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Abstract: In this study, we present a sensorless, robust, and physiological tracking control method to
drive the operational speed of implantable rotary blood pumps (IRBPs) for patients with heart failure
(HF). The method used sensorless measurements of the pump flow to track the desired reference
flow (Qr). A dynamical estimator model was used to estimate the average pump flow (Q̂est) based
on pulse-width modulation (PWM) signals. A proportional-integral (PI) controller integrated with
a fuzzy logic control (FLC) system was developed to automatically adapt the pump flow. The Qr

was modeled as a constant and trigonometric function using an elastance function (E(t)) to achieve a
variation in the metabolic demand. The proposed method was evaluated in silico using a lumped
parameter model of the cardiovascular system (CVS) under rest and exercise scenarios. The findings
demonstrated that the proposed control system efficiently updated the pump speed of the IRBP to
avoid suction or overperfusion. In all scenarios, the numerical results for the left atrium pressure (Pla),
aortic pressure (Pao), and left ventricle pressure (Plv) were clinically accepted. The Q̂est accurately
tracked the Qr within an error of 0.25 L/min.

Keywords: heart failure; proportional-integral; fuzzy logic control; estimator model; rotary blood pump

1. Introduction

The implementation of modern and sophisticated implantable rotary blood pumps
(IRBPs) to treat patients with heart failure (HF) is still under development [1,2]. These
devices are utilized to maintain the physiological perfusion of the body on both sides (left
and right) of the heart. However, 75% of HF is caused by a predominant left ventricular
failure. Therefore, IRBPs are increasingly used for patients with chronic heart disease;
they require a complex control technique [3]. The traditional control methods used by
these devices have different limitations when adjusting the pump speed under various
physiological conditions of the heart [4]. In addition, the implantation of additional sensors
is not desired because of thrombi; it also decreases the dependability of the system, raises
the cost, and requires constant calibration due to measurement drifts [5].

In the literature, several modern control mechanisms have recently been developed to
regulate or track the specified set point of IRBPs [6–8]. A few of these methods use sensors
such as the flow or pump differential pressure to adapt the pump speed by enhancing the
mode of operation [9,10]. Other methods implement sensorless techniques to estimate the
heart pump parameters [11,12]. However, to improve the functionality of the settings of
the pump and to enhance the reliability of the pump, an advanced physiological controller
for IRBPs needs to be implemented [12].
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The status of patients with HF can be professionally monitored and controlled using
different control methods. For instance, Sadatieh et al. [8] proposed and implemented an
extremum-seeking control algorithm to regulate the pump flow based on the amplitude of
the limit cycle of the heart. This method was evaluated using an in silico model; the results
demonstrated that the control method successfully maintained the mean arterial pressure
whilst preventing suction. In a different work, Fetanat et al. [11] developed an intelligent
approach to regulate the pump flow in a HeartWare HVAD pump. This method was
implemented using a deep convolutional neural network (CNN) to estimate the preload
parameter for the patient. Computer simulations were used to evaluate the proposed
controller and the results showed that the method accurately regulated the pump speed
in a real-time mode. The polynomial control (PC) technique has also been suggested and
used by researchers to control IRBPs. In a recent study, the PC was utilized to maintain
the average arterial pressure at a particular reference value. This control method regulated
the pump differential pressures in each cardiac cycle. The parameters were optimized and
calculated using an internal point with minimization. The process was operated under a
human heartbeat using an electrocardiogram (ECG) heartbeat algorithm. The method was
evaluated using a mathematical simulation of the pediatric cardiovascular system (CVS)
and a pediatric pump was applied. The computer simulation results were in agreement
with the clinical status of the patient [13].

