adopting the constant mean value of the MIMO-NARX coefficients, this study builds
different meta-models to surrogate the system uncertainties into the MIMO-NARX model
coefficients for nonlinear system response prediction. More specifically, Kriging, PCE, and
APC are utilized as meta-models to surrogate the NARX coefficients based on uncertain
system parameters. The MIMO-NARX model is built in MOR-reduced coordinates using a
series of numerical simulation samples to replicate the nonlinear dynamic behavior of the
MDOF system with uncertainties. A nine-DOF structure is selected as a numerical case to
evaluate the MIMO-NARX meta-models for nonlinear dynamic history prediction and to
compare the effectiveness of different meta-models.

2. Brief Review of MIMO-NARX Modeling
2.1. MIMO-NARX Model for MDOF System

In structural dynamics, a nonlinear MDOF dynamic system can be expressed as:

M
..
x(t) + C

.
x(t) + fr(x(t)) = f(t) (1)

where M and C are the mass and damping matrix, respectively; t denotes time;
..
x(t),

.
x(t)

and x(t) are response vectors of acceleration, velocity, and displacement, respectively; fr is
the vector of nonlinear hysteresis forces; f(t) is the external excitation force, which is often
expressed in earthquake engineering as f(t) = −Mι

..
xg(t) with an all-ones vector ι and the

seismic acceleration
..
xg(t).

The nonlinear dynamic behavior of the MDOF system in Equation (1) can be captured
in a NARX model by considering several steps of the current and past responses of input
and output. A MIMO-NARX technique is adopted in this study to capture coupled non-
linear dynamics since a SISO-NARX model is unable to represent the response coupling
between multiple outputs for general nonlinearity [13]. The current output x(t) of nonlin-
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ear MDOF dynamic system depend on its past output values [x(t− ∆t), . . . , x(t− no∆t)]
with maximum time lag no and time interval ∆t, and current and past input values
[f(t), f(t− ∆t), . . . , f(t− ni∆t)] with maximum time lag ni and can be expressed as:

x(t) = G(z(t)) + ε(t) (2)

where z(t) =
[
xT(t− ∆t), . . . , xT(t− no∆t), fT(t), . . . , fT(t− ni∆t)

]
is the regression vector

of current and past values of input and output; G(·) represents the MIMO-NARX model
to be identified based on the input and output; and ε(t) is vector-valued Gaussian error
process [20]. This study adopts the linear-in-the-parameter form for the MIMO-NARX
model which can be expressed as:

G(z(t)) = ΘTg(z(t)) (3)

where g(·) =
[
gT

1 (·); gT
2 (·), . . . , gT

n(·)
]T contains the NARX terms for the n DOFs system;

and Θ = diag[Θ1, . . . , Θn] contains the NARX coefficients of the n NARX models. For each
degree of freedom, the output of a MIMO-NARX model can be formulated as:

xj(t) = ΘT
j gj(z(t)) + εj(t) (4)

where j represents the jth degree of freedom; gj(z(ti)) is the most relevant NARX terms
selected from all potential NARX terms, that is, predetermined basis functions. While
only the jth degree of freedom is considered in the SISO-NARX strategy, the MIMO-NARX
strategy includes the input and output histories from all degrees of freedom.

Identification of the MIMO-NARX model requires the selection of NARX terms and
calibration of their coefficient. An efficient approach [18] has been proposed for identifying
the NARX model for SISO systems by implementing the least-angle regression (LARs)
algorithm for structure determination and the ordinary least square (OLS) method for
coefficient calibration. The LARs algorithm [21] is employed to select candidate NARX
model terms by calculating the correlation between each potential model term and the
system output [13]. The corresponding NARX coefficients can then be calculated based on
the OLS method:

Θj,k =
[
ZT

j,kZj,k

]−1
ZT

j,kXT
j (5)

where Zj,k is the terms matrix of the kth candidate NARX model; and Xj is the response
time series of the jth degree of freedom. The most appropriate MIMO-NARX model is
selected after the terms and coefficients of the candidate NARX models are determined.
An appropriate error measure is conducted by decoupling the identification of the NARX
models for each degree of freedom. For the jth MIMO-NARX model, only the outputs
of the jth degree of freedom are estimated by recursively running the model, while the
outputs of the other degrees of freedom are directly obtained from the simulation results.
The error measure is defined as:

ẽSE,j,k =
||Xj − X̃j,k||2

||XT
j − ιEt

[
Xj
]
||2

(6)

where Et
[
Xj
]

is the mean value of Xj; and X̃j,k represents the response time series of the
jth degree of freedom estimated from the kth candidate NARX model. The optimal model
with model terms gj(·) and coefficients Θj is selected as the candidate, which reaches a
sufficiently small total error by satisfying a predefined threshold value. It is worth noting
that as few as possible numbers of NARX terms have been found to avoid deleterious effects
on the accuracy of the model, for example, overfitting and spurious dynamics [18,22,23].
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2.2. Model Order Reduction