A classical control method has also been proposed and successfully implemented to
drive IRBPs. In this context, a feedback control (FBC) was proposed to predict stochastic
models for patients with HF under different physiological conditions. The control algorithm
was developed and tested to prevent suction in three scenarios [14]. In addition, a full-
state FBC method has also been developed and evaluated. For instance, Bakouri et al. [3]
used the FSC technique to regulate the pulsatility of the pump flow. This method was
implemented to emulate the Frank–Starling mechanism to prevent suction or overperfu-
sion. The controller was evaluated using the cardiovascular system (CVS) of a lumped
parameter model based on two scenarios. The results demonstrated that the controller was
able to maintain the physiological perfusion within clinical conditions. In addition, the
nonlinear application of fuzzy logic control (FLC) has been developed for RBP systems.
For instance, Huang et al. [15] developed a fuzzy control method to drive RBPs based on
speed modulations. This technique ensured an adequate perfusion by maintaining the
mean aortic pressure whilst increasing the pulse pressure. In a different study, a pulsatility
index algorithm was designed for the pump flow based on a proportional-integral (PI) FLC
to drive RBPs. The study was numerically evaluated in vitro and in vivo, and the results
showed that the controller was able to adequately maintain the body perfusion and prevent
suction [16].

Although several modern and classical control methods have been developed and im-
plemented for IRBPs, sensorless control methods for IRBPs are still emerging as essential in
offering a long-term alternative treatment for patients with HF. Furthermore, estimating the
flow and pressure presents additional features for implementing a physiological controller
for these devices [17]. Therefore, this work aimed to design an intelligent physiological
controller for IRBPs using a sensorless estimator. The control method was developed and
implemented using a proportional-integral (PI) controller associated with an FLC system.
The design method assumed that the aortic valve was totally closed to maintain the phys-
iological perfusion in a safe operation mode for the IRBP. Therefore, the controller was
utilized as a flow estimator to automatically adjust the physiological demand of the patient
by tracking the desired reference flow.

2. Physiological Controller Development
2.1. Software Model of CVS

Figure 1 shows the CVS-IRBP interaction system model utilized to evaluate the pro-
posed control system. This model was developed using MATLAB Simulink tools (The
MathWorks Inc., Natick, MA, USA). The model was composed of different numbers of
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variables that represented lumped parameter blocks. Each parameter was distinguished by
its own unique block, such as pressure (P), diodes (D), inertances (L), elastances (E), and
resistances (R). The CVS-RBP model consisted of several parts, including pulmonary circu-
lation, systemic circulation, and heart compartments. The motor used as the IRBP in this
investigation was a VentrAssist™ centrifugal pump; this pump belonged to Ventracor Ltd.,
Sydney, Australia.
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Figure 1. Cardiovascular system CVS-IRBP interaction model. M: pump motor; P: pressure;
D: diodes; L: inertances; E: elastances; R : resistances; Lin: inlet cannulae inertances; Lout: outlet
cannulae inertances; Rsuc: suction resistance; Rin: inlet cannulae resistances; Rout: outlet
cannulae resistances.

In this model, the hydraulic and electrical characteristics of the pump were mod-
eled based on three differential equations. These included the motor windings, motor
electromagnetic torque, and the hydraulic pump. These equations could be described as:

- The electrical motor winding:

v = kω + RI + L
dI
dt

(1)

where v is the motor terminal voltage, k is the back of the electromotive force, ω is the
impeller speed, R is the resistance for the motor winding, I is the motor current, and L is
the inductance for the motor winding.

- The motor electromagnetic torque:

T = J
dω

dt
+ aQ2ω + bQω2 + cω + dω3 (2)

where T is the electromagnetic torque; Q is the pump flow rate; J is the moment of inertia
of the impeller; and a, b, c, and d are the polynomial coefficients that were obtained by the
least squares method using the experimental data under a steady flow condition.