Although MIMO-NARX is suitable for multiple outputs, it is computationally ex-
pensive to establish the NARX model for each degree of freedom. The fact that the first
few modes dominate the dynamic response of a multi-degree-of-freedom structure can
be utilized for eliminating the burden due to a large number of degrees of freedom. The
MOR method [15–17] thus can be utilized to lower the degrees of freedom of the MDOF
nonlinear dynamic system in this study. Using a small number of lower structural modes
corresponding to the number of DOF, an accurate approximation of the response history
can be acquired. The response vector in the reduced space can be obtained through the
coordinate transformation matrix and the response vector in the original space:

q(t) = ΦT
nr x(t) (7)

where q(t) is the response in the reduced nr-dimensional space; x(t) is the response vector
in the original n-dimensional space; ΦT

nr is the nr × n coordinate transformation matrix
with nr � n;. The transformation matrix can be obtained by singular value decomposition
(SVD) [24,25]. For the ns samples of the simulation results for the MDOF dynamic system
under uncertainties, a snapshot matrix can be formulated as follows:

X = [x1(t1), . . . , x1(tnt), . . . , xns(t1), . . . , xns(tnt)] (8)

where X ∈ Rn×(ntns) contains nt time step responses of the n-DOF dynamic system. The
SVD can then be used to decompose the snapshot matrix X as:

X = UΛVT (9)

where U is a n× n orthonormal matrix that contains the left singular vectors of X; V is
the (ntns) × (ntns) orthonormal matrix that contains the right singular vectors; Λ is a
n× (ntns) pseudo-diagonal matrix with the singular values Λ(j, j) = λj, j = 1, . . . , n. A
computationally effective economy-size SVD is used in view of the extremely large size of V
with (ntns)� n [14]. The left singular vectors U are the proper orthogonal decomposition
(POD) modes.

Then the coordinate transformation matrix is defined as the first nr POD modes as:

Φnr = [U1, U2, . . . , Unr ] (10)

where [U1, U2, . . . , Unr ] is the first nr columns of U; nr can be determined by the energy
criterion which ensures the energy captured in the truncated representation of x reaches η
of the total energy [17]:

∑nr
j=1 λj ≥ η ∑n

j=1 λj (11)

where η is typically assumed to be close to 1, for example, 0.99. A properly selected η can
bring significant dimensional reduction to the system, that is, nr � n. The transformation
error of MOR can be measured by the comparison between the original response x(t) from
Equation (7) and the reverse-transformation response x_(t), which can be calculated as:

x_(t) = Φnr q(t) (12)

2.3. NARX Model Pruning

The optimal NARX terms might still contain spurious terms due to the LARs approach
selecting candidate terms through correlation analysis, which is not always a reflection of
the contribution of a term to the model [22]. An iterative error-based pruning procedure [14]
is adopted in this study to progressively delete the most deleterious NARX term at each
iteration until a user-defined error threshold is reached. Each iteration intends to remove
one unique term from the current MIMO-NARX model, and the coefficients of each trial
model are recalculated through the OLS method. To evaluate the performance of trial
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models, an error indicator is defined to describe the accuracy of the MIMO-NARX model
based on the responses of the mth DOF in the original coordinate:

êSE,M =
||Xm −Φm

nr Q̂ ||2

||XT
m − ιEt [Xm] ||2

(13)

where m is the DOF of interest; Xm is the response time series of the mth DOF; Φm
nr is

the mth row of the transformation matrix Φnr ; Q̂ is the response matrix predicted by the
MIMO-NARX model. The accuracy of the current MIMO-NARX model in each iteration
can be evaluated by the mean value of error indicators overall training samples êSE,m. While
the error indicator for each trial model can be denoted as ê′SE,m. The current MIMO-NARX

model is replaced by the optimal trial model with min
{

ê′SE,m − êSE,m

}
in each iteration.

The next iteration of the pruning process then proceeds with the new MIMO-NARX model
serving as the current model until the predefined error threshold is satisfied, that is,
ê′SE,m − êSE,m > Ê.

3. Meta-Modeling Techniques for Surrogating NARX Model Coefficients

In this study, meta-models are used to surrogate the NARX model coefficients to
account for system uncertainties, which can be formulated as the d-dimensional input
random variables ξ = [ξ1, ξ2, . . . , ξd]

T ∈ Rd. System outputs can be generalized as
Y = [y(ξ1), y(ξ2), . . . , y(ξN)]

T for N groups of training samples. Three different meta-
models are evaluated and compared in this study including Kriging, PCE, and APC.