- The hydraulic pump:

∆P = e + f Q3 + gω2 (3)

where ∆P is the pump differential pressure and e, f , and g are constants.
The pressure and volume of each heart compartment were modeled for each chamber

based on the cardiac cycle. During this cycle, the elastance function (E(t)) was varied
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according to a linear function during end-systole and an exponential function during
end-diastole. The elastance function of this model could be expressed as follows:

E(t) =
{

sin2(πt/Tsys
)

0
t < Tsys
t ≥ Tsys

(4)

Here, Tsys is the systolic interval. This model was validated and tested using data from
animals in both in vitro and in vivo environments [18,19].

2.2. Flow Estimator Model

An empirical, sensorless, stable, and dynamical model to estimate the average pump
flow was developed and validated [20,21]. This model utilized data obtained from dogs
in a continuous setting. Two auto-regressive (ARX) models were used for the implemen-
tation. The performance of the flow estimator model was evaluated using a variety of
hemodynamic parameters to represent different cases of rest, moderation, and exercise of
the patient. The model was also assessed using changes in the preload and afterload. The
resulting model could be described as follows:

x̂(k + 1) = Ax̂(k) + Bu(k) + K f (y(k)− Cx̂(k))
ŷ(k) = Cx̂(k)

(5)

where x̂(k) is the state estimator vector; K f is the optimal Kelman filter gain; ŷ(k) is the
output of the estimator (average pump flow = (Q̂est(k))); and A, B, and C are compatible
dimensional matrices.

2.3. Controller Design

Figure 2 depicts a schematic diagram of the closed-loop control system. This diagram
includes a block of the CVS-IRBP, the flow estimator model (FEM), the FLC system, and
the desired reference flow (Qr). In this work, a hybrid of a fuzzy proportional-integral
(PI) control system was proposed. The gain parameters for the PI controller were used to
enhance the rise time, overshoot, and settling time where a fuzzy system could adjust the
pump flow scaling factor of the PI controller.

This type of controller is known to be more stable with steady-state errors [22]. The
FLC system consisted of four components; namely, the rule base, the fuzzy interface, fuzzi-
fication, and defuzzification. Within these components, the control index was quantified
and acknowledged by the rule base. The control index was then evaluated by the fuzzy
interface to enable the correct control input for the plant. Fuzzification was the method
used to modify the inputs and defuzzification transformed the right input to the plant
based on the fuzzy interface [23].

A fuzzy PI-type control system was employed to track the desired reference flow
(Qr(k)). The feedback error (err(k)) of the closed-loop control system could be written as
follows:

err(k) = Qr(k)− Q̂est(k) (6)

From Equation (6), we could write:

δerr(k) = err(k)− err(k− 1) (7)

where δerr(k) is the changes in error.
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Figure 2. Schematic representation of the proposed system. CVS: cardiovascular system;
IRBP: implantable rotary blood pump; FLC: fuzzy logic control; Hcvs: differential pressure; FEM: flow
estimator model; Qr(k): desired reference flow; Qp(k): actual pump flow; Q̂est: estimated average
pump flow; err(k): error; δerr(k): difference in error; PWM: pulse-width modulation; UPWM: PWM
voltage signal; Kp: proportional gain; Ki: integral gain; K f : Kelman filter gain.

Equations (6) and (7) were subjected to the PI controller as follows:

δuPWM(k) = Kpδerr(k) + Kierr(k) (8)

where δuPWM(k) is the output of the FLC and Kp and Ki are the proportional and integral
gains, respectively.

The control inputs for the fuzzification stage were δerr(k) and err(k). Figure 3 illus-
trates the usage of seven asymmetric triangle membership functions to emphasize the
property of the error. The input and output labels were written as specified in Table 1. The
fuzzy output set was achieved by applying the Mamdani fuzzy rules (Table 2). The de-
fuzzification method was then used to transform the output to a single numerical value as
δuPWM(k). The fuzzy toolbox of MATLAB was used for the development of each step (The
MathWorks Inc., Natick, MA, USA). All rules were utilized to produce a robust outcome
as follows:

γε∗ρ(e, δe) = min
{

γε(e), γρ(δe)
}

(9)