3.1. Kriging Meta-Model

Kriging uses a weighted linear combination of all observed output values to estimate
the system output of a random function or random process as a Gaussian process. These
weights are generally described by the specified correlation function and are based on the
distances between the location to be predicted and the locations already observed. The
Kriging meta-model can be mathematically described as [26]:

y(ξ) = βTf(ξ) + ε(ξ), βTf(ξ) = ∑D
i=1 βi fi(ξ) (14)

where βTf(ξ) is the mean value of the Gaussian process; fi(ξ) is the ith polynomial basis
function with corresponding coefficients βi; D represents the total number of basis function
terms which depends on the degree of the polynomials. The residual term ε(ξ) is assumed
to have zero mean and the following covariance:

Cov
[
ε(ξ i), ε

(
ξ j
)]

= σ2
ZR

(
θ, ξ i, ξ j

)
(15)

where ξ i and ξ j represent the two different sample inputs; σ2
Z is the process variance; and

R
(
θ, ξ i, ξ j

)
represents the correlation function with parameter θ. Several auto-correlation

functions have been used in the literature [26–29]. In this study, the Gaussian correlation
function is adopted, which can be expressed as:

R
(
ξ i, ξ j

)
= ∏d

k=1 exp[−θk(ξi,k − ξ j,k)
2] (16)

where the parameters θk are hyper-parameters of auto-correlation functions.
The Kriging model predicts the response for untried input ξu through the best linear

unbiased predictor:
ŷ(ξu) = β̂Tf(ξu) +RTR−1

(
β̂Tf(ξu)

)
(17)

σ2
M̂(ξu) = σ̂2

Z

(
1−

[
fT(ξu) R

T(ξu)
][ 0 L

L R

]−1[ f(ξu)
R(ξu)

])
(18)
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where R(ξu) = [R(ξu, ξ1), R(ξu, ξ2), . . . , R(ξu, ξN)]
T defines the correlation matrix

between untried sample point ξu and training samples; L is the matrix of basis functions at
training points of dimension N × D; and R is the correlation matrix for training samples.

The model parameters β̂ and σ̂2
Z, and the hyper-parameters θ can be determined using

the maximum-likelihood estimation (MLE) [27,28]:

β̂ = (LTR−1L)
−1LTR−1Y (19)

σ̂2
Z =

1
N

(
Y−Lβ̂

)T
R−1

(
Y−Lβ̂

)
(20)

More details of the Kriging meta-model can be referred to in the work of Sant-
ner et al. [28]. The MATLAB-based toolbox DACE [30] is used in this study for the
Kriging model.

3.2. PCE Meta-Model

PCE is a weighted linear combination of orthogonal polynomial basis functions of
input random variables [31] and has been widely used in many fields due to its solid
mathematical foundation and good performance. For the d-dimensional input random
variables ξ = [ξ1, ξ2, . . . , ξd]

T ∈ Rd, the single system output y can be expanded through
polynomial chaos expansion as:

y(ξ) = ∑D−1
i=0 CiΦ(i)(ξ) + ε (21)

where Φ(i)(ξ) is the ith orthogonal multivariate basis function composed of Winer–Askey
polynomials; the terms number D = (d + r)!/(d!r!) with the PCE order r; and ε is the
truncation error. The coefficients c = [c0, c1, . . . , cD−1]

T can be determined through least
square regression as:

c = (ATA)
−1

ATY (22)

A =


Φ(0)(ξ1) Φ(1)(ξ1) · · · Φ(D−1)(ξ1)

Φ(0)(ξ2) Φ(1)(ξ2) · · · Φ(D−1)(ξ2)
...

...
. . .

...
Φ(0)(ξN) Φ(1)(ξN) · · · Φ(D−1)(ξN)

, Y =


Y(ξ1)
Y(ξ2)

...
Y(ξN)

 (23)

where A is the matrix of orthonormal multivariate polynomials; Y is the real value vector
of the sample output; and N is the number of samples, which is suggested to be no
less than twice the number of expansion terms D. In this study, the MATLAB-based
UQLab toolbox [32] is utilized to construct the PCE model for the NARX model coefficients
obtained from the least square method. The orthogonal polynomials are chosen based on
the distribution of input variables. When the system has multiple outputs under uncertain
inputs, one PCE surrogate model needs to be constructed for each system output.

3.3. APC Meta-Model

APC uses a data-driven technique to build the optimal orthogonal polynomial basis
function without assuming the distribution types of inputs, which extends PCE to apply
to arbitrary distributions of random input variables [9]. The system output y can be
expressed as:

y(ξ) = ∑D−1
i=0 ciP(i)(ξ) + ε (24)

where D is the number of APC expansion terms; P(i)(ξ) is the optimal orthogonal multivari-
ate polynomial obtained through data-driven technique; ci is the corresponding expansion
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coefficient obtained from the least square method; The ith term orthogonal multivariate
polynomial P(i)(ξ) is multiplied by univariate orthogonal polynomials as:

P(i)(ξ) = ∏d
j=1 P

(li,j)
j

(
ξ j
)

(25)

∑d
j=1 li,j = 0, 1, . . . , r (26)

where P
(li,j)
j

(
ξ j
)

represents the li,jth order univariate orthogonal polynomial of the jth
dimensional input variable; the sum of the orders li,j of the d univariate orthogonal polyno-
mials ranges from 0 to r, and r represents the highest order of the multivariate APC models.
The univariate orthogonal polynomial P(l)

j
(
ξ j
)

is obtained based on statistical moments as
in the following expression:

P(l)
j
(
ξ j
)
= ∑l

k=0 p(l)k Xk (27)


µ0 µ1 · · · µl
µ1 µ2 · · · µl+1
...