γε∗ρ→σ(e, δe, ∆uPWM) = max
{

min
{

γε(e), γρ(δe), γσ(δuPWM)
}}

(10)

where ε and ρ are fuzzy sets for inputs e and δe, respectively, and σ is a fuzzy set for the
output δuPWM. The defuzzification procedure was carried out using this method and by
employing the center of area method, which is described as follows:

δuPWM =
∑n

i=1 µσ

(
δu(PWM)i

)
δuPWM

∑n
i=1 µσ

(
δu(PWM)i

) (11)

where n refers to the number of quantization levels that were included in the output.
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Table 1. The input and output labels of FLC.

NG3 NG2 NG1 Z PO1 PO2 PO3

Large
negative

Medium
negative

Small
negative Zero Small

positive
Medium
positive

Large
positive

Table 2. Rules of FLC.

e
δe

NG3 NG2 NG1 Z PO1 PO2 PO3

NG3 NG3 NG3 NG3 NG2 NG1 NG1 Z
NG2 NG3 NG3 NG2 NG1 NG1 Z PO1
NG1 NG3 NG2 NG1 NG1 Z PO1 PO1

Z NG2 NG1 NG1 Z PO1 PO1 PO2
PO1 NG1 NG1 Z PO1 PO1 PO2 PO3
PO2 NG1 Z PO1 PO1 PO2 PO3 PO3
PO3 Z PO1 PO1 PO2 PO3 PO3 PO3

The updated speed for the IRBP of the subsequent sample was given by:

uPWM(k + 1) = uPWM(k) + δuPWM(k) (12)

where uPWM is the PWM voltage signal, which was the input signal to the IRBP.
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To reduce the error between Qr(k) and Q̂est(k), the controller was required to modify
the pump speed by changing uPWM(k) in accordance with the principles of the FLC. To
achieve this aim, the controller was required to be able to provide the body with sufficient
blood by appropriately driving the pump under a variety of physiological circumstances.

2.4. Desired Reference Flow

To prevent pulmonary congestion and suction, it is necessary to maintain left atrial
pressure (Pla) within the usual range for physiological functions. Therefore, to achieve this
goal, we assumed that the aortic valve was totally closed. We then modeled the cardiac
output as the desired reference flow (Qr) using E(t), as shown in Equation (4). If the blood
flow was greater than the physiological demand, the modeled value of Qr needed to be
adjusted. However, Qr needed to be increased to keep the pump flow at the same level
if it was lower than the physiological need of the body [24]. Figure 4 depicts the phase
shift for sinusoidal Qr in comparison with E(t). At this phase shift, Qr was counted as a
zero value when the peak value of Q̂est occurred at the end-systole where E(t) was at the
maximum value.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 
 

sufficient blood by appropriately driving the pump under a variety of physiological cir-

cumstances. 

2.4. Desired Reference Flow 

To prevent pulmonary congestion and suction, it is necessary to maintain left atrial 

pressure (𝑃𝑙𝑎) within the usual range for physiological functions. Therefore, to achieve this 

goal, we assumed that the aortic valve was totally closed. We then modeled the cardiac 

output as the desired reference flow (𝑄𝑟) using 𝐸(𝑡), as shown in Equation (4). If the blood 

flow was greater than the physiological demand, the modeled value of 𝑄𝑟  needed to be 

adjusted. However, 𝑄𝑟  needed to be increased to keep the pump flow at the same level if 

it was lower than the physiological need of the body [24]. Figure 4 depicts the phase shift 

for sinusoidal 𝑄𝑟  in comparison with 𝐸(𝑡). At this phase shift, 𝑄𝑟  was counted as a zero 

value when the peak value of �̂�𝑒𝑠𝑡  occurred at the end-systole where 𝐸(𝑡) was at the max-

imum value. 

 

Figure 4. Phase shift for sinusoidal desired reference flow (𝑄𝑟) in comparison with elastance func-

tion (𝐸(𝑡)). 