...
. . .

...
µl−1 µl · · · µ2l−1

0 0 · · · 1





p(l)0

p(l)1
...

p(l)l−1

p(l)l


=


0
0
...
0
1

 (28)

where the interior coefficients p(l)k of the univariate orthogonal polynomial are calculated
from µ0 to µ2l−1, that is, the statistical moment with order 0 to (2l − 1) of the sample data
of the univariate input variable ξ j. APC meta-model is directly obtained from the sample
data and has demonstrated faster error convergence with the increasing order and better
accuracy than PCE of the same order [33].

4. Training of MIMO-NARX Meta-Models

The MIMO-NARX model is trained offline using numerical simulation data of the
structural system in this study. The procedure includes generating sample data from
the nonlinear dynamic history simulations, training MIMO-NARX terms using reduced
coordinate from model order reduction, and surrogating NARX coefficients through meta-
models using the uncertain parameters of the nonlinear dynamic system.

4.1. Nine-DOF Shear Structure

A nine-DOF shear structure is used as the MDOF nonlinear dynamic system in this
study, which is simplified from a nine-story benchmark frame [34] as shown in Figure 1a.
The first three natural frequencies and mode shapes of this nine-DOF structure are shown
in Figure 1b.

Figure 1. Nine-DOF shear structure simplified from nine-story frame. (a) Target structure; (b) Natural
frequencies and modes.
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The equation of motion of the nine-DOF under seismic excitation can be expressed
by Equation (1) and the nonlinear restoring vector fr is emulated using the Bouc–Wen
model [35,36], which can be formulated as:

fr = kbw[αbwx + (1− αbw)z] (29)

.
z = Abw

.
x− γbw

.
x|z|nbw − βbw

∣∣ .
x
∣∣|z|nbw−1z (30)

where fr is the hysteresis force for each story; x is the inter-story displacement between
two neighboring floors; and the Bouc–Wen model parameters (αbw, Abw, γbw, βbw, and
nbw) are listed in Table 1. Under a typically selected ground motion excitation, moderate
nonlinearity can be observed in Figure 2 for the Bouc–Wen models of each story.

Table 1. Bouc–Wen model parameters.

Floor kbw (N/mm) αbw Abw γbw βbw nbw

1 2.9793 × 105 0.01 1 0.02 0.02 0.01
2 7.3787 × 105 0.01 1 0.1 0.1 0.01
3 6.9252 × 105 0.01 1 0.1 0.1 0.01
4 6.0177 × 105 0.01 1 0.1 0.1 0.01
5 5.2397 × 105 0.01 1 0.08 0.08 0.01
6 4.4108 × 105 0.01 1 0.06 0.06 0.01
7 3.6986 × 105 0.01 1 0.06 0.06 0.01
8 3.4706 × 105 0.01 1 0.08 0.08 0.01
9 3.2748 × 105 0.01 1 0.1 0.1 0.01

Figure 2. Hysteresis behavior of Bouc–Wen models (a typical sample).

4.2. Uncertainties in Ground Motion and Structural Properties

The dynamic responses are affected by the system uncertainties in ground motion and
structural properties. By varying ground motions and structural parameters, structural
responses can be obtained and used as training samples. The stochastic ground motion
model [37] is adopted in this study to generate ground motion uncertainties. Each ground
motion is determined by six parameters

(
Ia, D5−95, tmid, ωmid, ω′, ζ f

)
and white noise. In

this study, ωmid and ζ f , which control the filter frequency and damping ratio, respectively,
are selected as uncertain parameters of ground motion while the other parameters (Ia,
D5−95, tmid, ω′) are set as (0.0314 s·g, 11.23 s, 7.85 s, −0.04 Hz/s). It is worth noting that the
white noise remains unchanged to generate seismic acceleration time histories. A typical
acceleration time history is shown in Figure 3.



Appl. Sci. 2022, 12, 11553 9 of 23

Figure 3. Time history of stochastic ground motion (a typical sample).

A total of ns = 200 parameter sets of (ωmid, ζ f ) are generated following the distribution
in Figure 4a,b, which leads to 200 stochastic ground motions for MIMO-NARX training.
Figures 4c and 5 present the distribution of peak ground accelerations and the mean
response spectra of these 200 acceleration time histories, respectively.

Figure 4. Uncertainties of ground motions (200 samples). (a) Filter frequency ωmid; (b) Filter damping
ratio ζ f ; (c) Peak ground acceleration.

Figure 5. Response spectra of ground motions with damping ratio 0.05 (200 samples).

The concentrated masses of each story are considered structural uncertainties, which
reflects the uncertainty of live load or temporary load changes in the building. The masses
of floor 1, floor 2~8, and floor 9 are assumed to follow the Gaussian distribution as shown
in Figure 6.

Figure 6. Variable mass for structural uncertainties (200 samples). (a) Floor 1; (b) Floor 2~8; (c) Floor 9.