The following sinusoidal function was used to achieve this mechanism: 

𝑄𝑟 = 𝛼 + 𝛽𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ + 𝜑) (13) 

where 𝛼 and 𝛽 are constants, 𝑇 is the cardiac cycle, and 𝜑 is the phase shift. 

2.5. In Silico Protocols 

In Table 3, the HF condition was used as the baseline of the system. Based on this 

table, the left ventricle contractility (𝐸𝑒𝑠,𝑙𝑣), right ventricle contractility (𝐸𝑒𝑠,𝑟𝑣), systemic 

vascular resistance (𝑅𝑠𝑎), and total blood volume (𝑉𝑡𝑜𝑡𝑎𝑙) were varied to generate all sce-

narios. In the first scenario, we investigated the controller at a constant speed to evaluate 

the hemodynamic characteristics of the CVS. In this scenario, we turned the controller off 

and set the IRBP to operate at a constant speed by reducing the 𝑉𝑡𝑜𝑡𝑎𝑙 by 300 mL at t = 60 

s over a period of 10 s. Secondly, the transition from normal to rest was obtained by re-

ducing the 𝑉𝑡𝑜𝑡𝑎𝑙 by 50% at t = 60 s over a period of 10 s. During this period, 𝑄𝑟  linearly 

decreased from (4.5 + 4𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ )) to (2 + 4𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ )). The transition from normal to 

exercise was then simulated to test the capacity of the controller to offer hemodynamic 

support for daily activities. During this scenario, 𝐸𝑒𝑠,𝑙𝑣  and 𝐸𝑒𝑠,𝑟𝑣 were increased by 20%, 

and 𝑅𝑠𝑎 was reduced by 50% over a period of 10 s. During this period, 𝑄𝑟  linearly in-

creased from (2.5 + 4𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ )) to (3 + 4𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ )). In all simulations, the heart rate 

equaled the sinusoidal signal frequency and the IRBP flow rate was set to a maximum 

Figure 4. Phase shift for sinusoidal desired reference flow (Qr) in comparison with elastance
function (E(t)).

The following sinusoidal function was used to achieve this mechanism:

Qr = α + βsin(2πt/T + ϕ) (13)

where α and β are constants, T is the cardiac cycle, and ϕ is the phase shift.

2.5. In Silico Protocols

In Table 3, the HF condition was used as the baseline of the system. Based on this table,
the left ventricle contractility (Ees,lv), right ventricle contractility (Ees,rv), systemic vascular
resistance (Rsa), and total blood volume (Vtotal) were varied to generate all scenarios.
In the first scenario, we investigated the controller at a constant speed to evaluate the
hemodynamic characteristics of the CVS. In this scenario, we turned the controller off and
set the IRBP to operate at a constant speed by reducing the Vtotal by 300 mL at t = 60 s over
a period of 10 s. Secondly, the transition from normal to rest was obtained by reducing the
Vtotal by 50% at t = 60 s over a period of 10 s. During this period, Qr linearly decreased
from (4.5 + 4sin(2πt/T)) to (2 + 4sin(2πt/T)). The transition from normal to exercise
was then simulated to test the capacity of the controller to offer hemodynamic support
for daily activities. During this scenario, Ees,lv and Ees,rv were increased by 20%, and Rsa
was reduced by 50% over a period of 10 s. During this period, Qr linearly increased from
(2.5 + 4sin(2πt/T)) to (3 + 4sin(2πt/T)). In all simulations, the heart rate equaled the
sinusoidal signal frequency and the IRBP flow rate was set to a maximum value of 6 L/min
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and a minimum value of 2.5 L/min. The PI gains for Kp and Ki were tuned based on
Ziegler–Nichols rules and set to 0.66 and 2.20, respectively.

Table 3. Baseline of CVS model.

Parameter Healthy Case Heart Failure Case

Vtotal 5300 mL 5800 mL
Ees,lv 3.54 mm Hg/mL 0.71 mm Hg/mL
Ees,rv 1.75 mm Hg/mL 0.53 mm Hg/mL
Rsa 0.74 mm Hg·s/mL 1.11 mm Hg·s/mL

3. Simulation Results
3.1. Constant Speed Controller

To evaluate the characteristics of the hemodynamic system at a constant speed, we
turned the controller off and maintained a constant flow rate for the IRBP. To achieve this
scenario, the Vtotal was reduced by 300 mL at t = 60 s over a period of 10 s. During this
period, the stroke volume (SV) decreased due to the reduction in the pump flow. As a
result, the pressure–volume loop shifted to the left by about 400 mL, as shown in Figure 5.
Therefore, suction could have occurred at any time in this simulation due to the shifted
movement volume for the SV reaching 400 mL where no more blood could be pumped by
the IRBP. In order to prevent this from happening, we ensured that the desired reference
signal was configured to reduce the average pumping rate as a reaction to a reduction in
the total blood volume or to re-operate the controller.
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3.2. Changes in Patient Parameters to Demonstrate a Relaxation Test

Figure 6 depicts the waveforms of the systematic flow (Qs), IRBP speed (ω(t)), stroke
volume (SV), left atrium pressure (Pla), aortic pressure (Pao), left ventricle pressure (Plv),
estimated flow (Q̂est) vs. the desired reference flow (Qr), and the correlation between the
estimated flow (Q̂est) and the actual flow (Qp) generated by the CVS model in the relaxation
scenario. When suddenly decreasing the Vtotal at 60 s for a period of 10 s, the closed-loop
control system automatically activated to track the changes in Qr from (4.5 + 4sin(2πt/T))
to (2 + 4sin(2πt/T)). During this period, the desired reference signal decreased over an
interval of 10 s.
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Figure 6. Results in relaxation test; (a) systematic flow (Qs); (b) IRBP speed (ω(t)); (c) stroke volume
(SV); (d) left atrium pressure (Pla); (e) aortic pressure (Pao); (f) left ventricle pressure (Plv); (g) estimated
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flow (Q̂est) vs. desired reference flow (Qr); (h) correlation between estimated flow (Q̂est) and actual
flow (Qp).

During the relaxation test, the controller responded to the decrease in the systematic
flow from 4.5 L/m to 2 L/min (Figure 6a) by reducing the pump speed from 2950 rpm
to 2100 rpm (Figure 6b). Based on that, the stroke volume of the LV decreased due
to the reduction in Vtotal . These changes were associated with the shift to the left of
the LV volume–pressure loop by 300 mL (Figure 6c). As a result, the IRBP successfully
reduced Pla and increased Pao and Plv as fluctuation signals (Figure 6d, Figure 6e and
Figure 6f, respectively).

The results also demonstrated that Q̂est accurately tracked Qr within an error of
0.25 L/min (Figure 6g). Moreover, the correlation between Q̂est and Qp was significantly
high; the slope was 1.13 for the linear regression, the mean absolute error errormean = 0.2637,
and the correlation coefficient R2 = 0.9949.

3.3. Changes in Patient Parameters to Demonstrate an Exercise Test

Figure 7 illustrates the waveforms of the model simulation during the changes in
parameters for the CVS in the exercise test. In this test, Ees,lv and Ees,rv were increased by
20% and Rsa was reduced by 50% at 60 s over a period of 10 s. During this period, the
closed-loop control system automatically activated to linearly track the increase in Qr from
(3 + 4sin(2πt/T)) to (3 + 4sin(2πt/T)).

During the exercise test, the controller responded to changes in the systematic flow
from the initial value of 3.5 L/m to 2.8 L/min (Figure 7a) by increasing the pump speed
from 2800 rpm to 3500 rpm (Figure 7b). These changes were associated with a decrease in
the size of the stroke volume and shifted to the left by 210 mL (Figure 7c). As a result, the
IRBP successfully reduced Pla and increased Pao and Plv as fluctuation signals (Figure 7d,
Figure 7e and Figure 7f, respectively).