The two ground motion parameters along with the three structural parameters are
considered uncertain input variables in this study and are listed in Table 2. The uncertain
variables of the dynamic system can be generated randomly from the distribution in Table 2
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for dynamic time history analysis. The sample data used for training the MIMO-NARX
model are extracted from the current and past state values of structural responses.

Table 2. Marginal distributions of uncertainties.

Variable Distribution
Type Bounds Mean Standard

Deviation

ωmid/2π Gamma [0, +∞] 5.87 3.11
ζ f Beta [0.02, 1] 0.213 0.143

Mass 1 Gaussian [392.77, 729.43] 561.1 56.11
Mass 2 Gaussian [384.58, 714.22] 549.4 54.94
Mass 3 Gaussian [416.08, 772.72] 594.4 59.44

4.3. MIMO-NARX Model Training

Firstly, the MOR strategy is applied to transform the nine-DOF to the reduced coordi-
nates for the convenience of MIMO-NARX modeling. The snapshot matrix X is extracted
from the structural responses of the two hundred dynamic history simulations. The trans-
formation matrix Φnr is obtained through SVD as the first nr POD modes according to
Equations (9) and (10). The coordinate is transformed from the original order n = 9 to the
reduced order nr = 4, which is determined by the energy criteria in Equation (11). The fit-
ness indicator of the nine-DOF response in original coordinates and reverse-transformation
response is shown in Figure 7a, in which the red line indicates the median, the blue box
indicates the 25th and 75th percentiles, and the red plus symbol indicates outliers. It can be
observed from Figure 7a that the maximum error of MOR occurs in the first DOF because
the value of absolute response of the first floor is the smallest compared with the other
floors. For a randomly selected sample, the comparison in Figure 7b shows a good fitness
of 92% between original and reverse-transformation velocity responses

.
x(t) and

.
x_(t) for

the first floor. This implies that the error introduced by MOR is negligible in this study.

Figure 7. MOR error between the original and reverse-transformation responses. (a) Fitness for nine
DOFs (200 samples); (b) 1st DOF response (a random sample).

To capture the nonlinear dynamic behavior of the MDOF system, the MIMO-NARX
model is trained from the ns = 200 dynamic history simulation samples. Multiple inputs
and outputs in the reduced coordinates are then used to build the MIMO-NARX model to
avoid significant computational efforts associated with the original number of DOFs. The
simulation samples are first examined by a predefined threshold value to screen responses
of interest that exhibit suitable nonlinearity [18]. NARX candidates are identified by the
LARs algorithm and the corresponding term coefficients are calculated by the OLS approach
as shown in Figure 8. The optimal NARX model is selected based on the minimum mean
errors of these candidates and terms pruning is then applied to improve precision. If
the accuracy requirement is not satisfied for the optimal NARX model, some measures
to improve NARX accuracy need to be taken such as redesigning the formulation of the
NARX full model.
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Figure 8. Procedure for MIMO-NARX training.

In this study, the MIMO-NARX full model is designed as shown in Figure 9. The
ground motion accelerations are considered as the input, while responses of the nr = 4
MOR reduced coordinates are used as the outputs. The maximum time lag of ni = no = 4 is
used for the input and output in the NARX model to capture the memories. The current
value for each output is replicated by one MIMO-NARX model considering the coupling of
the past signals of all four outputs.

Figure 9. Structure of MIMO-NARX full model.

The velocity responses in the reduced coordinates are selected as NARX outputs
because previous studies showed that it is more effective to describe nonlinear systems
with respect to velocity. The full NARX model consists of potential NARX terms in-
cluding seismic acceleration from 0 to l steps forward

..
xg(t− l∆t), velocity responses of

the reduced coordinates from 1 to l steps forward
.
qj(t− l∆t), one step ahead absolute

value of velocity responses of the reduced coordinates
∣∣∣ .
qj(t− ∆t)

∣∣∣, ∣∣∣ .
qj(t− ∆t)

∣∣∣ .
qj(t− l∆t),∣∣∣ .

qj(t− ∆t)
∣∣∣ ..xg(t− l∆t) and 1, with l = 1, 2, 3, 4, j = 1, 2, 3, 4, which leads to 5 + 4 × 4 + 4

+ 4 × 4 × 4 + 4 × 5 + 1 = 110 terms. It should be noticed that the absolute value terms
directly use velocity responses of the reduced coordinates rather than velocity responses in
the original coordinates Φm

nr

.
q(t − ∆t) used in previous studies [14]. This results in a smaller



Appl. Sci. 2022, 12, 11553 12 of 23

number of terms to avoid redundant terms, which brings the benefits of faster computation
and almost similar accuracy. The final MIMO-NARX model can be expressed as follows:

.
q1(t) = y1,1

..
xg(t) +y1,2

..
xg(t− ∆t) + y1,3

..
xg(t− 2∆t) + y1,4

..
xg(t− 3∆t)