The results also demonstrated that Q̂est accurately tracked Qr within an error of
0.25 L/min (Figure 7g). Moreover, the correlation between Q̂est and Qp was significantly
high; the slope was 1.12 for the linear regression, the mean absolute error errormean = 0.2430,
and R2 = 0.981.

The hemodynamical results in healthy humans and the simulation of both scenarios
(rest and exercise) are shown in Table 4.

Table 4. CVS variables from the simulation results.

Parameters Healthy
HF and IRBP

Rest Exercise

Pla (mmHg) 25 15 10
Pao (mmHg) 120 100 80
Plv (mmHg) 120 95 80
Qp (L/min) 5.5 2 2.8
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4. Discussion

Implantable rotary blood pumps (IRBPs) are considered to be one of the most signifi-
cant advancements in modern technology and have been used to improve the quality of
life for heart failure (HF) patients. However, the implementation of control strategies for
these devices is still under development. These devices need to manage the physiological
requirements of the patient by continuous monitoring to meet the appropriate response by
the IRBP. The broad aim of this work was to develop a sensorless physiological controller
to adjust the pump flow in accordance with the demand of the body.

Generally, the flow rate values in a human body for a healthy person range from
4.4 to 5.5 L/min. These values are significantly reduced for HF patients, with contents
of 1.5 to 2 L/min. In this work, the pump flow rate variable was successfully used as a
hemodynamic parameter to drive an IRBP. The results indicated that the fuzzy PI-type
control system offered a robust method to maintain the CVS variables for patients with
HF. As shown in Figures 6 and 7, the controller robustly tracked the desired reference flow
within a minimal and clinically accepted value (0.25 L/min). As a result, the control system
automatically adjusted the pump speed to prevent suction (>1.5 L/min) or overperfusion
(<7.5 L/min). In both scenarios, the linear regression analysis between the estimated and
actual flow was highly correlated and the slopes were close to unity. The results also
showed that the mean absolute error between the estimated and actual flow converged to
zero (Figures 6h and 7h).

To accurately automate the pump speed and physiological perfusion for patients with
HF, we assumed that the aortic valve was closed and that the total blood passed to the
aorta through the IRBP. By employing these assumptions, our design method was able to
maintain the stroke volume of patients with HF within a minimal range (≥350 mL). In
comparison, the simulation results showed that ventricular suction could occur at any
time due to the stroke volume reaching 400 mL at a constant speed. However, these
assumptions cannot be applied to all patients due to pulsatility and the useful amount
of blood that passes through the aorta. Nonetheless, controlling the aortic valve function
with a safe operating mode for an IRBP to maintain the physiological perfusion is still a
preliminary issue [25]. For this reason, several researchers have developed physiological
control methods based on aortic valves that might be assumed to be closed [21]. For instance,
in 2019, Petukhov et al. [26] proposed a novel control method for a full and a partial support
to adjust the pump flow of IRBPs. The method was successfully implemented and evaluated
based on a pump flow estimation and aortic valve state detection in a changing heart rate
(HR) and contractility.

Various control mechanisms have been developed and implemented based on multiple
hemodynamic factors. These factors use intrinsic pump parameters based on the use of
the linear functions of a CVS model. It might be challenging to use this approach when
simulating patients. For example, a linear model may not be consistent across a group
of patients. This may lead to simulation inaccuracy and an inconsistent quantization
performance. Furthermore, the pump flow derived from intrinsic pump feedback signals
as the total flow to humans may increase the estimation error [27]. However, in this study,
the flow estimator model was stable and guaranteed the performance of the controller in
providing significant tracking, as shown in Figures 6h and 7h.