+y1,5
..
xg(t− 4∆t) + · · ·+ y1,55

∣∣ .
q2(t− ∆t)

∣∣ ..xg(t− 4∆t)
+y1,56

∣∣ .
q3(t− ∆t)

∣∣ ..xg(t− 4∆t) + y1,57
∣∣ .
q4(t− ∆t)

∣∣ ..xg(t− 4∆t)
(31)

.
q2(t) = y2,1

..
xg(t) +y2,2

..
xg(t− ∆t) + y2,3

..
xg(t− 2∆t) + y2,4

..
xg(t− 3∆t)

+y2,5
..
xg(t− 4∆t) + · · ·+ y2,60

∣∣ .
q2(t− ∆t)

∣∣ ..xg(t− 4∆t)
+y2,61

∣∣ .
q3(t− ∆t)

∣∣ ..xg(t− 4∆t) + y2,62
∣∣ .
q4(t− ∆t)

∣∣ ..xg(t− 4∆t)
(32)

.
q3(t) = y3,1

..
xg(t) +y3,2

..
xg(t− 4∆t) + y3,3

.
q2(t− 3∆t) + y3,4

.
q2(t− 4∆t)

+y3,5
.
q3(t− ∆t) + · · ·+ y3,27

∣∣ .
q2(t− ∆t)

∣∣ ..xg(t)
+y3,28

∣∣ .
q3(t− ∆t)

∣∣ ..xg(t) + y3,29
∣∣ .
q4(t− ∆t)

∣∣ ..xg(t)
(33)

.
q4(t) = y4,1

..
xg(t) +y4,2

..
xg(t− ∆t) + y4,3

..
xg(t− 2∆t) + y4,4

..
xg(t− 3∆t)

+y4,5
..
xg(t− 4∆t) + · · ·+ y4,47

∣∣ .
q2(t− ∆t)

∣∣ ..xg(t− 4∆t)
+y4,48

∣∣ .
q3(t− ∆t)

∣∣ ..xg(t− 4∆t) + y4,49
∣∣ .
q4(t− ∆t)

∣∣ ..xg(t− 4∆t)
(34)

where yi,j represents the NARX coefficient for the jth NARX term of the ith output. It can
be observed that there are 57, 62, 29, and 49 terms for the four outputs

.
q1(t),

.
q2(t),

.
q3(t),

and
.
q4(t), respectively. Higher order of DOF does not necessarily lead to more terms for

the MIMO-NARX model.

4.4. Surrogating NARX Coefficients by Meta-Models

The MIMO-NARX model trained by the simulation samples is aimed to determine
the optimal NARX candidate terms from Figure 9. The corresponding NARX coefficients
need to be calibrated based on the system responses in the specific dynamic simulation
case. For the ns = 200 simulation samples, the five parameters of ground motion and struc-
tural masses in Table 2 are considered uncertain factors affecting the dynamic responses.
Therefore, the coefficients of the MIMO-NARX model are taken as output variables varying
with the five input variables of system uncertainties. The meta-models are then built to
surrogate the NARX coefficients using the five uncertain parameters under the condition
that the responses of a large number of MCS are unknown as shown in Figure 10. This
study explores three meta-models including Kriging, PCE, and APC. The order of 3 is
used for PCE and APC as the recommended number of samples is twice the number of
polynomial terms.

Figure 10. Meta-models to surrogate MIMO-NARX coefficients.

5. Validation of Surrogated MIMO-NARX Model

To explore the uncertainty propagation in a nonlinear dynamic system with MDOF,
a total of 300 validation Monte Carlo simulations with different ground motions and
structural properties are performed in this section by traditional dynamic history analysis
using the CR algorithm [38]. The MIMO-NARX models obtained from the previous section
are adopted to capture the nonlinear dynamic behavior while the corresponding coefficients
are calibrated by the meta-models for each set of uncertainty variable values. Finally,
structural responses are compared between the MIMO-NARX model prediction and MCS
to evaluate its effectiveness.



Appl. Sci. 2022, 12, 11553 13 of 23

An error evaluation criterion is introduced to measure the fitness between the pre-
dicted and original value and expressed as:

Fitness =

1−

√√√√∑(x(i)− xs(i))2

∑(x(i)− x)2

× 100% (35)

where x(i) represent the original response from MCS with mean x; and xs(i) represent the
predicted response by the surrogated MIMO-NARX model.

5.1. Accuracy Assessment of MIMO-NARX Outputs in Reduced Coordinates

The MIMO-NARX model replicates four outputs of the order-reduced model in re-
duced coordinates as shown in Figure 11 for a typically selected ground motion with the
four reduced coordinates presented from low to high. It can be observed in Figure 11 that
the outputs of the MIMO-NARX model with the coefficients calibrated by Kriging, PCE,
and APC meta-models are basically consistent with the MCS responses transformed to
reduced coordinates. The matching accuracy of the four reduced coordinates, however,
decreases with the increase of frequency due to the difficulty in capturing high-frequency
nonlinearity as shown in Figure 12. For this specific selected ground motion, the APC
meta-model has better accuracy for the fourth output prediction than that of Kriging and
APC meta-models, while the three meta-models have nearly similar accuracy for the first
three outputs.

Figure 11. Time history of the four outputs in reduced coordinates (a typical sample).

Figure 12. Fitness for the four outputs (a typical sample).

5.2. Accuracy Assessment of Absolute Structural Responses

Since the absolute velocity responses are used in NARX training to better capture
nonlinearity, Figure 13a first presents the comparison of absolute velocity responses for the
nine-DOF structure, which are obtained from the four outputs of the reduced coordinates
from the MIMO-NARX model. Good fitness can be observed between Kriging/PCE/APC-
NARX model prediction and MCS results. The absolute displacement responses are then
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acquired through the integration of corresponding velocity responses and presented in
Figure 13b. Slight errors can be observed at the end of time history analysis which can be
attributed to integral error and error accumulation. Figure 14 compares the fitness index
of absolute responses between three meta-models. Among the three meta-models, almost
exactly the same fitness results can be observed for absolute velocity responses. Figure 14a
shows that the first floor still has the lowest accuracy compared with the other floors, which
is consistent with MOR errors in Figure 7. It can also be observed from Figure 14b that
the Kriging meta-model has worse accuracy in absolute displacement prediction than the
PCE and APC meta-models due to the drift errors at the end of the time history response.
The drift errors are obvious in the lower and upper floors but less significant in the middle
floors for the Kriging-NARX results of the selected ground motion.

Figure 13. Cont.
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Figure 13. Time history of the absolute responses (a typical sample). (a) Velocity responses;
(b) Displacement responses.

Figure 14. Fitness for the absolute responses (a typical sample). (a) Velocity responses;
(b) Displacement responses.

5.3. Accuracy Assessment of Inter-Story Structural Responses

Inter-story velocity and displacement responses are further calculated from the abso-
lute velocity and displacement responses of the nine-DOF structure. Figure 15a,b presents
the comparison of inter-story velocity and displacement responses for the nine-DOF struc-
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ture, respectively. As can be seen from the figures, the inter-story velocity curves still have
good fitting accuracy, while the inter-story displacement curves show more obvious drift
error from integral accumulation error, especially in the upper floors. Figure 16 compares
the fitness of inter-story responses between three meta-models. It can be observed that
the accuracy of both inter-story velocity and displacement responses slightly decreases
compared with those of absolute responses. The Kriging-NARX model shows a significant
reduction in the accuracy of upper floors compared with PCE/APC-NARX models due
to the error accumulation at the end of time history analysis. Good fitness of inter-story
velocity can still be observed between Kriging/PCE/APC-NARX model prediction and
MCS results.

Figure 15. Cont.
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Figure 15. Time history of the inter-story responses (a typical sample). (a) Velocity responses;
(b) Displacement responses.

Figure 16. Fitness for the inter-story responses (a typical sample). (a) Velocity responses; (b) Displace-
ment responses.

5.4. Comparison of Peak Story Responses

The safety and serviceability requirements for structural design mainly depend on the
maximum peak responses. Figure 17a compares the peak inter-story velocity responses
between Kriging/PCE/APC-NARX model prediction and MCS. It can be found that peak
values from Kriging/PCE/APC-NARX models align well with actual values from MCS
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validation cases. The peak values of inter-story displacement responses are further com-
pared in Figure 17b, where good agreement again can be observed. It demonstrates that the
maximum peak displacements are generally close to each other and are not significantly
affected by the accumulation errors from integrating the time history of velocity responses.
Correlation coefficients between the actual and predicted maximum peak values of velocity
and displacement responses are further compared in Figure 18. It should be noticed that
the correlation coefficients are relatively low due to some extreme data points commonly
referred to as outliers. Figure 18 implies that the correlation coefficients for peak displace-
ment are lower than those of peak velocity due to the existence of more outliers. For peak
responses, it can be further observed that PCE and APC meta-models have more stable
performance than the Kriging meta-models.

Figure 17. Peak values of velocity responses (300 samples). (a) Peak velocity; (b) Peak displacement.
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Figure 18. Correlation coefficients for peak responses (300 samples). (a) Peak velocity; (b) Peak
displacement.

5.5. Statistics for All Validation Cases

The statistical information of the total 300 validation samples is further summarized
for comparison of the Kriging/PCE/APC-NARX models and traditional MCS in Figure 19.
Figure 19a shows the box plot for the mean fitness of the four outputs in reduced coor-
dinates, in which the red line indicates the median, the blue box indicates the 25th and
75th percentiles, and the red plus symbol indicates outliers. It demonstrates that all three
meta-model-surrogated MIMO-NARX models have nearly similar accuracy for most MCS
validation cases except for some outliers. Figure 19b shows the histogram with a distri-
bution fitting curve of the mean fitness of the four outputs in reduced coordinates, which
illustrates that APC-NARX has more counts for higher fitness than the corresponding
Kriging- and PCE-NARX models. Figure 19c–f shows the statistical information for the
mean fitness of the nine-DOF absolute velocity and displacement responses. It can be
observed from Figure 19c,e that the Kriging/PCE/APC-NARX strategy is quite accurate in
velocity prediction while the accuracy of displacement obtained by integration decreases to
a certain extent. Figure 19d,f indicates that PCE- and APC-NARX are superior to Kriging-
NARX in terms of the counts of good fitness. Figure 19g–j shows the statistical information
for the mean fitness of the nine inter-story responses of velocity and displacement. The
accuracy is observed to decrease when compared with those in Figure 19c–f. Lower accu-
racy brings more outliers, which interferes with the comparison of the three meta-model
surrogated MIMO-NARX models.