This work was designed based on an estimated pump flow parameter. The results in
Table 4 illustrate that the CVS hemodynamic variables varied within acceptable clinical
conditions. However, several researchers have used different variables for controlling
IRBPs. These variables may include an afterload or aortic pressure, arterial pulsatility,
suction detection, and he heart rate. We believe that the pump flow parameter is the most
significant parameter to achieve a physiological controller. For example, an afterload or
aortic pressure are essential parameters to be estimated or measured before the ventricles
can push blood out of their respective semilunar valves. However, this parameter is not
widely used to drive IRBPs [28].
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Our results also showed that the controller was able to prevent suction by decreasing
the left atrial pressure. As a result, the controller maintained a pump flow with a minimum
value of 2 L/min in relaxation and a minimum value of 2.8 L/min in exercise conditions. A
suction detection variable has also been used to control rotary blood pumps. This variable
usually leads to a ventricular collapse when an IRBP works at high speed. A recent study
was conducted by Peng et al. [29] to detect ventricular suction for the rotary mechanism of
an IRBP. In this study, intrinsic pump parameters were used in addition to a model that
recognized suction without the use of sensors. The proposed method was evaluated using
two pump states: ventricular suction and nonventricular suction. In 2019, Son et al. [30]
implemented a feedback control strategy using a suction prevention unit integrated with
pulsatility. The performance of the method and the suction prevention were evaluated to
demonstrate the efficiency and feasibility of the designed strategy.

This study had several limitations. Unlike the previous study [31], this work did not
employ the mechanism of a Frank–Starling-like controller. This mechanism guarantees that
the preload parameter (left ventricle end-diastolic volume) is utilized. This parameter has
been proven to be a significant parameter for obtaining and implementing a physiological
controller for patients with HF [32]. In addition, this study did not include a simulation of
the baroreflex, which may have impacted the results and CVS hemodynamics.

In the future, this study could be extended to evaluate and validate the proposed
control system in mock circulation loops. In this validation, postural changes and Valsalva
maneuvers could be simulated at realistic rates of change in physical mock loop resistance
and compliance.

5. Conclusions

In this study, a sensorless physiological control method for an IRBP was developed and
implemented to maintain the physiological perfusion of patients with HF. The technique
used an estimator model to estimate the average pump flow. A fuzzy PI-type control system
was utilized to adjust the speed of the IRBP by tracking the desired flow. The desired pump
flow was modeled as a cardiac output using an elastance function (E(t)).

The proposed method was evaluated in silico using a lumped parameter model of the
CVS-RBP with MATLAB software. The parameters of this model were utilized to replicate
the conditions of patients with HF based on clinical data. The method was examined under
two different physiological scenarios ranging between rest and exercise. In each scenario,
the CVS parameters were changed by adjusting Ees,lv, Ees,rv, Rsa, and Vtotal .

The hemodynamic results showed that the proposed control method accurately
tracked the desired reference flow within a minimum value of 0.25 L/min. The system also
demonstrated that the correlation between the estimated and actual flow was close to unity.
In addition, the system reported that all hemodynamic parameters, including Pla, Pao, Plv,
and Qp, were appropriate for clinical use. The findings showed that the design method
successfully prevented ventricular collapse and excessive blood flow.
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Abbreviations

CVS Cardiovascular system
HF Heart failure
ARX Auto-regressive
IRBP Implantable rotary blood pump
FLC Fuzzy logic control
PI Proportional-integral
FEM Flow estimator model
PWM Pulse-width modulation
Qr Desired reference flow
Q̂est Estimated average pump flow
Pla Left atrium pressure
Pao Aortic pressure
Plv Left ventricle pressure
E(t) Elastance function
Vtotal Total blood volume
Ees,lv Left ventricle contractility
Ees,rv Right ventricle contractility
Rsa Systemic vascular resistance
Qs Systematic flow
Qp Actual flow
Vlv Left ventricle volume
Plv Left ventricle pressure
SV Stroke volume
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