Figure 20 shows the variation in the accuracy of Kriging/PCE/APC-NARX model pre-
diction with respect to the mean ductility ratio of the nine inter-story Bouc–Wen hysteresis.
The fitness and ductility in Figure 20 represent the mean value of the fitness and ductility
ratio of the four outputs or nine responses. As shown in Figure 20a–e, the accuracy of the
Kriging/PCE/APC-NARX strategy significantly decrease with the increase of inter-story
ductility. Figure 20c,e illustrates this phenomenon again that the predicted accuracy of
displacement is generally inferior to that of velocity due to the accumulation error. It can
be demonstrated that the Kriging/PCE/APC-NARX strategy is basically accurate for most
MCS validation cases within a certain nonlinearity range.
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Figure 19. Boxplot and histogram of the mean fitness of different time history curves (300 samples).
(a) The mean fitness of the four outputs in reduced coordinates: Boxplot; (b) Histogram; (c) The mean
fitness of the nine-DOF absolute velocity responses: Boxplot; (d) Histogram; (e) The mean fitness of
the nine-DOF absolute displacement responses: Boxplot; (f) Histogram; (g) The mean fitness of the
nine inter-story velocity responses: Boxplot; (h) Histogram; (i) The mean fitness of the nine inter-story
displacement responses: Boxplot; (j) Histogram.
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Figure 20. Relationship between the mean ductility ratio and the mean fitness (300 samples).
(a) Outputs in reduced coordinates; (b) Absolute velocity responses; (c) Absolute displacement
responses; (d) Inter-story velocity responses; (e) Inter-story displacement responses.

6. Conclusions

This research presents a computational study of different surrogate strategies to
account for uncertainty propagation in nonlinear MDOF structural systems. A nine-DOF
structure is selected for the numerical study for generating the training and validation
samples. MIMO-NARX modeling is established to capture the nonlinear dynamic behavior
in MOR-reduced coordinates using the results from dynamic time history simulations. The
NARX coefficients are surrogated using meta-models including Kriging, PCE, and APC
with uncertain variables of ground motion and structural mass.

The MCS results show good fitness of responses between MIMO-NARX models and
the traditional dynamic simulation using the integration algorithm. It is worth noting that
the absolute velocity responses are used in NARX training for improving the nonlinear
capture effectiveness. The accuracy of the four reduced coordinates decreases with the
increase of frequency due to difficulty in capturing high-frequency nonlinearity. Good
performances are observed for all three meta-models in absolute velocity response pre-
diction when compared with MCS. Generally, a slight decrease in accuracy is observed
in displacement response prediction obtained by integrating the velocity responses due
to the drift errors caused by error accumulation at the end of time history analysis. The
accuracy of both inter-story velocity and displacement responses show different degrees
of decrease compared with absolute velocity and displacement responses. The integral
and accumulation drift errors do not necessarily affect the meta-model predicted peak
displacement responses, which are more concerned with structural safety and serviceability.
From a statistical point of view, all three meta-models surrogated MIMO-NARX models
have nearly similar accuracy for most of the three hundred MCS validation cases except
for some outliers. PCE- and APC- are shown to be superior to Kriging-NARX in terms
of the counts of good fitness according to some statistical information. Considering the
advantages of APC over PCE in the scope of application, APC-NARX is best suitable to
replace the original model in a large number of MCS. It is illustrated that the MIMO-NARX
modeling with surrogated coefficients by meta-models provides an effective and efficient
tool for uncertainty quantification of nonlinear structures in earthquake engineering.

This study takes a nine-DOF structure as a proof of concept to verify the effectiveness
of the proposed method. The nonlinear performance of the Bouc–Wen model in the MDOF
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system changes with different stochastic seismic excitations and structural properties. The
choice of the basic functions in MIMO-NARX, which depends on different nonlinear types
of structural models, remains to be studied in the future.

It should be noticed that the accuracy of the MIMO-NARX model is affected and
limited by the intensity of nonlinearity. Although the accuracy of the three meta-model-
surrogated MIMO-NARX models is significantly decreased with the intensity of structural
ductility increase, it still can be demonstrated that the Kriging/PCE/APC-NARX strategy is
basically accurate for most of the MCS validation cases within a certain nonlinearity range.
Future research may focus on finding more suitable NARX basis functions to eliminate the
adverse effect of high nonlinearity on accuracy.
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